K. Martins, P. Bonneton, D. Lannes, and H. Michallet, Journal of Physical Oceanography 51 (2021), 3539–3556. Download

The inability of the linear wave dispersion relation to characterize the dispersive properties of nonlinear shoaling and breaking waves in the nearshore has long been recognized. Yet, it remains widely used with linear wave theory to convert between subsurface pressure, wave orbital velocities, and the free surface elevation associated with nonlinear nearshore waves. Here, we present a nonlinear fully dispersive method for reconstructing the free surface elevation from subsurface hydrodynamic measurements. This reconstruction requires knowledge of the dispersive properties of the wave field through the dominant wavenumbers magnitude k, representative in an energy-averaged sense of a mixed sea state composed of both free and forced components. The present approach is effective starting from intermediate water depths—where nonlinear interactions between triads intensify—up to the surf zone, where most wave components are forced and travel approximately at the speed of nondispersive shallow-water waves. In laboratory conditions, where measurements of k are available, the nonlinear fully dispersive method successfully reconstructs sea surface energy levels at high frequencies in diverse nonlinear and dispersive conditions. In the field, we investigate the potential of a reconstruction that uses a Boussinesq approximation of k, since such measurements are generally lacking. Overall, the proposed approach offers great potential for collecting more accurate measurements under storm conditions, both in terms of sea surface energy levels at high frequencies and wave-by-wave statistics (e.g., wave extrema). Through its control on the efficiency of nonlinear energy transfers between triads, the spectral bandwidth is shown to greatly influence nonlinear effects in the transfer functions between subsurface hydrodynamics and the sea surface elevation.

Ability of the nonlinear method to reconstruct an extreme wave (below in green, plot of the nonlinear correction)