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Abstract
This paper is devoted to the theoretical and numeri-
cal investigation of the initial boundary value problem
for a system of equations used for the description of
waves in coastal areas, namely, the Boussinesq–Abbott
system in the presence of topography. We propose a pro-
cedure that allows one to handle very general linear
or nonlinear boundary conditions. It consists in reduc-
ing the problem to a system of conservation laws with
nonlocal fluxes and coupled to an ordinary differen-
tial equation. This reformulation is used to propose two
hybrid finite volumes/finite differences schemes of first
and second order, respectively. The possibility to use
many kinds of boundary conditions is used to investigate
numerically the asymptotic stability of the boundary
conditions, which is an issue of practical relevance in
coastal oceanography since asymptotically stable bound-
ary conditions would allow one to reconstruct a wave
field from the knowledge of the boundary data only, even
if the initial data are not known.
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1 INTRODUCTION

1.1 General motivation and objectives

The dynamics of water waves over a nonflat bottom in the littoral area is a subject of great inter-
est with far-reaching societal and economic stakes. Among them, one can mention safety aspects
linked to the risk of flooding and sailing accidents, the impact of waves on the morphodynam-
ics of the beach through sedimentation and erosion, or the issue of marine renewable energies,
for which a good knowledge of the waves dynamics would be beneficial to increase the yield of
offshore mooring systems or to choose pertinent wave farm locations. When considering coastal
flows, it is not always possible to neglect dispersive effects which play an important role in the
shoaling zone and in the generation of extreme waves. To accurately describe these phenomena,
one therefore needs a model of shallow free surface flows that takes into account both non-
linear and dispersive effects. In this regard, the family of weakly nonlinear vertically averaged
Boussinesq-type systems is pertinent as it presents a good compromise between accuracy and
reduced complexity compared, for instance, to the shallow water system, not accurate enough
because it neglects dispersive effects, or to the fully nonlinear Serre–Green–Naghdi equations,
more accurate but also more complex.1
For practical applications, one usually considers a bounded spatial domain, and one has to solve

an initial boundary value problem: the solution is computed at all times in terms of the initial data
in the interior of the domain, as well as of the boundary data imposed at all times on its boundary.
In the presence of dispersive terms, the question of boundary conditions is difficult and widely
open, yet it is crucial for applications. The purpose of this work is to investigate this issue both
theoretically and numerically in the case of the one-dimensional Boussinesq–Abbott model with
a nonflat bottom, namely,

⎧⎪⎨⎪⎩
𝜕𝑡 𝜁 + 𝜕𝑥 𝑞 = 0

(1 + ℎ𝑏𝑏 )𝜕𝑡 𝑞 + 𝜕𝑥

(
1

ℎ
𝑞2

)
+ 𝚐ℎ𝜕𝑥 𝜁 = 0

𝑡 > 0, 𝑥 ∈ (0, 𝓁),

where 𝜁(𝑡, 𝑥) denotes the elevation of the fluid at time 𝑡 and horizontal coordinate 𝑥 with respect
to the rest state 𝑧 = 0; 𝑞(𝑡, 𝑥) is the horizontal discharge of the fluid; ℎ(𝑡, 𝑥) = ℎ0 + 𝜁(𝑡, 𝑥) − 𝑏(𝑥)

is the water height, with ℎ0 the characteristic depth and 𝑧 = −ℎ0 + 𝑏(𝑥) a parameterization of the
bottom topography; 𝚐 is the acceleration of gravity; and finally 𝑏 is a positive second-order differ-
ential operator, whose exact expression is not important at this point. This model was proposed
by Abbott et al2 as a variant of the original Boussinesq–Peregrinemodel, which is written in terms
of 𝜁 and the average velocity 𝑣 = 𝑞∕ℎ; see Ref. 3 for a comparison of these two approaches.
More specifically, we propose a new method that enables to prescribe a nonlinear function of

the unknowns (𝜁, 𝑞) at the boundaries of the domain by a given function of time. The possibility
to enforce such general nonhomogeneous boundary conditions is a prerequisite to be able to go
beyond simple academic test-cases such as solitary waves, and instead force realistic and complex
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wave fields in the domain, which typically feature swell and infragravity waves characterized by
very disparate spatial scales andmultidirectional propagation. This question is also related to that
of asymptotic stability in the following sense: if we know the boundary data for all times (via buoys
measurements for instance) but not the initial condition, can we expect the solution computed by
solving the initial boundary value problemwith an arbitrary initial data to converge in time to the
real solution, and how does the choice of boundary conditions impact this convergence? This is
a completely open theoretical problem, for which we propose here some numerical insight based
on a new second-order numerical scheme.

1.2 State of the art and contribution

Before describing the state of the art for the mathematical and numerical analysis of the initial
boundary value problem associated with nonlinear dispersive models such as the Boussinesq–
Abbott equations, let us recall some elements of the hyperbolic theory. Indeed, the Boussinesq–
Abbott equations are a dispersive perturbation of the nonlinear shallow water equations that can
be deduced from the Boussinesq–Abbott equations by neglecting the operator 𝑏, namely,

⎧⎪⎨⎪⎩
𝜕𝑡 𝜁 + 𝜕𝑥 𝑞 = 0,

𝜕𝑡 𝑞 + 𝜕𝑥

(
1

ℎ
𝑞2

)
+ 𝚐ℎ𝜕𝑥 𝜁 = 0

𝑡 > 0, 𝑥 ∈ (0, 𝓁).

This model belongs to the class of hyperbolic systems for which initial boundary value problems
are well understood (see, for instance, Refs. 4 as well as 5 for a detailed analysis of the one-
dimensional case). As we see, despite the fact that the Boussinesq–Abbott system is a perturbation
of the nonlinear shallow water equations, the behavior of the associated initial boundary value
problems differ drastically. When applied to the nonlinear shallow water equations, the general
theory of hyperbolic systems implies that under certain well-identified conditions, it is possible
to solve the equations on a finite domain if we know 𝜁 and 𝑞 at 𝑡 = 0, and if we impose at all
times one scalar boundary data at 𝑥 = 0 and 𝑥 = 𝓁: typically, one can impose 𝜁, 𝑞 or the incoming
Riemann invariant (see in particular Dougalis’ contribution for the numerical analysis of char-
acteristic boundary conditions6). The missing boundary data are then recovered locally through
the method of characteristics applied to the outgoing Riemann invariants. This is a fundamental
difference compared to dispersive models, which do not admit Riemann invariants due to their
nonhyperbolic nature, and a consequence is that it is no longer possible to recover the missing
boundary data using local arguments as pointed in Ref. 7.
Dougalis was a pioneer in the analysis of initial boundary value problems for Boussinesq-type

equations with nontrivial (i.e., nonperiodic) boundary conditions. In Ref. 8, he considered sys-
tems of the Bona–Smith family (for which a dispersive term is also present in the equation for
the surface elevation) with nonhomogeneous boundary conditions on the surface elevation and
on the velocity. In the case of homogeneous boundary conditions, he then proposed a numer-
ical Galerkin-finite element scheme9; he even addressed the two-dimensional case in Refs. 10,
11 where he proposed a mathematical and numerical analysis for various types of homogeneous
boundary conditions, still for systems of the Bona–Smith family. In Ref. 12, he considered the
“classical” Boussinesq system (corresponding to the Boussinesq–Peregrine system with a flat
topography), with a homogeneous boundary condition on the velocity. He also considered the
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4 of 46 LANNES and RIGAL

case of a variable topography13 with homogeneous condition on the velocity or approximate trans-
parent boundary conditions. The contribution of Dougalis and his coauthors is without doubt the
most important to the theoretical and numerical analysis of the initial boundary value problem
of Boussinesq-type equations. In the wake of these works, we propose here to investigate the case
of nonhomogeneous boundary conditions.
Several authors also considered the related problem of transparent boundary conditions: for

the linear KdV, BBM, or Boussinesq equations, this was addressed in Refs. 14–17 while for the
nonlinear case approaches based on perfectly matched layer (PML) methods have been proposed
for the KdV equation18 and for a hyperbolic relaxation of the Serre–Green–Naghdi equations.19
This approach can be adapted to handle the initial boundary value problem; instead of impos-
ing a boundary condition, one imposes an initial data in the PML. This is also the idea behind
the source function method.20 These methods are robust and popular but have the drawback
of being only approximations of the initial boundary value problems and to require to work
on a considerably larger computational domain, at the cost of computational time. Besides, let
us mention Ref. 21 where a class of boundary conditions for time-discrete Serre–Green–Naghdi
equations are considered.
It was shown recently that wave-structure interaction problems for the Boussinesq equa-

tions could be reduced to initial boundary value problems with nonhomogeneous boundary con-
ditions. A newmethod was proposed to handle this problem theoretically22,23 and numerically24;
it was also generalized inRef. 7 to handle generating boundary conditions (the boundary condition
is on the surface elevation 𝜁). All these references considered the case of the Boussinesq–Abbott
model with a flat topography, and with boundary conditions imposed on 𝜁 or 𝑞. For applications
to coastal oceanography it is however important to consider a nonflat topography, as well as other
kinds of boundary conditions. The goal of this paper is to generalize the above method to propose
a solution to these two problems, and to design a general second-order well-balanced scheme to
approximate the solutions.

1.3 Organization of the paper

We first propose in Section 2 a theoretical analysis of the initial boundary value problemassociated
with the Boussinesq–Abbott when the boundary conditions are imposed on the surface elevation
at 𝑥 = 0 and 𝑥 = 𝓁. In the case of a flat bottom, considered in Section 2.1 this is a generalization of
Ref. 7 to the case of a finite interval; in the case of a nonflat topography studied in Section 2.2, the
analysis is significantlymore involved because some crucial commutation properties used inRef. 7
are no longer true.Well-posedness is proved using a reformulation of the original initial boundary
value problem as a simple initial value problem (no boundary condition); a well-balanced version
of this formulation is proposed in Section 2.3, on which our numerical scheme is based on.
We then consider the case of general boundary conditions in Section 3. We work in a general

framework where a (possibly nonlinear) function of 𝜁 and 𝑞 is imposed at each endpoint of the
domain; these functions are called input functions. There exist also in this framework so-called
output functions and a reconstruction mapping that allows to recover 𝜁 and 𝑞 from the knowl-
edge of the input and output functions (see Section 3.1). We show in Section 3.2 that the output
functions can be recovered through the resolution of a first- or second-order ordinary differential
equation (ODE); the number of initial conditions thatmust be provided to solve this ODEdepends
of course on its order; in addition compatibility conditions must also be imposed on the data. The
analysis of these two types of conditions is performed in Section 3.3. The well-posedness of the
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LANNES and RIGAL 5 of 46

original initial boundary value problemwith general boundary conditions can then be established
in Section 3.4. We end this section by commenting in Section 3.5 on an open theoretical problem
of high practical interest: the asymptotical stability of the boundary conditions. In other terms,
the question is to knowwhether the solution of the initial boundary value problem can be asymp-
totically recovered after a transitory regime if we start from a different initial data but impose the
same boundary data.
We then present in Section 4 the numerical schemes we use in our numerical simulations.

We use a hybrid finite volumes/finite differences approach. We propose both a first-order Lax–
Friedrichs scheme in Section 4.2 and a second-order MacCormack scheme in Section 4.3.
Numerical simulations are finally presented in Section 5. We first show in Section 5.1 the abil-

ity of our numerical schemes to solve nontrivial initial boundary value problems in the presence
of topography. Several kinds of boundary conditions are investigated. We finally investigate in
Section 5.2 the issue of asymptotic stability. It is in particular shown that numerical asymptotic
stability is achieved by imposing nonlinear boundary conditions (the Riemann invariants associ-
atedwith the nonlinear shallowwater equations), but not if we impose the surface elevation or the
discharge at the boundaries. This shows the relevance of being able to enforce generic nonlinear
boundary conditions when dealing with complex applications of initial boundary value problems.

2 THE BOUSSINESQ–ABBOTT SYSTEMWITH BOUNDARY
CONDITIONS ON THE SURFACE ELEVATION

We propose here a theoretical analysis of the initial boundary value problem for the Boussinesq–
Abbott system with boundary conditions on the surface elevation. We first treat in Section 2.1
the case of flat bathymetries; this problem was considered in Ref. 7 on the half-line; we extend it
here to treat the case of a finite interval, with boundary conditions on the surface elevation at both
ends.We then consider in Section 2.2 the Boussinesq–Abbott equationswith topography. As in the
case of flat topography, it is possible to reduce the problem to an initial boundary value problem,
which we use to prove well-posedness, but the analysis is considerably more difficult because the
operator 𝑏 does not commute with space derivatives. To prepare the ground for our numerical
scheme, a well-balanced version of this reformulation is proposed in Section 2.3.

2.1 The case of flat bathymetries

We consider here the case of a flat bathymetry; the Boussinesq–Abbott model then reduces to

⎧⎪⎨⎪⎩
𝜕𝑡 𝜁 + 𝜕𝑥 𝑞 = 0(

1 −
ℎ2

0

3
𝜕2

𝑥

)
𝜕𝑡 𝑞 + 𝜕𝑥 𝑓NSW = 0

in (0, 𝓁) , (1)

where we recall that

𝑓NSW = 𝑓NSW (𝜁, 𝑞) =
1

2
𝚐
(

ℎ2 − ℎ2
0

)
+

1

ℎ
𝑞2 ,
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6 of 46 LANNES and RIGAL

where ℎ = ℎ0 + 𝜁. The initial boundary value problem for this system was studied in Ref. 7 on
the half-line (0, ∞), with a prescribed boundary value on the surface elevation 𝜁 at 𝑥 = 0 (see also
Ref. 24 for the case of a prescribed boundary value on 𝑞). We extend this result here to the case of
a finite interval (0, 𝓁) with prescribed boundary values on 𝜁 at 𝑥 = 0 and 𝑥 = 𝓁.

2.1.1 Notations

We first need to introduce 𝑅0, the inverse of (1 −
ℎ2

0

3
𝜕2

𝑥 ) with homogeneous Dirichlet boundary
data at 𝑥 = 0 and 𝑥 = 𝓁; more precisely, we set

𝑅0 ∶ 𝑓 ∈ 𝐿2 (0, 𝓁) ⟼ 𝑢 ∈ 𝐻2 (0, 𝓁) solving

⎧⎪⎨⎪⎩
[

1 −
ℎ2

0

3
𝜕2

𝑥

]
𝑢 = 𝑓

𝑢(0) = 𝑢(𝓁) = 0

(2)

(note that𝑅0 is alsowell-defined on𝐻−1(0, 𝓁)with values in𝐻1 (0, 𝓁)). Since, contrary to Ref. 7, we
work on a finite interval, we also need to introduce 𝔰(0) and 𝔰(𝓁) the solutions of the equations of
the homogeneous equation but with nonhomogeneous boundary conditions at the left and right
boundaries, respectively,

⎧⎪⎨⎪⎩
[

1 −
ℎ2

0

3
𝜕2

𝑥

]
𝔰(0) = 0

𝔰(0) (0) = 1, 𝔰(0) (𝓁) = 0

and

⎧⎪⎨⎪⎩
[

1 −
ℎ2

0

3
𝜕2

𝑥

]
𝔰(𝓁) = 0

𝔰(𝓁) (0) = 0, 𝔰(𝓁) (𝓁) = 1.

(3)

We also denote by 𝔖′ the matrix

𝔖′ =

(
(𝔰(0) )′ (0) (𝔰(𝓁) )′ (0)

(𝔰(0) )′ (𝓁) (𝔰(𝓁) )′ (𝓁)

)
. (4)

Remark 1. One can compute 𝔰(0) and 𝔰(𝓁) explicitly, namely,

𝔰(0) (𝑥) =
sinh
(√

3
(𝓁−𝑥)

ℎ0

)
sinh
(√

3
𝓁

ℎ0

) , 𝔰(𝓁) (𝑥) =
sinh
(√

3
𝑥

ℎ0

)
sinh
(√

3
𝓁

ℎ0

) , (5)

from which an explicit expression for 𝔖′ easily follows.

We finally introduce the inverse of (1 −
ℎ2

0

3
𝜕2

𝑥 ) with homogeneous Neumann boundary data at
𝑥 = 0 and 𝑥 = 𝓁;

𝑅1 ∶ 𝑓 ∈ 𝐿2 (0, 𝓁) ⟼ 𝑢 ∈ 𝐻2 (0, 𝓁) solving

⎧⎪⎨⎪⎩
[

1 −
ℎ2

0

3
𝜕2

𝑥

]
𝑢 = 𝑓

𝜕𝑥 𝑢(0) = 𝜕𝑥 𝑢(𝓁) = 0.

(6)
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LANNES and RIGAL 7 of 46

An important observation is the following commutation property:

∀𝑓 ∈ 𝐿2 (0, 𝓁), 𝑅0 𝜕𝑥 𝑓 = 𝜕𝑥 𝑅1 𝑓. (7)

2.1.2 Well-posedness of the initial boundary value problem

We prove here that the initial boundary value problem formed by (1) with boundary conditions

𝜁(⋅, 0) = 𝑔0 and 𝜁(⋅, 𝓁) = 𝑔𝓁 , (8)

and initial condition

(𝜁, 𝑞)(0, ⋅) = (𝜁in , 𝑞in ) (9)

is well-posed. Remarking that from the first equation of (15) one has 𝑑

𝑑𝑡
(𝜁(𝑡, 0)) = −𝜕𝑥 𝑞(𝑡, 0),

and proceeding similarly at 𝑥 = 𝓁, a necessary compatibility condition on the initial and
boundary data to allow the possibility of a solution which is of class 𝐶1 at the origin is
that {

𝜁in (0) = 𝑔0 (0),

−𝜕𝑥 𝑞in (0) = 𝑔̇0 (0),
and

{
𝜁in (𝓁) = 𝑔𝓁 (0),

−𝜕𝑥 𝑞in (𝓁) = 𝑔̇𝓁 (0).
(10)

The key step, in the spirit of Refs. 7, 24 is to reformulate the problem as an initial value problem
(no boundary condition).

Proposition 1. Assume that the initial and boundary data (𝜁in , 𝑞in ) and (𝑔0 , 𝑔𝓁 ) satisfy the
compatibility condition (10). Then the two following assertions are equivalent:

(i) The couple (𝜁, 𝑞) is a regular solution to (1) such that the depth ℎ never vanishes and with
boundary conditions (8) and initial condition (9).

(ii) The couple (𝜁, 𝑞) is a regular solution such that the depth ℎ never vanishes to{
𝜕𝑡 𝜁 + 𝜕𝑥 𝑞 = 0,

𝜕𝑡 𝑞 + 𝜕𝑥 (𝑅1 𝑓NSW ) = 𝑞̇0 𝔰(0) + 𝑞̇𝓁 𝔰(𝓁) ,
in (0, 𝓁), (11)

with initial condition (9), and where 𝑞0 and 𝑞𝓁 solve the ODE

𝔖′

(
𝑞̇0

𝑞̇𝓁

)
+

3

ℎ2
0

(
𝑓NSW (𝑔0 , 𝑞0 )

𝑓NSW (𝑔𝓁 , 𝑞𝓁 )

)
= −

(
𝑔0

𝑔𝓁

)
+

3

ℎ2
0

(
(𝑅1 𝑓NSW )|𝑥=0

(𝑅1 𝑓NSW )|𝑥=𝓁

)
, (12)

with 𝔖′ defined in (4), and with initial condition

𝑞0 (0) = 𝑞in (0) and 𝑞𝓁 (0) = 𝑞in (𝓁). (13)
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8 of 46 LANNES and RIGAL

Proof. Let (𝜁, 𝑞) be a regular solution to (1) with boundary conditions 𝜁(⋅, 0) = 𝑔0 and 𝜁(⋅, 𝓁) = 𝑔𝓁

and initial condition (𝜁, 𝑞)(0, ⋅) = (𝜁in , 𝑞in ). By definition of 𝑅0, the second equation of (1) can be
rewritten as

𝜕𝑡 𝑞 + 𝑅0 𝜕𝑥 𝑓NSW = 𝑞̇0 𝔰(0) + 𝑞̇𝓁 𝔰(𝓁) ,

where 𝑞0 and 𝑞𝓁 denote the trace of 𝑞 at 𝑥 = 0 and 𝑥 = 𝓁, respectively. Differentiatingwith respect
to 𝑥 we get

𝜕𝑡 𝜕𝑥 𝑞 + 𝜕𝑥 𝑅0 𝜕𝑥 𝑓NSW = 𝑞̇0 𝔰′(0) + 𝑞̇𝓁 𝔰′(𝓁) .

Using the first equation one can replace 𝜕𝑡 𝜕𝑥 𝑞 = −𝜕2
𝑡 𝜁 while the identities 𝑅0 𝜕𝑥 = 𝜕𝑥 𝑅1 and (1 −

ℎ2
0

3
𝜕2

𝑥 )𝑅1 = Id allow us to deduce that

−𝜕2
𝑡 𝜁 −

3

ℎ2
0

(1 − 𝑅1 )𝑓NSW = 𝑞̇0 𝔰′
(0)

+ 𝑞̇𝓁 𝔰′
(𝓁)

.

Taking the trace of this equation at𝑥 = 0 and𝑥 = 𝓁, respectively,we therefore obtain the following
differential system on 𝑞0 and 𝑞𝓁:

⎧⎪⎪⎨⎪⎪⎩
𝔰′

(0)
(0)𝑞̇0 + 𝔰′

(𝓁)
(0)𝑞̇𝓁 = −

3

ℎ2
0

𝑓NSW (𝑔0 , 𝑞0 ) +
3

ℎ2
0

(𝑅1 𝑓NSW )|𝑥=0
− 𝑔0 ;

𝔰′
(0)

(𝓁)𝑞̇0 + 𝔰′
(𝓁)

(𝓁)𝑞̇𝓁 = −
3

ℎ2
0

𝑓NSW (𝑔𝓁 , 𝑞𝓁 ) +
3

ℎ2
0

(𝑅1 𝑓NSW )|𝑥=𝓁
− 𝑔𝓁 ;

this shows that the first point of the proposition implies the second one. For the reverse impli-
cation, we can observe that if (𝜁, 𝑞) and (𝑞0 , 𝑞𝑙 ) solve the above system then (𝜁, 𝑞) solves the
Boussinesq system (1). By taking the trace of the second equation of (11) at 𝑥 = 0 and 𝑥 = 𝓁,
respectively, we also obtain that 𝑑

𝑑𝑡
𝑞(𝑡, 0) = 𝑞̇0 (𝑡) and 𝑑

𝑑𝑡
𝑞(𝑡, 𝓁) = 𝑞̇𝓁 (𝑡). Sincemoreover we take by

assumption 𝑞(0, 0) = 𝑞0 (0) and 𝑞(0, 𝓁) = 𝑞𝓁 (0), we deduce that 𝑞(𝑡, 0) = 𝑞0 (𝑡) and 𝑞(𝑡, 𝓁) = 𝑞𝓁 (𝑡)

for all times. In contrast, the boundary conditions (8) are not necessarily satisfied. However, as for
the derivation of (12), we obtain that (𝜁0 (𝑡), 𝜁𝓁 (𝑡)) ∶= (𝜁(𝑡, 0), 𝜁(𝑡, 𝓁)) satisfies

𝔖′

(
𝑞̇0

𝑞̇𝓁

)
+

3

ℎ2
0

(
𝑓NSW (𝜁0 , 𝑞0 )

𝑓NSW (𝜁𝓁 , 𝑞𝓁 )

)
= −

(
𝜁0

𝜁𝓁

)
+

3

ℎ2
0

(
(𝑅1 𝑓NSW )|𝑥=0

(𝑅1 𝑓NSW )|𝑥=𝓁

)
,

and it follows that (𝜁0 , 𝜁𝓁 ) and (𝑔0 , 𝑔𝓁 ) satisfy the same second-order ODE. We can therefore
conclude that (𝜁0 , 𝜁𝓁 ) = (𝑔0 , 𝑔𝓁 ) if and only if

(𝜁0 (0), 𝜁𝓁 (0)) = (𝑔0 (0), 𝑔𝓁 (0)) and (𝜁̇0 (0), 𝜁̇𝓁 (0)) = (𝑔̇0 (0), 𝑔̇𝓁 (0)).

Replacing 𝜕𝑡 𝜁 by −𝜕𝑥 𝑞, these conditions are equivalent to (10). It follows that the boundary
conditions (8) are also satisfied. This concludes the proof of the proposition. □
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LANNES and RIGAL 9 of 46

The initial value problem formed by (11) and (12) with initial conditions (9) and (13) is actually
an ODE on 𝐻𝑛 (0, 𝓁) × 𝐻𝑛+1 (0, 𝓁) × ℝ2 for (𝜁, 𝑞, 𝑞0 , 𝑞𝓁 ) if 𝑛 is a nonnegative integer. The existence
of a local in time solution therefore follows immediately from Cauchy–Lipschitz theorem (we do
not give details for the proof, which can easily be adapted from Ref. 7). Note that the condition
inf (ℎ0 + 𝜁in ) > 0 ensures that the shallow water flux 𝑓NSW is well-defined. By Proposition 1, this
solution furnishes a solution to the original initial boundary value problem (1), (8), and (9).

Proposition 2. Let 𝑔0 , 𝑔𝓁 ∈ 𝐶∞ (ℝ+ ). Let also 𝑛 ∈ ℕ∖{0} and (𝜁in , 𝑞in ) ∈ 𝐻𝑛 (0, 𝓁) × 𝐻𝑛+1(0, 𝓁) be
such that inf (ℎ0 + 𝜁in ) > 0 and satisfying the compatibility conditions (10).
Then there exists a maximal existence time 𝑇∗ > 0 and a unique solution (𝜁, 𝑞, 𝑞0 , 𝑞𝓁 ) ∈

𝐶∞ ([0, 𝑇∗ ); 𝐻𝑛 (0, 𝓁) × 𝐻𝑛+1(0, 𝓁) × ℝ2 ) to (11) and (12) with initial conditions (9) and (13), and for
all 𝑡 ∈ [0, 𝑇∗ ), one has 𝑞0 (𝑡) = 𝑞(𝑡, 0) and 𝑞𝓁 (𝑡) = 𝑞(𝑡, 𝓁).

2.2 The Boussinesq–Abbott model with topography

We now consider the full Boussinesq–Abbott model which contains additional topography terms
compared to (1). Throughout this section, we assume that the bottom is parameterized by a func-
tion −ℎ0 + 𝑏, with 𝑏 a smooth function on [0, 𝓁]. We assume also that the depth of the fluid at rest
never vanishes, namely,

inf
(0,𝓁)

(ℎ0 − 𝑏) > 0. (14)

Denoting ℎ𝑏 = ℎ0 − 𝑏, the Boussinesq–Abbott model is given by{
𝜕𝑡 𝜁 + 𝜕𝑥 𝑞 = 0

(1 + ℎ𝑏𝑏 )𝜕𝑡 𝑞 + 𝜕𝑥 𝑓NSW = −𝚐ℎ𝜕𝑥 𝑏
in (0, 𝓁) , (15)

where ℎ now contains an additional topography term, ℎ = ℎ0 + 𝜁 − 𝑏, and where the shallow
water flux is still given by

𝑓NSW = 𝑓NSW (𝜁, 𝑞) =
1

2
𝚐
(

ℎ2 − ℎ2
0

)
+

1

ℎ
𝑞2 ,

which is the same expression as in the case of a flat topography, except that ℎ now depends also
on 𝑏. The second-order operator 𝑏 is given by

𝑏 (⋅) = −
1

3ℎ𝑏
𝜕𝑥

(
ℎ3

𝑏
𝜕𝑥

(⋅)

ℎ𝑏

)
+

1

2
𝜕2

𝑥 𝑏 (16)

and can be alternatively written under the form (see Section 5.6 of Ref. 25)

𝑏 (⋅) = 𝑆∗ (ℎ𝑏 𝑆(⋅)) +
1

4

(𝜕𝑥 𝑏)2

ℎ𝑏

with

𝑆(⋅) = −
1√

3
ℎ𝑏 𝜕𝑥

(
1

ℎ𝑏
⋅

)
+

√
3

2

𝜕𝑥 𝑏

ℎ𝑏
. (17)
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10 of 46 LANNES and RIGAL

2.2.1 Notations and preliminary results

We generalize here, in the presence of a nonflat topography, the concepts introduced in Sec-
tion 2.1.1. We introduce the operator 𝑅0

𝑏
as the inverse of (1 + ℎ𝑏𝑏 ) with homogeneous Dirichlet

boundary conditions, that is to say

𝑅0
𝑏

∶ 𝑓 ∈ 𝐿2 (0, 𝓁) ⟼ 𝑢 ∈ 𝐻2 (0, 𝓁) solving

{
[1 + ℎ𝑏𝑏 ]𝑢 = 𝑓

𝑢(0) = 𝑢(𝓁) = 0;
(18)

here again, the operator 𝑅0
𝑏
can be also extended as an operatormapping 𝐻−1 (0, 𝓁) to 𝐻1 (0, 𝓁). We

also introduce the solutions 𝔰(𝑏,0) and 𝔰(𝑏,𝓁) of the homogeneous equation with nonhomogeneous
boundary conditions{

[1 + ℎ𝑏𝑏 ]𝔰(𝑏,0) = 0

𝔰(𝑏,0) (0) = 1, 𝔰(𝑏,0)(𝓁) = 0
and

{
[1 + ℎ𝑏𝑏 ]𝔰(𝑏,𝓁) = 0

𝔰(𝑏,𝓁) (0) = 0, 𝔰(𝑏,𝓁) (𝓁) = 1,
(19)

and we also denote by 𝔖′
𝑏
the matrix

𝔖′
𝑏

=

(
(𝔰(𝑏,0))′ (0) (𝔰(𝑏,𝓁) )′ (0)

(𝔰(𝑏,0))′ (𝓁) (𝔰(𝑏,𝓁) )′ (𝓁)

)
. (20)

Note that contrary to the case of a flat topography, there is in general no explicit expression for
𝔰(𝑏,0) and 𝔰(𝑏,𝓁).We canhowever prove that𝔖′

𝑏
is invertible under an assumptionwhich is satisfied

by all the topography profiles we considered in this paper, as well as by typical beach profiles.

Proposition 3. Assume that (14) is satisfied and that in addition

min
(0,𝓁)

(
1 +

1

4
(𝜕𝑥 𝑏)2 +

1

6
ℎ𝑏 𝜕2

𝑥 𝑏

)
> 0. (21)

Then, the matrix 𝔖′
𝑏
is invertible and (𝔰(𝑏,0))′ (0) ≠ 0 and (𝔰(𝑏,𝓁) )′ (𝓁) ≠ 0.

Proof. We can remark that

1 + ℎ𝑏𝑏 = −
1

3
𝜕𝑥

(
ℎ2

𝑏
𝜕𝑥 ⋅
)

−
1

3
ℎ𝑏 (𝜕𝑥 𝑏)𝜕𝑥 +

(
1 +

1

3
(𝜕𝑥 𝑏)2 +

1

6
ℎ𝑏 𝜕2

𝑥 𝑏

)
.

For all 𝑢 ∈ 𝐻1 (0, 𝓁) such that 𝜕𝑥 𝑢(0) = 𝜕𝑥 𝑢(𝓁) = 0, we obtain therefore that

∫
𝓁

0

𝑢(1 + ℎ𝑏𝑏 )𝑢 =
1

3 ∫
𝓁

0

(ℎ2
𝑏

(𝜕𝑥 𝑢)2 − ℎ𝑏 (𝜕𝑥 𝑏)𝑢𝜕𝑥 𝑢) + ∫
𝓁

0

(
1 +

1

3
(𝜕𝑥 𝑏)2 +

1

6
ℎ𝑏 𝜕2

𝑥 𝑏

)
𝑢2 .

Since for all 𝜖 > 0, one has

−ℎ𝑏 (𝜕𝑥 𝑏)𝑢𝜕𝑥 𝑢 ≥ −
𝜖

2
ℎ2

𝑏
(𝜕𝑥 𝑢)2 −

1

2𝜖
(𝜕𝑥 𝑏)2 𝑢2 ,
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LANNES and RIGAL 11 of 46

we deduce that

∫
𝓁

0

𝑢(1 + ℎ𝑏𝑏 )𝑢 ≥ 1

3

(
1 −

𝜖

2

)
∫

𝓁

0

ℎ2
𝑏

(𝜕𝑥 𝑢)
2

+ ∫
𝓁

0

(
1 +

1

3

(
1 −

1

2𝜖

)
(𝜕𝑥 𝑏)2 +

1

6
ℎ𝑏 𝜕2

𝑥 𝑏

)
𝑢2 .

Under the assumptions of the proposition, it is possible to find 1

2
< 𝜖 < 2 and a constant 𝐶𝜖 > 0

such that

∫
𝓁

0

𝑢(1 + ℎ𝑏𝑏 )𝑢 ≥ 𝐶𝜖|𝑢|2𝐻1 (0,𝓁)
;

in particular, if 𝑢 solves (1 + ℎ𝑏𝑏 )𝑢 = 0 and satisfies 𝜕𝑥 𝑢(0) = 𝜕𝑥 𝑢(𝓁) = 0, then one has 𝑢 ≡ 0.
Now, if the matrix 𝔖′

𝑏
were not invertible, there would exist (𝜆, 𝜇) ≠ (0, 0) such that the func-

tion 𝔰 ∶= 𝜆(𝔰(𝑏,0) ) + 𝜇(𝔰(𝑏,𝓁)) would satisfy 𝔰′ (0) = 𝔰′ (𝓁) = 0. From the above considerations, one
would have 𝔰 ≡ 0, which is not possible since 𝔰(0) = 𝜆 and 𝔰(𝓁) = 𝜇 and (𝜆, 𝜇) ≠ (0, 0).
To prove that (𝔰(𝑏,0))′ (0) ≠ 0, we can modify the arguments above to get that if 𝑢 ∈ 𝐻1 (0, 𝓁) is

such that 𝑢′ (0) = 0 and 𝑢(𝓁) = 0 then 𝑢 ≡ 0. If we had (𝔰(𝑏,0))′ (0) = 0 then (𝔰(𝑏,0)) would be such
a function and would identically vanish, which is absurd. We get similarly that (𝔰(𝑏,𝓁) )′ (𝓁) ≠ 0,
which concludes the proof. □

Another important differencewith the case of flat topography is that the commutation property
(7) is no longer true, that is, in general we have 𝑅0

𝑏
𝜕𝑥 ≠ 𝑅1

𝑏
𝜕𝑥 if we define 𝑅1

𝑏
as the inverse of (1 +

ℎ𝑏𝑏 ) with homogeneous Neumann boundary conditions. We can however define 𝑅1
𝑏
as follows:

𝑅1
𝑏

∶ 𝑓 ∈ 𝐿2 (0, 𝓁) ⟼ 𝑢 ∈ 𝐻2 (0, 𝓁),

where 𝑢 solves

⎧⎪⎨⎪⎩
[

1 +
1

ℎ𝑏
(ℎ𝑏 𝑆)

(
ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗

)]
𝑢 = 𝑓,

(ℎ𝑏 𝑆)∗ 𝑢(0) = (ℎ𝑏 𝑆)∗ 𝑢(𝓁) = 0,

(22)

andwith𝛼𝑏 = 1 +
1

4
(𝜕𝑥 𝑏)2. The following proposition shows that there is a commutation property

that generalizes the identity 𝑅0 𝜕𝑥 = 𝜕𝑥 𝑅1 for the Boussinesq–Abbott model with topography.

Proposition 4. For all 𝑓 ∈ 𝐻1 (0, 𝓁), the following identity holds:

𝑅0
𝑏

𝜕𝑥 𝑓 =
√

3
ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗

(
𝑅1

𝑏

(
1

ℎ2
𝑏

𝑓

))
−

3

2
𝑅0

𝑏

(
𝜕𝑥 𝑏

ℎ𝑏
𝑓

)
,

where 𝛼𝑏 = 1 +
1

4
(𝜕𝑥 𝑏)2, and where we recall that 𝑆(⋅) is defined in (17).

Remark 2. When 𝑏 ≡ 0 then ℎ𝑏 = ℎ0, 𝑅0
𝑏

= 𝑅0, 𝑅1
𝑏

= 𝑅1, and 𝑆∗ =
1√

3
𝜕𝑥, so that the identity of the

lemma coincides with the identity 𝑅0 𝜕𝑥 = 𝜕𝑥 𝑅1 obtained previously.
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12 of 46 LANNES and RIGAL

Proof. Let us first remark that one can write

1 + ℎ𝑏𝑏 = 𝛼𝑏 + ℎ𝑏 𝑆∗ (ℎ𝑏 𝑆(⋅)); (23)

it follows that the equation (1 + ℎ𝑏𝑏 )𝑢 = 𝜕𝑥 𝑓 can be equivalently written under the form[
𝛼𝑏

ℎ𝑏
+ 𝑆∗(ℎ𝑏 𝑆(⋅))

]
𝑢 =

1

ℎ𝑏
𝜕𝑥 𝑓

= 𝑆∗

(√
3

ℎ𝑏
𝑓

)
−

3

2

1

ℎ2
𝑏

(𝜕𝑥 𝑏)𝑓. (24)

We now need the following lemma.

Lemma 1. For all 𝑓 ∈ 𝐿2 (0, 𝓁), the following identity holds:

𝑅0
𝑏

(
ℎ𝑏 𝑆∗ 𝑓

)
=

ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗

(
𝑅1

𝑏

(
𝑓

ℎ𝑏

))
.

Proof of the lemma. Let us write 𝑣 = 𝑅1
𝑏

(
𝑓

ℎ𝑏
); by definition, one has

⎧⎪⎨⎪⎩
[

1 +
1

ℎ𝑏
(ℎ𝑏 𝑆)

(
ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗ (⋅)

)]
𝑣 =

1

ℎ𝑏
𝑓

(ℎ𝑏 𝑆)∗ 𝑣(0) = (ℎ𝑏 𝑆)∗ 𝑣(𝓁) = 0;

Applying (ℎ𝑏 𝑆)∗ to the equation, one finds that[
(ℎ𝑏 𝑆)∗ + 𝑆∗ (ℎ𝑏 𝑆)

(
ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗ (⋅)

)]
𝑣 = 𝑆∗ 𝑓

or equivalently

[𝛼𝑏 + ℎ𝑏 𝑆∗ (ℎ𝑏 𝑆)]

(
ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗ (𝑣)

)
= ℎ𝑏 𝑆∗ 𝑓;

using (23), we deduce that

[1 + ℎ𝑏𝑏 ]

(
ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗ (𝑣)

)
= ℎ𝑏 𝑆∗ 𝑓.

Since moreover (
ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗ (𝑣)) vanishes at 𝑥 = 0, 𝓁, we use the definition of 𝑅0

𝑏
to conclude that

ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗ (𝑣) = 𝑅0

𝑏

(
ℎ𝑏 𝑆∗ 𝑓

)
,

which proves the lemma. □
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LANNES and RIGAL 13 of 46

Owing to (23), one can write (24) under the form

𝑅0
𝑏

𝜕𝑥 𝑓 = 𝑅0
𝑏

(
ℎ𝑏 𝑆∗

(√
3

ℎ𝑏
𝑓

))
−

3

2
𝑅0

𝑏

(
𝜕𝑥 𝑏

ℎ𝑏
𝑓

)
,

so that the result follows by applying the lemma with 𝑓 =

√
3

ℎ𝑏
𝑓. □

2.2.2 Well-posedness of the initial boundary value problem

We prove here that the initial boundary value problem formed by (15) with boundary conditions

𝜁(⋅, 0) = 𝑔0 and 𝜁(⋅, 𝓁) = 𝑔𝓁 , (25)

and initial condition

(𝜁, 𝑞)(0, ⋅) = (𝜁in , 𝑞in ) (26)

is well-posed. As seen previously, a necessary compatibility condition on the initial and boundary
data to allow the possibility of a solution which is of class 𝐶1 at the origin is that

⎧⎪⎨⎪⎩
𝜁in (0) = 𝑔0 (0),

−𝜕𝑥 𝑞in (0) = 𝑔̇0 (0),
and

⎧⎪⎨⎪⎩
𝜁in (𝓁) = 𝑔𝓁 (0),

−𝜕𝑥 𝑞in (𝓁) = 𝑔̇𝓁 (0).
(27)

We first state the following generalization of Proposition 1 to the Boussinesq–Abbott model, in
which we use the notation

𝐵(𝜁, 𝑞) = −𝚐ℎ𝜕𝑥 𝑏 +
3

2

𝜕𝑥 𝑏

ℎ𝑏
𝑓NSW . (28)

We also introduce the two-dimensional vectors

𝑉bdry (𝜁0 , 𝑞0 , 𝜁𝓁 , 𝑞𝓁 ) =

⎛⎜⎜⎜⎝
3

ℎ𝑏 (0)2
𝑓NSW (𝜁0 , 𝑞0 )

3

ℎ𝑏 (𝓁)2
𝑓NSW (𝜁𝓁 , 𝑞𝓁 )

⎞⎟⎟⎟⎠ , (29)

which depends only on the boundary values of (𝜁, 𝑞), and

𝑉int [𝜁, 𝑞] =

⎛⎜⎜⎜⎜⎜⎝
3

(
𝑅1

𝑏

(
1

ℎ2
𝑏

𝑓NSW

))
|𝑥=0

−
(

𝜕𝑥

(
𝑅0

𝑏
𝐵
))|𝑥=0

3

(
𝑅1

𝑏

(
1

ℎ2
𝑏

𝑓NSW

))
|𝑥=𝓁

−
(

𝜕𝑥

(
𝑅0

𝑏
𝐵
))|𝑥=𝓁

⎞⎟⎟⎟⎟⎟⎠
, (30)

which is a nonlocal function of the interior values of 𝜁 and 𝑞 on the whole interval (0, 𝓁).
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14 of 46 LANNES and RIGAL

Proposition 5. Let the bottom parameterization 𝑏 satisfy (14) and (21). Assume that the initial and
boundary data (𝜁in , 𝑞in ) and (𝑔0 , 𝑔𝓁 ) satisfy the compatibility condition (27). Then, the two following
assertions are equivalent:

(i) The couple (𝜁, 𝑞) is a regular solution to (15) such that the depth ℎ never vanishes and with
boundary conditions (25) and initial condition (26).

(ii) The couple (𝜁, 𝑞) is a regular solution such that the depth ℎ never vanishes to

⎧⎪⎨⎪⎩
𝜕𝑡 𝜁 + 𝜕𝑥 𝑞 = 0,

𝜕𝑡 𝑞 +
√

3
ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗

(
𝑅1

𝑏

(
1

ℎ2
𝑏

𝑓NSW

))
= 𝑅0

𝑏
𝐵 + 𝑞̇0 𝔰(𝑏,0) + 𝑞̇𝓁 𝔰(𝑏,𝓁) ,

in (0, 𝓁), (31)

where we recall that (ℎ𝑏 𝑆)∗ =
1√

3

1

ℎ𝑏
𝜕𝑥 (ℎ2

𝑏
⋅) +

√
3

2
𝜕𝑥 𝑏 and that 𝐵(𝜁, 𝑞) is given by (28), and with

initial condition (26), while 𝑞0 and 𝑞𝓁 solve the ODE

𝔖′
𝑏

(
𝑞̇0

𝑞̇𝓁

)
+ 𝑉bdry (𝑔0 , 𝑞0 , 𝑔𝓁 , 𝑞𝓁 ) = 𝑉int [𝜁, 𝑞] −

(
𝑔0

𝑔𝓁

)
, (32)

with 𝔖′
𝑏
defined in (20), and with initial condition

𝑞0 (0) = 𝑞in (0) and 𝑞𝓁 (0) = 𝑞in (𝓁). (33)

Remark 3. When 𝑏 = 0 (flat topography), one can check that (31) coincides as expected with (11).

Proof. We proceed as in the proof of Proposition 1. Applying 𝑅0
𝑏
to the equation in 𝑞, and using

Proposition 4, we first obtain

𝜕𝑡 𝑞 +
√

3
ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗

(
𝑅1

𝑏

(
1

ℎ2
𝑏

𝑓NSW

))
−

3

2
𝑅0

𝑏

(
𝜕𝑥 𝑏

ℎ𝑏
𝑓NSW

)
= −𝚐𝑅0

𝑏
(ℎ𝜕𝑥 𝑏) + 𝑞̇0 𝔰(𝑏,0) + 𝑞̇𝓁 𝔰(𝑏,𝓁).

Regrouping the terms involving 𝑅0
𝑏
, one deduces the second equation of (31). Applying 𝜕𝑥 to this

equation and using the equation on 𝜁, we then get

− 𝜕2
𝑡 𝜁 +
√

3𝜕𝑥

[
ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗

(
𝑅1

𝑏

(
1

ℎ2
𝑏

𝑓NSW

))]
−

3

2
𝜕𝑥

[
𝑅0

𝑏

(
𝜕𝑥 𝑏

ℎ𝑏
𝑓NSW

)]
= −𝚐𝜕𝑥 𝑅0

𝑏
(ℎ𝜕𝑥 𝑏) + 𝑞̇0 (𝔰(𝑏,0) )′ + 𝑞̇𝓁 (𝔰(𝑏,𝓁) )′ . (34)

We now need the following lemma.

Lemma 2. For all 𝑓 ∈ 𝐿2 (0, 𝓁), one has

√
3𝜕𝑥

[
ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗

(
𝑅1

𝑏
𝑓
)]
|𝑥=0,𝓁

= −3
[

(𝑓 − 𝑅1
𝑏

𝑓)
]|𝑥=0,𝓁

.
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LANNES and RIGAL 15 of 46

Proof. One can notice that
√

3𝜕𝑥 = −3𝑆 + 𝛽, where 𝛽 is a function whose exact expression is of
no importance here. We then have

√
3𝜕𝑥

[
ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗

(
𝑅1

𝑏
𝑓
)]

= −
3

ℎ𝑏
(ℎ𝑏 𝑆)

[
ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗

(
𝑅1

𝑏
𝑓
)]

+ 𝛽
ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗

(
𝑅1

𝑏
𝑓
)

;

by definition of 𝑅1
𝑏
, one has (ℎ𝑏 𝑆)[

ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗ (𝑅1

𝑏
𝑓)] = ℎ𝑏 𝑓 − ℎ𝑏 𝑅1

𝑏
𝑓 so that

√
3𝜕𝑥

[
ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗

(
𝑅1

𝑏
𝑓
)]

= −3(𝑓 − 𝑅1
𝑏

𝑓) + 𝛽
ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗

(
𝑅1

𝑏
𝑓
)

.

Since by construction (ℎ𝑏 𝑆)∗ (𝑅1
𝑏

𝑓) vanishes at 𝑥 = 0 and 𝑥 = 𝓁, the result follows upon taking
the trace of the above identity at the two boundary points. □

Taking the trace of (34) at 𝑥 = 0 and 𝑥 = 𝓁 and using the lemma with 𝑓 =
1

ℎ2
𝑏

𝑓NSW, we get that

𝑞0 and 𝑞𝑙 satisfy the differential system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑞̇0 𝔰′
(𝑏,0)

(0) + 𝑞̇𝓁 𝔰′
(𝑏,𝓁)

(0) − 𝚐
(

𝜕𝑥 𝑅0
𝑏

(ℎ𝜕𝑥 𝑏)
)

0

= −𝑔0 −
3

ℎ𝑏 (0)2
𝑓NSW (𝑔0 , 𝑞0 ) + 3

(
𝑅1

𝑏

(
1

ℎ2
𝑏

𝑓NSW

))
0

−
3

2

[
𝜕𝑥 𝑅0

𝑏

(
𝜕𝑥 𝑏

ℎ𝑏
𝑓NSW

)]
0

,

𝑞̇𝓁 𝔰′
(𝑏,0)

(𝓁) + 𝑞̇𝓁 𝔰′
(𝑏,𝓁)

(𝓁) − 𝚐
(

𝜕𝑥 𝑅0
𝑏

(ℎ𝜕𝑥 𝑏)
)

𝓁

= −𝑔𝓁 −
3

ℎ𝑏 (𝓁)2
𝑓NSW (𝑔𝓁 , 𝑞𝓁 ) + 3

(
𝑅1

𝑏

(
1

ℎ2
𝑏

𝑓NSW

))
𝓁

−
3

2

[
𝜕𝑥 𝑅0

𝑏

(
𝜕𝑥 𝑏

ℎ𝑏
𝑓NSW

)]
𝓁

,

which corresponds to (32). The end of the proof is as in Proposition 1. □

The well-posedness of the initial value problem given in the second point of the proposition is
simply obtained as for Proposition 2 from Cauchy–Lipschitz theorem.

Proposition 6. Assume that 𝑏 is a smooth function satisfying (14) and (21). Let 𝑔0 , 𝑔𝓁 ∈ 𝐶∞ (ℝ+ ).
Let also 𝑛 ∈ ℕ∖{0} and (𝜁in , 𝑞in ) ∈ 𝐻𝑛 (0, 𝓁) × 𝐻𝑛+1(0, 𝓁) be such that inf [0,𝓁] (ℎ0 − 𝑏 + 𝜁in ) > 0

and assume that the compatibility conditions (27) hold. Then, there exists a maximal existence
time 𝑇∗ > 0 and a unique solution (𝜁, 𝑞, 𝑞0 , 𝑞𝓁 ) ∈ 𝐶∞ ([0, 𝑇∗ ); 𝐻𝑛 (0, 𝓁) × 𝐻𝑛+1 (0, 𝓁) × ℝ2 ) to (31)
and (32) with initial conditions (26) and (33), and for all 𝑡 ∈ [0, 𝑇∗ ), one has 𝑞0 (𝑡) = 𝑞(𝑡, 0) and
𝑞𝓁 (𝑡) = 𝑞(𝑡, 𝓁), and inf [0,𝓁] (ℎ0 − 𝑏 + 𝜁(𝑡, ⋅)) > 0.

Proof. The system (31)-(32) can be rewritten as

𝑑

𝑑𝑡
𝕌 = 𝔽[𝑡, 𝕌]

with 𝕌 = (𝜁, 𝑞, 𝑞0 , 𝑞𝓁 )T and

𝔽[𝑡, 𝕌] =
(

−𝜕𝑥 𝑞, −𝜕𝑥 (𝔣𝑏 [𝜁, 𝑞]) + 𝔤𝑏 [𝜁, 𝑞] +
(

𝔰(𝑏,0)

𝔰(𝑏,𝓁)

)
⋅ 𝖍𝑏 [𝑡, 𝕌], 𝖍𝑏 [𝑡, 𝕌]T

)T

,
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16 of 46 LANNES and RIGAL

where

𝔣𝑏 =
ℎ2

𝑏

𝛼𝑏
𝑅1

𝑏

(
1

ℎ2
𝑏

𝑓NSW

)
,

𝔤𝑏 = 𝑅0
𝑏

(𝐵) −

(
𝜕𝑥 𝛼𝑏

𝛼𝑏
+

3

2

𝜕𝑥 𝑏

ℎ𝑏

)
𝔣𝑏 ,

and

𝖍𝑏 [𝑡, 𝕌] = (𝔖′
𝑏

)−1

[
−𝑉bdry (𝑔0 (𝑡), 𝑞0 , 𝑔𝓁 (𝑡), 𝑞𝓁 ) + 𝑉int [𝜁, 𝑞] −

(
𝑔0 (𝑡)

𝑔𝓁 (𝑡)

)]
.

Let 𝕏 = 𝐻𝑛 (0, 𝓁) × 𝐻𝑛+1 (0, 𝓁) × ℝ2 and Ω ⊂ 𝕏 the open subset of 𝕏 consisting of all 𝕌 =

(𝜁, 𝑞, 𝑞0 , 𝑞𝓁 )T ∈ 𝕏 such that inf (0,𝓁) (ℎ0 + 𝜁 − 𝑏) > 0. Then, it follows from standard product
estimates, and because 𝑅0

𝑏
and 𝑅1

𝑏
map 𝐻𝑛 (0, 𝓁) to 𝐻𝑛+2(0, 𝓁), that 𝔽 ∶ ℝ+ × Ω → 𝕏 is well-

defined, continuous and locally-Lipschitz with respect to 𝕌. By Cauchy–Lipschitz theorem,
for all initial data 𝕌in ∈ Ω there exists therefore a maximal solution 𝕌 ∈ 𝐶1 ([0, 𝑇∗ ], Ω), with
𝑇∗ > 0, and moreover this solution belongs to 𝕌 ∈ 𝐶∞ ([0, 𝑇∗ ], Ω). The result then follows from
Proposition 5. □

2.3 A reformulation adapted to well-balancedness

Since the steady state (𝜁, 𝑞) = (0, 0) (lake at rest) solves the system (31)-(32) with boundary data
𝑔0 = 𝑔𝓁 = 0, one gets in particular the following identity from the second equation of (31):

√
3

ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗

(
𝑅1

𝑏

(
1

ℎ2
𝑏

𝑓NSW (0, 0)

))
= 𝑅0

𝑏
𝐵(0, 0).

In the presence of topography, both terms of this identity are nonzero. Subtracting this identity to
the second equation of (31), one obtains the following equivalent formulation:

⎧⎪⎪⎨⎪⎪⎩
𝜕𝑡 𝜁 + 𝜕𝑥 𝑞 = 0,

𝜕𝑡 𝑞 +
√

3
ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗

(
𝑅1

𝑏

(
1

ℎ2
𝑏

𝑓NSW

))
= 𝑅0

𝑏
𝐵 + 𝑞̇0 𝔰(𝑏,0) + 𝑞̇𝓁 𝔰(𝑏,𝓁) ,

in (0, 𝓁), (35)

where, denoting 𝑓NSW (𝜁, 𝑞) ∶= 𝑓NSW (𝜁, 𝑞) − 𝑓NSW (0, 0), one has

𝐵(𝜁, 𝑞) = −𝚐𝜁𝜕𝑥 𝑏 +
3

2

𝜕𝑥 𝑏

ℎ𝑏
𝑓NSW . (36)

Proceeding similarly with (32) we get that 𝑞0 and 𝑞𝓁 solve the ODE

𝔖′
𝑏

(
𝑞̇0

𝑞̇𝓁

)
+ 𝑉bdry (𝑔0 , 𝑞0 , 𝑔𝓁 , 𝑞𝓁 ) = 𝑉int [𝜁, 𝑞] −

(
𝑔0

𝑔𝓁

)
, (37)

 14679590, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12751 by U
niversitã©

 D
e B

ordeaux, W
iley O

nline L
ibrary on [03/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



LANNES and RIGAL 17 of 46

with

𝑉bdry (𝜁0 , 𝑞0 , 𝜁𝓁 , 𝑞𝓁 ) =

⎛⎜⎜⎜⎝
3

ℎ𝑏 (0)2
𝑓NSW (𝜁0 , 𝑞0 )

3

ℎ𝑏 (𝓁)2
𝑓NSW (𝜁𝓁 , 𝑞𝓁 )

⎞⎟⎟⎟⎠ (38)

and

𝑉int [𝜁, 𝑞] =

⎛⎜⎜⎜⎜⎜⎝
3

(
𝑅1

𝑏

(
1

ℎ2
𝑏

𝑓NSW

))
|𝑥=0

−
(

𝜕𝑥

(
𝑅0

𝑏
𝐵
))|𝑥=0

3

(
𝑅1

𝑏

(
1

ℎ2
𝑏

𝑓NSW

))
|𝑥=𝓁

−
(

𝜕𝑥

(
𝑅0

𝑏
𝐵
))|𝑥=𝓁

⎞⎟⎟⎟⎟⎟⎠
. (39)

To obtain well-balanced numerical schemes, we will use (35) and (37) rather than (31) and (32).

3 MORE GENERAL BOUNDARY CONDITIONS

In the previous sections, we considered the Boussinesq–Abbott system (15) on a finite interval
(0, 𝓁) and with imposed boundary conditions at 𝑥 = 0 and 𝑥 = 𝓁 on the surface elevation 𝜁. In
some situations, one may have to impose rather a boundary condition on 𝑞, or an a function of 𝜁

and 𝑞 such as a Riemann invariant of the nonlinear shallow water system.
Denoting (𝜁0 , 𝑞0 ) = (𝜁, 𝑞)|𝑥=0

and (𝜁𝓁 , 𝑞𝓁 ) = (𝜁, 𝑞)|𝑥=𝓁
, we study in this section the possibility of

imposing more general boundary conditions which take the form

𝜉 +
0 (𝜁0 , 𝑞0 ) = 𝑔0 , 𝜉 −

𝓁
(𝜁𝓁 , 𝑞𝓁 ) = 𝑔𝓁 , (40)

where the data (𝑔0 , 𝑔𝓁 ) are given functions of time, and where 𝜉 +
0 (𝜁, 𝑞) and 𝜉 −

𝓁
(𝜁, 𝑞) are functions

of 𝜁 and 𝑞; we refer to 𝜉 +
0 (𝜁, 𝑞) and 𝜉 −

𝓁
(𝜁, 𝑞) as the input functions.

To solve the initial boundary value problem associated with (40), an essential point is to com-
pute the traces of 𝜁 and 𝑞 at the boundaries 𝑥 = 0 and 𝑥 = 𝓁. This is done in two steps. We first
need two output functions that can be found in terms of the input functions; we then reconstruct
the traces of 𝜁 and 𝑞 in terms of the input and output functions. These two steps are explained
in Section 3.1. We then derive in Section 3.2 an ODE that can be used to compute the output
functions. In Section 3.3, we discuss the issue of providing initial data to this ODE, as well as
the issue of compatibility conditions between initial and boundary data. We can then state and
prove in Section 3.4 our main well-posedness result. We finally introduce in Section 3.5 the issue
of asymptotic stability which is an open theoretical problem that will be numerically investigated
later in Section 5.

3.1 The output functions and the reconstruction mappings

We assume that there exist two other functions 𝜉 −
0 (⋅, ⋅) and 𝜉 +

𝓁
(⋅, ⋅), referred to as the output

functions, and such that (𝜁0 , 𝑞0 ) can be recovered from the knowledge of 𝑔0 and 𝜉 −
0 (𝜁0 , 𝑞0 ) and
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18 of 46 LANNES and RIGAL

similarly, (𝜁𝓁 , 𝑞𝓁 ) can be recovered from the knowledge of 𝑔𝓁 and 𝜉 +
0 (𝜁𝓁 , 𝑞𝓁 ). More precisely, we

make the following assumption.

Assumption 1. There exists a nonempty connected open set  ⊂ ℝ2 verifying (0, 0) ∈  such
that the following conditions hold:

(i) The input functions 𝜉 +
0 ∶  → ℝ and 𝜉 −

𝓁
∶  → ℝ are well-defined and smooth;

(ii) There are two output functions 𝜉 −
0 ∶  → ℝ and 𝜉 +

𝓁
∶  → ℝ and two open sets 0 and 𝓁

that contain the range of the mappings 𝜉0 ∶  ∋ (𝜁, 𝑞) ↦ (𝜉 +
0 (𝜁, 𝑞), 𝜉 −

0 (𝜁, 𝑞)) ∈ ℝ2 and 𝜉𝓁 ∶

 ∋ (𝜁, 𝑞) ↦ (𝜉+
𝓁

(𝜁, 𝑞), 𝜉 −
𝓁

(𝜁, 𝑞)) ∈ ℝ2, respectively, as well as two smooth mappings 0 ∶

0 → ℝ2 and𝓁 ∶ 𝓁 → ℝ2 such that for all (𝜁, 𝑞) ∈  , one has

0 (𝜉 +
0 (𝜁, 𝑞), 𝜉 −

0 (𝜁, 𝑞)) = (𝜁, 𝑞)T and 𝓁 (𝜉 +
𝓁

(𝜁, 𝑞), 𝜉 −
𝓁

(𝜁, 𝑞)) = (𝜁, 𝑞)T ; (41)

we refer to0 and𝓁 as the reconstructionmappings.

Example 1. For instance, let us impose the boundary conditions 𝜁0 = 𝑔0 and 𝑅− (𝜁𝓁 , 𝑞𝓁 ) = 𝑔𝓁,
where 𝑅− (𝜁, 𝑞) =

𝑞

ℎ0 +𝜁−𝑏
− 2
√

𝚐(ℎ0 + 𝜁 − 𝑏) is the left-going Riemann invariant associated with
the nonlinear shallow water equations. With the above notations, this amounts to take

𝜉 +
0 (𝜁, 𝑞) = 𝜁 and 𝜉 −

𝓁
(𝜁, 𝑞) = 𝑅− (𝜁, 𝑞).

We can then choose

𝜉 −
0 (𝜁, 𝑞) = 𝑞 and 𝜉 +

𝓁
(𝜁, 𝑞) = 𝑅+ (𝜁, 𝑞),

where 𝑅+ =
𝑞

ℎ0 +𝜁−𝑏
+ 2
√

𝚐(ℎ0 + 𝜁 − 𝑏) is the right-going analog of 𝑅−. The corresponding maps
0 and𝓁 are then given by

0 (𝜉 + , 𝜉 − ) = (𝜉 + , 𝜉 − )T ,

𝓁 (𝜉 + , 𝜉 − ) =

(
1

16𝚐
(𝜉 + − 𝜉 − )2 − ℎ0 + 𝑏,

𝜉 + + 𝜉 −

32𝚐
(𝜉 + − 𝜉 − )2

)T

.

3.2 Equations for the output functions

If Assumption 1 holds, the knowledge of the output functions 𝜉 −
0 (𝜁, 𝑞) and 𝜉 +

𝓁
(𝜁, 𝑞), together with

the boundary conditions set on the input functions 𝜉 +
0 (𝜁, 𝑞) and 𝜉 −

𝓁
(𝜁, 𝑞) allow one to determine

the traces of 𝜁 and 𝑞 at 𝑥 = 0 and 𝑥 = 𝓁. This issue now is able to compute the output functions
𝜉 −

0 (𝜁, 𝑞) and 𝜉 +
𝓁

(𝜁, 𝑞). In the (hyperbolic) case of the nonlinear shallow water equations, this can
be done using the characteristic equations satisfied by the Riemann invariants, provided that the
input functions 𝜉 ±

0 and 𝜉 ±
𝓁
are correctly chosen (see Ref. 5 for a full analysis of 1D hyperbolic initial

boundary value problems).
Due to the presence of dispersion, there are no Riemann invariants associated with the

Boussinesq–Abbott model. However, we can notice that the relation (37) stems from a more
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LANNES and RIGAL 19 of 46

general differential identity that relates 𝜁0, 𝑞0, 𝜁𝓁, and 𝑞𝓁, namely,

𝔖′
𝑏

(
𝑞̇0

𝑞̇𝓁

)
+ 𝑉bdry (𝜁0 , 𝑞0 , 𝜁𝓁 , 𝑞𝓁 ) = 𝑉int [𝜁, 𝑞] −

(
𝜁0

𝜁𝓁

)
; (42)

in fact we see that (42) reduces to (37) when enforcing (𝜁0 , 𝜁𝓁 ) = (𝑔0 , 𝑔𝓁 ). We now show how to use
this differential identity to compute 𝜉

−

0
∶= 𝜉 −

0 (𝜁0 , 𝑞0 ) and 𝜉
+

𝓁
∶= 𝜉 +

𝓁
(𝜁𝓁 , 𝑞𝓁 ) when enforcing the

general boundary conditions (40). By definition of0 and𝓁, and using the boundary conditions
(40), one has (

𝜁0

𝑞0

)
= 0

(
𝑔0 , 𝜉

−

0

)
and

(
𝜁𝓁

𝑞𝓁

)
= 𝓁

(
𝜉

+

𝓁
, 𝑔𝓁

)
;

denoting0 = (0,1 , 0,2 )T and𝓁 = (𝓁,1 , 𝓁,2 )T, one deduces that

𝑞̇0 = ∇0,2

(
𝑔0 , 𝜉

−

0

)
⋅

(
𝑔̇0

𝜉̇
−

0

)
and 𝑞̇𝓁 = ∇𝓁,2

(
𝜉

+

𝓁
, 𝑔𝓁

)
⋅

(
𝜉̇

+

𝓁
𝑔̇𝓁

)
(43)

as well as

𝜁0 = ∇0,1

(
𝑔0 , 𝜉

−

0

)
⋅

(
𝑔0

𝜉̈
−

0

)
+

(
𝑔̇0

𝜉̇
−

0

)
⋅ Hess0,1

(
𝑔0 , 𝜉

−

0

)( 𝑔̇0

𝜉̇
−

0

)

𝜁𝓁 = ∇𝓁,1

(
𝜉

+

𝓁
, 𝑔𝓁

)
⋅

(
𝜉̈

+

𝓁
𝑔𝓁

)
+

(
𝜉̇

+

𝓁
𝑔̇𝓁

)
⋅ Hess𝓁,1

(
𝜉

+

𝓁
, 𝑔𝓁

)(𝜉̇
+

𝓁
𝑔̇𝓁

)
,

where Hess0,1
and Hess𝓁,1

denote the 2 × 2 Hessian matrices of 0,1 and 𝓁,1, respectively.
Introducing the matrices

𝐷𝑗 =
⎛⎜⎜⎝

𝜕10,𝑗

(
𝑔0 , 𝜉

−

0

)
0

0 𝜕2𝓁,𝑗

(
𝜉

+

𝓁
, 𝑔𝓁

)⎞⎟⎟⎠
and

𝐷̃𝑗 =
⎛⎜⎜⎝

𝜕20,𝑗

(
𝑔0 , 𝜉

−

0

)
0

0 𝜕1𝓁,𝑗

(
𝜉

+

𝓁
, 𝑔𝓁

)⎞⎟⎟⎠ ,

and the quadratic forms defined on ℝ2 by

1 (𝑢0 , 𝑣0 ) =

(
𝑢0

𝑣0

)
⋅ Hess0,1

(
𝑔0 , 𝜉

−

0

)(𝑢0

𝑣0

)
,

2 (𝑢𝓁 , 𝑣𝓁 ) =

(
𝑢𝓁

𝑣𝓁

)
⋅ Hess𝓁,1

(
𝜉

+

𝓁
, 𝑔𝓁

)(𝑢𝓁

𝑣𝓁

)
,
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20 of 46 LANNES and RIGAL

we deduce from (42) the following systems of two scalar ODEs on (𝜉
−

0
, 𝜉

+

𝓁
):

𝐷̃1

⎛⎜⎜⎝
𝜉̈

−

0

𝜉̈
+

𝓁

⎞⎟⎟⎠ + 𝔖′
𝑏

𝐷̃2

⎛⎜⎜⎝
𝜉̇

−

0

𝜉̇
+

𝓁

⎞⎟⎟⎠ +
⎛⎜⎜⎝
1

(
𝑔̇0 , 𝜉̇

−

0

)
2

(
𝜉̇

+

𝓁
, 𝑔̇𝓁

)⎞⎟⎟⎠ + 𝑉bdry

(0

(
𝑔0 , 𝜉

−

0

)
, 𝓁

(
𝜉

+

𝓁
, 𝑔𝓁

))

= 𝑉int [𝜁, 𝑞] − 𝐷1

(
𝑔0

𝑔𝓁

)
− 𝔖′

𝑏
𝐷2

(
𝑔̇0

𝑔̇𝓁

)
. (44)

The order of this system of ODEs depends on whether the coefficients of 𝐷̃1 vanish or not. We
make the following assumption which ensures that (44) can be put as a system of explicit ODEs
of first or second order on 𝜉

−

0
and 𝜉

+

𝓁
.

Assumption 2. Under Assumption 1 and with the same notations, we assume that:

(i) Either 𝜕20,1 ≡ 0 and 𝜕20,2 does not vanish on 0, or 𝜕20,1 does not vanish on 0;
(ii) Either 𝜕1𝓁,1 ≡ 0 and 𝜕1𝓁,2 does not vanish on 0, or 𝜕1𝓁,1 does not vanish on 𝓁

Remark 4. If 𝜕20,1 ≡ 0 on 0 then 1 (𝑔̇0 , ̇𝜉
−

0
) = 𝜕2

10,1 (𝑔0 , 𝜉
−

0
)𝑔̇2

0 which is independent of 𝜉
−

0
.

The system of ODEs (44) is therefore of order 1 in 𝜉
−

0
and can be put in explicit form if 𝜕20,2 does

not vanish. A similar comment can be made for the ODE on 𝜉
+

𝓁
.

Example 2. Considering the same configuration as in Example 1, and with the same notations,
one readily checks that 𝜕20,1 = 0 and 𝜕20,2 = 1 so that the first point of the assumption is
satisfied. Moreover, in this case, 1 = 0. We also compute 𝜕1𝓁,1 =

1

8𝚐
(𝜉 + − 𝜉 − ). It is possible

to choose the open set 𝓁 in such a way that 𝜉 + − 𝜉 − > 0 for all (𝜉 + , 𝜉 − ) ∈ 𝓁 provided that we
assume the total water height ℎ never vanishes. Assumption 2 is therefore satisfied. Recalling the
definition (20) of 𝔖′

𝑏
, the system (44) can be put under the form

𝑇
⎛⎜⎜⎝

𝜉̇
−

0

𝜉̈
+

𝓁

⎞⎟⎟⎠ + 𝔖′
𝑏

𝐷̃2

(
0

𝜉̇ +
𝓁

)
+
⎛⎜⎜⎝

0

2 (𝜉̇
+

𝓁
, 𝑔̇𝓁 )

⎞⎟⎟⎠ + 𝑉bdry

(0

(
𝑔0 , 𝜉

−

0

)
, 𝓁

(
𝜉

+

𝓁
, 𝑔𝓁

))

= 𝑉int [𝜁, 𝑞] − 𝐷1

(
𝑔0

𝑔𝓁

)
− 𝔖′

𝑏
𝐷2

(
𝑔̇0

𝑔̇𝓁

)
, (45)

where 𝑇 is the triangular matrix

𝑇 =
⎛⎜⎜⎝

(𝔰𝑏,0 )′ (0) 0

(𝔰𝑏,0 )′ (𝓁) 𝜕1𝓁,1

(
𝜉

+

𝓁
, 𝑔𝓁

)⎞⎟⎟⎠ .

Under the assumption on 𝑏 made in the statement of Proposition 3, one has (𝔰𝑏,0 )′ (0) ≠ 0 and 𝑇

is invertible, and the system (45) therefore furnishes an ODE in explicit form of first order in 𝜉
−

0

and second order on 𝜉
+

𝓁
. For all the applications considered in this paper, we will always have ODEs
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LANNES and RIGAL 21 of 46

of second order, except when the boundary condition is imposed on the surface elevation (as in this
example at 𝑥 = 0).

We can notice that if 𝜉 +
0 (𝜁, 𝑞) = 𝑞 (boundary condition on the discharge 𝑞 at 𝑥 = 0), and if we

choose 𝜉 −
0 (𝜁, 𝑞) = 𝜁 as output function, then0 (𝜉 + , 𝜉 − ) = (𝜉 − , 𝜉 + ) and in particular 𝜕10,1 ≡ 0.

We make the following assumption to ensure that if we make another choice of input function,
then 𝜕10,1 does not vanish.

Assumption 3. Under Assumption 1 and with the same notations, we assume that:

(i) If 𝜕10,1 vanishes on 0 then 𝜉 +
0 (𝜁, 𝑞) = 𝜉 +

0 (𝑞) on .
(ii) If 𝜕2𝓁,1 vanishes on 𝓁 then 𝜉 −

𝓁
(𝜁, 𝑞) = 𝜉 −

𝓁
(𝑞) on .

3.3 Compatibility conditions and initial conditions for the output
functions

If the initial condition (𝜁, 𝑞)|𝑡=0
= (𝜁in , 𝑞in ) is imposed for the Boussinesq–Abbott system, then a

necessary compatibility condition with the boundary conditions (40) to allow solutions that are
continuous at (𝑡 = 0, 𝑥 = 0, 𝓁) is that

𝜉 +
0 (𝜁in (0), 𝑞in (0)) = 𝑔0 (0) and 𝜉 −

𝓁
(𝜁in (𝓁), 𝑞in (𝓁)) = 𝑔𝓁 (0); (46)

these conditions generalize the first condition of (27). To solve (44), one also has to prescribe initial
data on 𝜉

−

0
and 𝜉

+

𝓁
; one naturally takes

𝜉
−

0
(0) = 𝜉 −

0 (𝜁in (0), 𝑞in (0)) and 𝜉
−

𝓁
(0) = 𝜉 +

𝓁
(𝜁in (𝓁), 𝑞in (𝓁)). (47)

By definition of0 and𝓁, we know that

𝜁̇0 = 𝜕10,1

(
𝑔0 , 𝜉

−

0

)
𝑔̇0 + 𝜕20,1

(
𝑔0 , 𝜉

−

0

)
𝜉̇

−

0
,

𝜁̇𝓁 = 𝜕1𝓁,1

(
𝜉

+

𝓁
, 𝑔𝓁

)
𝜉̇

+

𝓁
+ 𝜕2𝓁,1

(
𝜉

+

𝓁
, 𝑔𝓁

)
𝑔̇𝓁 .

Using the first equation of the Boussinesq–Abbott system (15), we can replace 𝜁̇0 (𝑡) by −𝜕𝑥 𝑞(𝑡, 0)

(and proceed similarly at 𝑥 = 𝓁) to obtain

⎧⎪⎨⎪⎩
𝜕20,1 (𝑔0 (0), 𝜉

−

0
(0)) 𝜉̇

−

0
= −𝜕𝑥 𝑞in (0) − 𝜕10,1 (𝑔0 (0), 𝜉

−

0
(0))𝑔̇0 (0),

𝜕1𝓁,1 (𝜉
+

𝓁
(0), 𝑔𝓁 (0)) 𝜉̇

+

𝓁
= −𝜕𝑥 𝑞in (𝓁) − 𝜕2𝓁,1 (𝜉

+

𝓁
(0), 𝑔𝓁 (0))𝑔̇𝓁 (0),

(48)

where we assumed that the solution was regular enough to take the trace at (𝑡 = 0, 𝑥 = 0, 𝓁).
Depending on the situation, these conditions can be either a compatibility condition in the bound-
ary and initial data to allow the possibility of regular solutions, or an initial condition for 𝜉̇

−

0
(0) or

𝜉̇
+

𝓁
(0). More precisely:
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22 of 46 LANNES and RIGAL

∙ If (44) is of second order on 𝜉
−

0
(respectively, on 𝜉

+

𝓁
), then an initial condition is also needed on

𝜉̇
−

0
(respectively, on 𝜉̇

+

𝓁
). Remarking further that under Assumption 2, 𝜕20,1 does not vanish

if (44) is of second order in 𝜉
−

0
(respectively, 𝜕1𝓁,1 does not vanish if (44) is of second order in

𝜉
+

𝓁
), (48) furnishes the needed initial data for 𝜉̇

−

0
(respectively, on 𝜉̇

+

𝓁
).

∙ If (44) is of first order on 𝜉
−

0
(respectively, on 𝜉

+

𝓁
) then by Assumption 2 one has 𝜕20,1 ≡ 0

(respectively, 𝜕1𝓁,1 ≡ 0), and (48) is then a compatibility condition on the data that generalizes
the second equations in the compatibility conditions (27) imposed in Proposition 6.

Example 3. For the configuration considered in Examples 1 and 2, and assuming that (46) holds,
the ODE is of first order on 𝜉

−

0
and of second order in 𝜉

+

𝓁
. The initial conditions we need to impose

are therefore (47) and also, at 𝑥 = 𝓁, the second condition of (48). To expect 𝐶1 solutions at the
origin, we also need to impose at 𝑥 = 0 a compatibility condition on the initial and boundary data,
which is given by the first equation of (47) (andwhich coincides in this case with the compatibility
condition (27), namely, −𝜕𝑥 𝑞in (0) = 𝑔̇0).

3.4 Well-posedness of the initial boundary value problem with
general boundary conditions

We can now state the main result of this paper, which proves the well-posedness of the
Boussinesq–Abbott system (15) with general boundary conditions (40). Proposition 6 is a
particular case of the theorem, corresponding to 𝜉 +

0 (𝜁, 𝑞) = 𝜉 −
𝓁

(𝜁, 𝑞) = 𝜁.

Theorem 1. Assume that 𝑏 is a smooth function satisfying (14) and (21). Let also 𝜉 +
0 and 𝜉 −

𝓁
be two

input functions, 𝜉 −
0 and 𝜉 +

𝓁
be two output functions, and0 and𝓁 be reconstructionmappings that

satisfy Assumptions 1, 2, and 3.
Let 𝑔0 , 𝑔𝓁 ∈ 𝐶∞ (ℝ+ ). Let also 𝑛 ∈ ℕ∖{0} and (𝜁in , 𝑞in ) ∈ 𝐻𝑛 (0, 𝓁) × 𝐻𝑛+1(0, 𝓁) be such that

inf [0,𝓁] (ℎ0 − 𝑏 + 𝜁in ) > 0 and assume that the compatibility condition (46) holds. If moreover
𝜕20,1 ≡ 0 (respectively, 𝜕1𝓁,1 ≡ 0) then we also assume that the first (respectively, the second)
compatibility condition of (48) holds.
Then there exists a maximal existence time 𝑇∗ > 0 and a unique solution (𝜁, 𝑞) ∈

𝐶∞ ([0, 𝑇∗ ); 𝐻𝑛 (0, 𝓁) × 𝐻𝑛+1(0, 𝓁)) to the Boussinesq–Abbott system (15) with initial conditions (26)
and boundary conditions (40), andmoreover for all 𝑡 ∈ (0, 𝑇∗ ), one has inf [0,𝓁] (ℎ0 − 𝑏 + 𝜁(𝑡, ⋅)) > 0.

Proof. From the analysis of Section 3.2 and with the same notations, we know that if such a
solution exists, then (𝜁, 𝑞) solves the system (35). Substituting for 𝑞̇0 and 𝑞̇𝓁 in the right-hand side
of (35) using (43), we obtain that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕𝑡 𝜁 + 𝜕𝑥 𝑞 = 0,

𝜕𝑡 𝑞 +
√

3
ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗

(
𝑅1

𝑏

(
1

ℎ2
𝑏

𝑓NSW

))
= 𝑅0

𝑏
𝐵

+ ∇0,2

(
𝑔0 , 𝜉

−

0

)
⋅
⎛⎜⎜⎝

𝑔̇0

𝜉̇
−

0

⎞⎟⎟⎠ 𝔰(𝑏,0) + ∇𝓁,2

(
𝜉

+

𝓁
, 𝑔𝓁

)
⋅
⎛⎜⎜⎝

𝜉̇
+

𝓁

𝑔̇𝓁

⎞⎟⎟⎠ 𝔰(𝑏,𝓁).

(49)
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LANNES and RIGAL 23 of 46

This system is complemented by the ODE (44) for (𝜉
−

0
, 𝜉

+

𝓁
) which can be of first or second order

in 𝜉
−

0
or 𝜉

+

𝓁
. We now distinguish several cases and, for the sake of clarity, focus our attention at

𝑥 = 0, the adaptations to 𝑥 = 𝓁 being straightforward.

∙ If 𝜕20,1 ≡ 0, then by Assumption 2 we know that 𝜕20,2 does not vanish and the ODE (44) is
explicit and of first order in 𝜉

−

0
. The needed initial condition on 𝜉

−

0
is furnished by (47).

∙ If this is not the case then 𝜕20,1 does not vanish in virtue of Assumption 2, and the ODE (44)
is explicit and of second order in 𝜉

−

0
. In addition to the initial condition on 𝜉

−

0
furnished by (47),

we need an initial condition on 𝜉̇
−

0
, which is furnished by (48).

In all cases, we can use as in the proof of Proposition 6 the Cauchy–Lipschitz theorem to construct
a solution (𝜁, 𝑞, 𝜉

−

0
, 𝜉

+

𝓁
) to the initial value problem formed by (49), (44) and the initial conditions.

We need to prove now that (𝜁, 𝑞) solves the Boussinesq–Abbott system (15) with initial conditions
(26) and boundary conditions (40).
Applying (1 + ℎ𝑏𝑏 ) to (49), we obtain that (𝜁, 𝑞) solves (15); it remains to prove that the bound-

ary conditions (40) are satisfied. Taking the trace of the second equation of (49) at𝑥 = 0 and𝑥 = 𝓁,
we deduce from (18), (19), and (22) that

𝑑

𝑑𝑡
𝑞(𝑡, 0) =

𝑑

𝑑𝑡
0,2

(
𝑔0 , 𝜉

−

0

)
and 𝑑

𝑑𝑡
𝑞(𝑡, 𝓁) =

𝑑

𝑑𝑡
𝓁,2

(
𝜉

+

𝓁
, 𝑔𝓁

)
.

Since we also know from Assumption 1 and (47) that 0,2 (𝑔0 , 𝜉
−

0
)|𝑡=0

= 𝑞in (0) and

𝓁,2 (𝜉
+

𝓁
, 𝑔𝓁 )|𝑡=0

= 𝑞in (𝓁), it follows that for all time, one has 𝑞(𝑡, 0) = 0,2 (𝑔0 , 𝜉
−

0
) and

𝑞(𝑡, 𝓁) = 𝓁,2 (𝜉
+

𝓁
, 𝑔𝓁 ). We here again have to distinguish two cases, and as above we focus

our attention at 𝑥 = 0.

∙ If 𝜉 +
0 (𝜁, 𝑞) = 𝑞 then one has 0,2 (𝜉 + , 𝜉 − ) = 𝜉 + so that we deduce that 𝑞(𝑡, 0) = 𝑔0, which is

exactly the boundary condition (40).
∙ If this is not the case, then we know by Assumption 3 that 𝜕10,1 (𝜉 + , 𝜉 − ) does not vanish on
0; therefore the ODE

𝐷̃1

⎛⎜⎜⎝
𝜉̈

−

0

𝜉̈
+

𝓁

⎞⎟⎟⎠ + 𝔖′
𝑏

𝐷̃2

⎛⎜⎜⎝
𝜉̇

−

0

𝜉̇
+

𝓁

⎞⎟⎟⎠ +

⎛⎜⎜⎜⎝
1

(
𝜉̇

+

0
, 𝜉̇

−

0

)
2

(
𝜉̇

+

𝓁
, 𝜉̇

−

𝓁

)⎞⎟⎟⎟⎠ + 𝑉bdry

(0

(
𝜉

+

0
, 𝜉

−

0

)
, 𝓁

(
𝜉

+

𝓁
, 𝜉

+

𝓁

))

= 𝑉int [𝜁, 𝑞] − 𝐷1

⎛⎜⎜⎝
𝜉̈

+

0

𝜉̈
−

𝓁

⎞⎟⎟⎠ − 𝔖′
𝑏

𝐷2

⎛⎜⎜⎝
𝜉̇

+

0

𝜉̇
−

𝓁

⎞⎟⎟⎠ ,

which is obtained as (44), is of second order in 𝜉
+

0
= 𝜉 +

0 (𝜁0 , 𝑞0 ). It follows that (𝜉
+

0
, 𝜉

−

𝓁
) sat-

isfy the same ODE as (𝑔0 , 𝑔𝓁 ). These two quantities are therefore equal (which implies that
the boundary condition (40) is satisfied) if (𝜉

+

0
(0), 𝜉

−

𝓁
(0)) = (𝑔0 (0), 𝑔𝓁 (0)) and (𝜉̇

+

0
(0), 𝜉̇

−

𝓁
(0)) =

(𝑔̇0 (0), 𝑔̇𝓁 (0)). The first of these two conditions corresponds to (46). For the second one (focusing
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24 of 46 LANNES and RIGAL

our attention on the case 𝑥 = 0), we observe by time differentiating the relation0,1 (𝜉
+

0
, 𝜉

−

0
) =

𝜁(𝑡, 0) and using the first equation of (15) that

𝜕10,1

(
𝜉

+

0
(0), 𝜉

−

0
(0)
)

𝜉̇
+

0
(0) + 𝜕20,1

(
𝜉

+

0
(0), 𝜉

−

0
(0)
)

𝜉̇
−

0
(0) = −𝜕𝑥 𝑞in (0).

Since 𝜉
+

0
(0) = 𝑔(0) by (46), we can use (48) (which holds by assumption if 𝜕20,1 ≡ 0 and by

the initial condition imposed on 𝜉̇
−

0
otherwise) to obtain

𝜕10,1

(
𝜉

+

0
(0), 𝜉

−

0
(0)
)(

𝜉̇
+

0
(0) − 𝑔̇0 (0)

)
= 0,

and since 𝜕10,1 does not vanish, this implies that 𝜉̇
+

0
(0) = 𝑔̇0 (0), so that the boundary condition

(40) is satisfied.

The proof of the theorem is then complete. □

3.5 Asymptotic stability

For some applications, we have some information on 𝜁 and 𝑞 at 𝑥 = 0 and 𝑥 = 𝓁; this provides
us with boundary conditions of the form (40) on some input functions 𝜉 +

0 and 𝜉 −
𝓁
. For instance,

we may know the surface elevation 𝜁(𝑡, 0) and 𝜁(𝑡, 𝓁) through buoys located at 𝑥 = 0 and 𝑥 = 𝓁.
By Theorem 1, we are able to compute the solution (𝜁, 𝑞) of the Boussinesq–Abbott equations (15)
on the full domain (0, 𝓁) for some time interval (0, 𝑇∗ ) with 𝑇∗ > 0 provided that we know the
initial data (𝜁in , 𝑞in ). Unfortunately, for most applications, the initial data are not known (it is
very complicated to measure the surface elevation and the horizontal discharge on the whole
interval (0, 𝓁)). A question of high practical relevance is therefore the following: if we consider
the solution (𝜁, 𝑞) of the initial boundary value problem with the same boundary conditions but
with initial data (𝜁in , 𝑞in ) ≠ (𝜁in , 𝑞in ) do we have (𝜁, 𝑞) ∼ (𝜁, 𝑞) for large times? If this is the case,
we say that the solution (𝜁, 𝑞) of the initial boundary value problem formed by (15) with initial
conditions (26) and boundary conditions (40) is asymptotically stable.
Asymptotic stability cannot be expected in general, even if we consider only the linear equation.

Consider, for instance, the linearized Boussinesq equations with a flat topography

⎧⎪⎪⎨⎪⎪⎩
𝜕𝑡 𝜁 + 𝜕𝑥 𝑞 = 0,(

1 −
ℎ2

0

3
𝜕2

𝑥

)
𝜕𝑡 𝑞 + 𝚐ℎ0 𝜕𝑥 𝜁 = 0,

(50)

with boundary conditions

𝜁(𝑡, 0) = 𝜁(𝑡, 𝓁) = 0. (51)

The rest state (𝜁, 𝑞) = (0, 0) is obviously a solution to this problem, associatedwith a homogeneous
initial condition. This following proposition shows that the rest state is not asymptotically stable.
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LANNES and RIGAL 25 of 46

In the statement, we use the notation

𝐸(𝑡) =
1

2
𝚐|𝜁(𝑡)|2

𝐿2 (0,𝓁)
+

1

2

1

ℎ0
|𝑞(𝑡)|2

𝐿2 (0,𝓁)
+

ℎ0

6
|𝜕𝑥 𝑞(𝑡)|2

𝐿2 (0,𝓁)
. (52)

Proposition 7. If (𝜁, 𝑞) is a smooth solution to (50) and (51) then for all times, one has 𝐸(𝑡) = 𝐸(0).
In particular, if (𝜁, 𝑞)|𝑡=0

≠ (0, 0) then one cannot have (𝜁, 𝑞) → (0, 0) in 𝐿2 (0, 𝓁) × 𝐻1 (0, 𝓁).

Proof. Multiplying (50) by (𝚐𝜁,
1

ℎ0
𝑞) and integrating by parts and using the boundary conditions

(51), we obtain

𝑑

𝑑𝑡
𝐸 −

ℎ0

3
[𝜕𝑥 𝜕𝑡 𝑞𝑞]𝓁

0 = 0.

Using the first equation of (50), one has 𝜕𝑥 𝜕𝑡 𝑞 = −𝜕2
𝑡 𝜁 so that using (51) we deduce that

[𝜕𝑥 𝜕𝑡 𝑞𝑞]𝓁
0 = 0, and the result follows easily. □

The fact that we allow in (40) very general boundary conditions is important because it may
allow us to use boundary conditions for which the solution furnished by Theorem 1 is asymptoti-
cally stable (provided that it is well-defined globally in time of course). This question of asymptotic
stability is a difficult open problem for the Boussinesq–Abbott equations. Even in the case of the
much more widely studied nonlinear shallow water equations, very little is known. The most
relevant result is the fact that the rest state is asymptotically stable if the input functions 𝜉+

0 and
𝜉 −

𝓁
at 𝑥 = 0 and 𝑥 = 𝓁 are, respectively, the right and left-going Riemann invariants 𝑅+ and 𝑅−.26.
In Section 5.2, we investigate numerically the asymptotic stability of the solution of the initial

boundary value problem associated with various types of boundary conditions.

4 NUMERICAL SCHEMES

In this section, we detail the numerical approximation of the Boussinesq–Abbott system with
topography (15), namely,{

𝜕𝑡 𝜁 + 𝜕𝑥 𝑞 = 0

(1 + ℎ𝑏𝑏 )𝜕𝑡 𝑞 + 𝜕𝑥 𝑓NSW = −𝚐ℎ𝜕𝑥 𝑏
in (0, 𝓁) ,

with the general boundary conditions (40), that is, with the notations of Section 3,

𝜉 +
0 (𝜁0 , 𝑞0 ) = 𝑔0 , 𝜉 −

𝓁
(𝜁𝓁 , 𝑞𝓁 ) = 𝑔𝓁 ,

and with initial condition

(𝜁, 𝑞) = (𝜁in , 𝑞in ) at 𝑡 = 0.

Under the assumptions of Theorem 1,we know that there is a unique solution to this initial bound-
ary value problem. We show in this section how to approximate numerically this solution. We
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26 of 46 LANNES and RIGAL

actually solve the reformulation (49) of the equations that reads

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕𝑡 𝜁 + 𝜕𝑥 𝑞 = 0,

𝜕𝑡 𝑞 +
√

3
ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗

(
𝑅1

𝑏

(
1

ℎ2
𝑏

𝑓NSW

))
= 𝑅0

𝑏
𝐵

+∇0,2

(
𝑔0 , 𝜉

−

0

)
⋅
⎛⎜⎜⎝

𝑔̇0

𝜉̇
−

0

⎞⎟⎟⎠ 𝔰(𝑏,0) + ∇𝓁,2

(
𝜉

+

𝓁
, 𝑔𝓁

)
⋅
⎛⎜⎜⎝

𝜉̇
+

𝓁

𝑔̇𝓁

⎞⎟⎟⎠ 𝔰(𝑏,𝓁),

(53)

where (𝜉
+

0
, 𝜉

−

𝓁
) solves the system of ODEs (44) that we rewrite here for the sake of clarity,

𝐷̃1

⎛⎜⎜⎝
𝜉̈

−

0

𝜉̈
+

𝓁

⎞⎟⎟⎠ + 𝔖′
𝑏

𝐷̃2

⎛⎜⎜⎝
𝜉̇

−

0

𝜉̇
+

𝓁

⎞⎟⎟⎠ +
⎛⎜⎜⎝
1 (𝑔̇0 , 𝜉̇

−

0
)

2 (𝜉̇
+

𝓁
, 𝑔̇𝓁 )

⎞⎟⎟⎠ + 𝑉bdry

(0

(
𝑔0 , 𝜉

−

0

)
, 𝓁

(
𝜉

+

𝓁
, 𝑔𝓁

))

= 𝑉int [𝜁, 𝑞] − 𝐷1

(
𝑔0

𝑔𝓁

)
− 𝔖′

𝑏
𝐷2

(
𝑔̇0

𝑔̇𝓁

)
. (54)

As explained in Section 2.3, this reformulation is adapted to well-balancedness in the sense that
it enables to derive numerical schemes which naturally preserve the hydrostatic equilibrium
(𝜁, 𝑞) = (0, 0).
Our strategy consists a hybrid approach mixing a finite volumes scheme for the interior equa-

tions (53), and a finite difference discretization of the nonlocal operators𝑅0
𝑏

, 𝑅1
𝑏
defined in (18)–(22)

and of the system of ODEs (54) that relates the evolution of the output functions at the boundaries
to the boundary data. We explain in Section 4.1 how to discretize the various operators involved
in (53); we then propose in Section 4.2 a first order Lax–Friedrichs scheme, and a second-order
MacCormack scheme in Section 4.3.
Notations. We introduce a few notations used in the following lines. We consider the grid

points 𝑥𝑖 = (𝑖 − 1)Δ𝑥 for all 1 ≤ 𝑖 ≤ 𝑁 with (𝑁 − 1)Δ𝑥 = 𝓁. A dual mesh is then obtained as the
𝑁 cells centered on the (𝑥𝑖 )1≤𝑖≤𝑁 and delimited by their interfaces 𝑥𝑖±1∕2 = 𝑥𝑖 ± Δ𝑥∕2. The use of
this dualmesh is notmandatory, but it will allow us to deal with the boundary conditions (40) and
the dispersive boundary layer directly in the border cellswhich are centered on𝑥1 = 0 and𝑥𝑁 = 𝓁.
In particular, this rids us from theneed to use interpolation formulaswhenever a quantity has to be
evaluated at the boundary of the domain. We denote the discrete times 𝑡𝑛 = 𝑛Δ𝑡, and we consider
𝑈𝑛

𝑖
= (𝜁𝑛

𝑖
, 𝑞𝑛

𝑖
)𝑇 an approximation of 1

Δ𝑥
∫ 𝑥𝑖 +1∕2

𝑥𝑖 −1∕2
(𝜁, 𝑞)𝑇 (𝑡𝑛 , 𝑠)𝑑𝑠, the average of the solution in the

cell 𝑖 at time 𝑡𝑛. A similar notation is adopted for the bathymetry 𝑏.

4.1 Discrete operators

To discretize (ℎ𝑏 𝑆), its adjoint (ℎ𝑏 𝑆)∗ and the nonlocal operators 𝑅0
𝑏

, 𝑅1
𝑏
, we make use of the

second-order finite difference operator 𝛿𝑥 ∶ ℝ𝑁 → ℝ𝑁 defined such that for any 𝑣 ∈ ℝ𝑁 and
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1 ≤ 𝑖 ≤ 𝑁 we have

𝛿𝑥 (𝑣)𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

2Δ𝑥
(𝑣𝑖+1 − 𝑣𝑖−1 ) if 2 ≤ 𝑖 ≤ 𝑁 − 1,

1

2Δ𝑥
(−3𝑣1 + 4𝑣2 − 𝑣3 ) if 𝑖 = 1,

1

2Δ𝑥
(𝑣𝑁−2 − 4𝑣𝑁−1 + 3𝑣𝑁 ) if 𝑖 = 𝑁.

(55)

For any index 1 ≤ 𝑖 ≤ 𝑁, we define the quantities

𝛼𝑏,𝑖 = 1 +
1

4
(𝛿𝑥 (𝑏)𝑖 )2 , ℎ𝑏,𝑖 = ℎ0 − 𝑏𝑖 ,

andwhenever considering the discrete setting,𝛼𝑏 andℎ𝑏 will fromnowon refer to the vectorswith
corresponding coefficients (𝛼𝑏,𝑖 )𝑖 and (ℎ𝑏,𝑖 )𝑖 . It is then possible to approximate (ℎ𝑏 𝑆) by (ℎ𝑏 𝑆) as
follows:

∀𝑣 ∈ ℝ𝑁 , (ℎ𝑏 𝑆)(𝑣)𝑖 = −
ℎ2

𝑏,𝑖√
3

𝛿𝑥

(
𝑣

ℎ𝑏

)
𝑖

+

√
3

2
𝛿𝑥 (𝑏)𝑖 𝑣𝑖 , (56)

which is consistent with the definition (17) of 𝑆(⋅). In a similar fashion, we introduce (ℎ𝑏 𝑆)∗

defined as

(ℎ𝑏 𝑆)∗ (𝑓)𝑖 =
𝛼𝑏,𝑖√

3ℎ𝑏,𝑖

𝛿𝑥

(
ℎ2

𝑏
𝑓

𝛼𝑏

)
𝑖

+

(
ℎ𝑏,𝑖√

3

𝛿𝑥 (𝛼𝑏 )𝑖

𝛼𝑏,𝑖
+

√
3

2
𝛿𝑥 𝑏𝑖

)
𝑓𝑖 , (57)

and that is shown to be consistent with (ℎ𝑏 𝑆)∗ up to a 𝑂(Δ𝑥2 ) error.
Next we discretize the nonlocal operator 𝑅0

𝑏
by 𝑅0

𝑏
defined implicitly as

𝑅0
𝑏

∶ 𝑓 ∈ ℝ𝑁 ⟼ 𝑣 = 𝑅0
𝑏

𝑓 ∈ ℝ𝑁 such that

⎧⎪⎨⎪⎩
𝑣𝑖 − 𝛿𝑥

(
ℎ3

𝑏

3
𝛿𝑥

(
𝑣

ℎ𝑏

))
𝑖

+
ℎ𝑏,𝑖

2Δ𝑥2
(𝑏𝑖+1 − 2𝑏𝑖 + 𝑏𝑖−1 )𝑣𝑖 = 𝑓𝑖 , 1 < 𝑖 < 𝑁,

𝑣1 = 0, 𝑣𝑁 = 0,

(58)

and one readily checks that this is a consistent approximation of (1 + ℎ𝑏𝑏 ) at order 2, with the
operator 𝑏 given in (16). Likewise, 𝑅1

𝑏
is discretized by 𝑅1

𝑏
defined implicitly as

𝑅1
𝑏

∶ 𝑓 ∈ ℝ𝑁 ⟼ 𝑣 = 𝑅1
𝑏

𝑓 ∈ ℝ𝑁 such that

⎧⎪⎨⎪⎩
𝑣𝑖 +

1

ℎ𝑏,𝑖
(ℎ𝑏 𝑆)

(
ℎ𝑏

𝛼𝑏
(ℎ𝑏 𝑆)∗ (𝑣)

)
𝑖

= 𝑓𝑖 , 1 < 𝑖 < 𝑁,

(ℎ𝑏 𝑆)∗ (𝑣)1 = 0, (ℎ𝑏 𝑆)∗ (𝑣)𝑁 = 0,

(59)
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28 of 46 LANNES and RIGAL

which is consistentwith (22). The definitions (58)–(59) are implicit since the practical computation
of 𝑅0

𝑏
and 𝑅1

𝑏
applied to some vector will require the resolution of a linear system, and this will be

the costliest step of the algorithm. However, these discrete operators do not evolve in time and it
is thus possible to assemble them and perform their factorization in a prepossessing step, which
greatly reduces the computational time.

Remark 5. Owing to the homogeneous conditions from (59) verified in the border cells, one has
(ℎ𝑏 𝑆)∗ (𝑓)1 = (ℎ𝑏 𝑆)∗ (𝑓)𝑁 = 0 for any vector 𝑓 in Im(𝑅1

𝑏
). This is the discrete counterpart to the

fact that (ℎ𝑏 𝑆)∗ (𝑅1
𝑏

⋅)|𝑥=0,𝓁
≡ 0 in 𝐿2 (0, 𝓁), which enables to obtain the relation (54)—ensuing from

Lemma 2 after applying 𝜕𝑥 to the second equation of (53) and taking the trace at 𝑥 = 0, 𝓁—and
hereby to ensure that the boundary conditions (40) are satisfied. Therefore, it is important to have
this property at the discrete level to remain consistent with the continuous reformulation (53)–
(54).

4.2 First-order Lax–Friedrichs scheme

We begin by describing how the system (53) for the interior values is approximated. For the
first equation, the free surface elevation is updated in cells 2 ≤ 𝑖 ≤ 𝑁 − 1 using a finite-volumes
strategy

𝜁𝑛+1
𝑖

− 𝜁𝑛
𝑖

Δ𝑡
+

1

Δ𝑥

(
𝑞𝑛

𝑖+1∕2
− 𝑞𝑛

𝑖−1∕2

)
= 0, (60)

where 𝑞𝑛
𝑖±1∕2

is the Lax–Friedrichs numerical flux defined by

𝑞𝑛
𝑖+1∕2

=
1

2

(
𝑞𝑛

𝑖
+ 𝑞𝑛

𝑖+1

)
−

Δ𝑥

2Δ𝑡

(
𝜁𝑛

𝑖+1
− 𝜁𝑛

𝑖

)
. (61)

The boundary values 𝜁𝑛+1
1 , 𝜁𝑛+1

𝑁 will be deduced upon approximating the ODE for the output
functions. To approximate the second equation of (53), we first introduce the vectors 𝑓𝑛

NSW , 𝐵𝑛 ∈

ℝ𝑁 with coefficients

⎧⎪⎪⎨⎪⎪⎩
𝑓𝑛

NSW,𝑖
=

(
𝑞𝑛

𝑖

)2

ℎ0 + 𝜁𝑛
𝑖

− 𝑏𝑖

+
𝚐

2

((
𝜁𝑛

𝑖

)2
+ 2ℎ𝑏,𝑖 𝜁𝑛

𝑖

)
,

𝐵𝑛
𝑖

= −𝚐𝜁𝑛
𝑖

𝛿𝑥 (𝑏)𝑖 +
3

2

𝛿𝑥 (𝑏)𝑖

ℎ𝑏,𝑖
𝑓𝑛

NSW,𝑖
,

(62)

which is consistent with the definition (36) of 𝐵(𝜁, 𝑞). The update of the discharge in cells 1 ≤ 𝑖 ≤
𝑁 makes use of the discrete operators introduced in Section 4.1 as follows:

𝑞𝑛+1
𝑖

− 𝑞𝑛
𝑖

Δ𝑡
+
√

3
ℎ𝑏,𝑖

𝛼𝑏,𝑖
(ℎ𝑏 𝑆)∗

(
𝑅1

𝑏

(
1

ℎ2
𝑏

𝑓𝑛
NSW

))
𝑖

(63)

= 𝑅0
𝑏

(𝐵𝑛 )𝑖 + 𝛿𝑡 𝑞𝑛
1 ⋅ 𝔰(𝑏,0)

𝑖
+ 𝛿𝑡 𝑞𝑛

𝑁 ⋅ 𝔰(𝑏,𝓁)

𝑖
+

Δ𝑥2

2Δ𝑡

𝑞𝑛
𝑖+1

− 2𝑞𝑛
𝑖

+ 𝑞𝑛
𝑖−1

Δ𝑥2
𝟙𝑖∉{1,𝑁} ,

 14679590, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12751 by U
niversitã©

 D
e B

ordeaux, W
iley O

nline L
ibrary on [03/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



LANNES and RIGAL 29 of 46

where it remains to specify how to compute 𝛿𝑡 𝑞𝑛
1 and 𝛿𝑡 𝑞𝑛

𝑁 , and where the vectors 𝔰(𝑏,0) and 𝔰(𝑏,𝓁)

are taken as the solutions 𝑣 ∈ ℝ𝑁 of

𝑣𝑖 − 𝛿𝑥

(
ℎ3

𝑏

3
𝛿𝑥

(
𝑣

ℎ𝑏

))
𝑖

+
ℎ𝑏,𝑖

2Δ𝑥2
(𝑏𝑖+1 − 2𝑏𝑖 + 𝑏𝑖−1 )𝑣𝑖 = 0, 2 ≤ 𝑖 ≤ 𝑁 − 1 (64)

with respective conditions

⎧⎪⎨⎪⎩
𝔰(𝑏,0)

1
= 1

𝔰(𝑏,0)

𝑁
= 0,

⎧⎪⎨⎪⎩
𝔰(𝑏,𝓁)

1
= 0

𝔰(𝑏,𝓁)

𝑁
= 1,

(65)

yielding a discrete counterpart of (19). Owing to the conditions (65), to the definition (58) of 𝑅0
𝑏

and to Remark 5, the update (63) in border cells 𝑖 = 1, 𝑁 reduces to

𝑞𝑛+1
1 − 𝑞𝑛

1

Δ𝑡
= 𝛿𝑡 𝑞𝑛

1 ,
𝑞𝑛+1

𝑁 − 𝑞𝑛
𝑁

Δ𝑡
= 𝛿𝑡 𝑞𝑛

𝑁 . (66)

Remark 6. We alsowant to comment on the last term in the right-hand side of (63), which is a first-
order numerical diffusion required for stability purposes. We can then show that the update (63)
amounts to a finite volumesmethodwith Lax–Friedrichs nonlocal numerical flux andwith source
terms accounting for the bathymetry and the boundary layer. In fact, defining the nonlocal flux
vector as

𝔣𝑛 =

(
ℎ2

𝑏,𝑖

𝛼𝑏,𝑖
𝑅1

𝑏

(
1

ℎ2
𝑏

𝑓𝑛
NSW

)
𝑖

)
1≤𝑖≤𝑁

, (67)

and the associated Lax–Friedrichs flux

𝔣𝑛
𝑖+1∕2

=
1

2

(
𝔣𝑛

𝑖
+ 𝔣𝑛

𝑖+1

)
−

Δ𝑥

2Δ𝑡

(
𝑞𝑛

𝑖+1
− 𝑞𝑛

𝑖

)
, (68)

we can show that for 2 ≤ 𝑖 ≤ 𝑁 − 1 the update (63) equivalently rewrites

𝑞𝑛+1
𝑖

− 𝑞𝑛
𝑖

Δ𝑡
+

𝔣𝑛
𝑖+1∕2

− 𝔣𝑛
𝑖−1∕2

Δ𝑥
(69)

= 𝑅0
𝑏

(𝐵𝑛 )𝑖 −

(
𝛿𝑥 (𝛼𝑏 )𝑖

𝛼𝑏,𝑖
+

3

2

𝛿𝑥 (𝑏)𝑖

ℎ𝑏,𝑖

)
𝔣𝑛

𝑖
+ 𝛿𝑡 𝑞𝑛

1 ⋅ 𝔰(𝑏,0)

𝑖
+ 𝛿𝑡 𝑞𝑛

𝑁 ⋅ 𝔰(𝑏,𝓁)

𝑖
.

When the bottom is flat, the vectors 𝛿𝑥 (𝑏) and 𝐵𝑛 cancel, so that the discharge update (69)
is conservative up to the boundary cells, which is coherent with the continuous model. Note
also that when considering the scheme for the Boussinesq–Abbott model with flat topography
(𝑏 ≡ 0), we can directly use the expression (5) to compute 𝔰(𝑏,0) and 𝔰(𝑏,𝓁) instead of approximat-
ing them through (64)–(65). However, in practice this does not affect the numerical results in a
noticeable way.
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30 of 46 LANNES and RIGAL

Finally, we detail the handling of the border cells and the computation of 𝛿𝑡 𝑞𝑛
1 , 𝛿𝑡 𝑞𝑛

𝑁 in
the framework of general boundary conditions discussed in Section 3. Assuming Assump-
tion 1 holds, the knowledge of 𝑈𝑛+1

1 , 𝑈𝑛+1
𝑁 is deduced from the reconstruction formulas (41)

reading as

𝑈𝑛+1
1 = 0 (𝜉 +

0 (𝑈𝑛+1
1 ), 𝜉 −

0 (𝑈𝑛+1
1 )) and 𝑈𝑛+1

𝑁 = 𝓁 (𝜉 +
𝓁

(𝑈𝑛+1
𝑁 ), 𝜉 −

𝓁
(𝑈𝑛+1

𝑁 )).

In the above, we set the input functions according to (40) as 𝜉 +
0 (𝑈𝑛+1

1 ) = 𝑔𝑛+1
0 and 𝜉 −

𝓁
(𝑈𝑛+1

𝑁 ) =

𝑔𝑛+1
𝓁

. On the other hand, the output values 𝜉 −
0 (𝑈𝑛+1

1 ) and 𝜉 +
𝓁

(𝑈𝑛+1
𝑁 ) are obtained by discretizing

the ODE (54) for the traces as follows. Given 𝑋𝑛 and 𝑌𝑛 the respective approximations at time 𝑡𝑛

of the functions

𝑋 ∶ 𝑡 ⟼

(
𝜉 −

0 (𝑈(𝑡, 0))

𝜉 +
𝓁

(𝑈(𝑡, 𝓁))

)
∈ ℝ2 , 𝑌 ∶ 𝑡 ⟼ 𝑋̇(𝑡), (70)

we define the update 𝑋𝑛+1 , 𝑌𝑛+1 as

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑋𝑛+1 − 𝑋𝑛

Δ𝑡
= 𝑌𝑛+1

𝐷̃𝑛
1

𝑌𝑛+1 − 𝑌𝑛

Δ𝑡
+ 𝔖

′

𝑏
𝐷̃𝑛

2 𝑌𝑛+1 +

⎛⎜⎜⎜⎜⎜⎝
𝑛

1

(
𝑔𝑛+1

0 − 𝑔𝑛−1
0

2Δ𝑡
, 𝑌𝑛

1

)

𝑛
2

(
𝑌𝑛

2 ,
𝑔𝑛+1

𝓁
− 𝑔𝑛−1

𝓁

2Δ𝑡

)
⎞⎟⎟⎟⎟⎟⎠

+ 𝑉𝑛
bdry

= 𝑉𝑛
int

− 𝐷𝑛
1

⎛⎜⎜⎜⎜⎝
𝑔𝑛+1

0 − 2𝑔𝑛
0 + 𝑔𝑛−1

0

Δ𝑡2

𝑔𝑛+1
𝓁

− 2𝑔𝑛
𝓁

+ 𝑔𝑛−1
𝓁

Δ𝑡2

⎞⎟⎟⎟⎟⎠
− 𝔖

′

𝑏
𝐷𝑛

2

⎛⎜⎜⎜⎜⎝
𝑔𝑛+1

0 − 𝑔𝑛−1
0

2Δ𝑡

𝑔𝑛+1
𝓁

− 𝑔𝑛−1
𝓁

2Δ𝑡

⎞⎟⎟⎟⎟⎠
,

(71)

where the diagonal matrices 𝐷𝑛
𝑗

, 𝐷̃𝑛
𝑗
are defined for 𝑗 ∈ {1, 2} as

𝐷𝑛
𝑗

=

(
𝜕10,𝑗 (𝑔𝑛

0 , 𝑋𝑛
1 ) 0

0 𝜕2𝓁,𝑗 (𝑋𝑛
2 , 𝑔𝑛

𝓁
)

)
,

𝐷̃𝑛
𝑗

=

(
𝜕20,𝑗 (𝑔𝑛

0 , 𝑋𝑛
1 ) 0

0 𝜕1𝓁,𝑗 (𝑋𝑛
2 , 𝑔𝑛

𝓁
)

)
,

where we used the quadratic forms

𝑛
1 (𝑢0 , 𝑣0 ) =

(
𝑢0

𝑣0

)
⋅ Hess0,1

(𝑔𝑛
0 , 𝑋𝑛

1 )

(
𝑢0

𝑣0

)
,

𝑛
2 (𝑢𝓁 , 𝑣𝓁 ) =

(
𝑢𝓁

𝑣𝓁

)
⋅ Hess𝓁,1

(𝑋𝑛
2 , 𝑔𝑛

𝓁
)

(
𝑢𝓁

𝑣𝓁

)
,
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and where

𝔖
′

𝑏
=

⎛⎜⎜⎜⎝
𝛿𝑥

(
𝔰(𝑏,0)
)

1
𝛿𝑥

(
𝔰(𝑏,𝓁)
)

1

𝛿𝑥

(
𝔰(𝑏,0)
)

𝑁
𝛿𝑥

(
𝔰(𝑏,𝓁)
)

𝑁

⎞⎟⎟⎟⎠ , 𝑉𝑛
bdry

=

⎛⎜⎜⎜⎜⎝
3

ℎ2
𝑏,1

𝑓NSW

(0

(
𝑔𝑛

0 , 𝑋𝑛
1

))
3

ℎ2
𝑏,𝑁

𝑓NSW

(𝓁

(
𝑋𝑛

2 , 𝑔𝑛
𝓁

))
⎞⎟⎟⎟⎟⎠

,

𝑉𝑛
int

=

⎛⎜⎜⎜⎜⎜⎝
3

(
𝑅1

𝑏

(
1

ℎ2
𝑏

𝑓𝑛
NSW

))
1

−
(

𝛿𝑥

(
𝑅0

𝑏
𝐵𝑛
))

1

3

(
𝑅1

𝑏

(
1

ℎ2
𝑏

𝑓𝑛
NSW

))
𝑁

−
(

𝛿𝑥

(
𝑅0

𝑏
𝐵𝑛
))

𝑁

⎞⎟⎟⎟⎟⎟⎠
.

The functions 𝑔0 , 𝑔𝓁 are defined over 𝑡 ∈ ℝ+, therefore the terms 𝑔𝑛−1
0 , 𝑔𝑛−1

𝓁
found in (71) are not

known when 𝑛 = 0. We suggest to define them following the relations below:

𝑔0 (Δ𝑡) − 𝑔−1
0

2Δ𝑡
=

−3𝑔0 (0) + 4𝑔0 (Δ𝑡) − 𝑔0 (2Δ𝑡)

2Δ𝑡
,

𝑔𝓁 (Δ𝑡) − 𝑔−1
𝓁

2Δ𝑡
=

−3𝑔𝓁 (0) + 4𝑔𝓁 (Δ𝑡) − 𝑔𝓁 (2Δ𝑡)

2Δ𝑡
.

The sequence (𝑋𝑛 )𝑛 is initialized by taking 𝑋0 = (𝜉 −
0 (𝑈0

1 ), 𝜉 +
𝓁

(𝑈0
𝑁 ))𝑇 . As in the continuous case

(see the proof of Theorem 1), when 𝜕20,1 (𝑔0
0 , 𝑋0

1 ) ≠ 0 (respectively, when 𝜕20,1 (𝑋0
2 , 𝑔0

𝓁
) ≠ 0), an

initial value 𝑌0
1 (respectively, 𝑌0

2) must also be provided in order to compute the second line of (71)
for 𝑛 = 0. These quantities can be obtained by discretizing (48) in the following way:

⎧⎪⎪⎨⎪⎪⎩
𝜕20,1 (𝑔0 (0), 𝑋0

1 ) 𝑌0
1 = −𝛿𝑥 (𝑞0 )1 − 𝜕10,1 (𝑔0 (0), 𝑋0

1 )
𝑔0 (Δ𝑡) − 𝑔0 (0)

Δ𝑡
,

𝜕1𝓁,1 (𝑋0
2 , 𝑔𝓁 (0)) 𝑌0

2 = −𝛿𝑥 (𝑞0 )𝑁 − 𝜕2𝓁,1 (𝑋0
2 , 𝑔𝓁 (0))

𝑔𝓁 (Δ𝑡) − 𝑔𝓁 (0)

Δ𝑡
.

(72)

Remark that in (72), if for a given index 1 ≤ 𝑘 ≤ 2 the coefficient in factor of 𝑌0
𝑘
cancels, then

the quadratic function 0
𝑘
does not depend on 𝑌0

𝑘
anymore (this is the discrete counterpart of

Remark 4); hence in the second equation of (71) the value 𝑌0
𝑘
is not required to compute 𝑌1

𝑘
.

The proposed discretization (71) thus automatically adapts to the order of the ODE for the output
functions, which dictates as in the continuous case how many initial conditions are required on
the output functions.
Once the approximation 𝑋𝑛+1 of the output functions is known, it is possible to compute

the border values 𝑈𝑛+1
1 = (𝑔𝑛+1

0 , 𝑋𝑛+1
1 ) and 𝑈𝑛+1

𝑁 = (𝑋𝑛+1
2 , 𝑔𝑛+1

𝓁
), and 𝛿𝑡 𝑞𝑛

1 , 𝛿𝑡 𝑞𝑛
𝑁 are deduced

from (66) so that we can update the interior discharge through (69). The iteration is complete.

Remark 7. We need to check that the update (71) becomes well-defined for Δ𝑡 > 0 small
enough. Indeed, the second equation of this system admits a unique solution 𝑌𝑛+1 if the matrix
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32 of 46 LANNES and RIGAL

𝐷̃𝑛
1 + Δ𝑡𝔖

′

𝑏
𝐷̃𝑛

2 is invertible. Its determinant is the second-degree polynomial in Δ𝑡 given by

det
(

𝐷̃𝑛
1

)
+ Δ𝑡

(
(𝔖

′

𝑏
)1,1

(
𝐷̃𝑛

1

)
2,2

(
𝐷̃𝑛

2

)
1,1

+
(

𝔖
′

𝑏

)
2,2

(
𝐷̃𝑛

1

)
1,1

(
𝐷̃𝑛

2

)
2,2

)
+ Δ𝑡2
(

det
(

𝔖
′

𝑏

)
det
(

𝐷̃𝑛
2

))
as a consequence of Assumption 2 and Proposition 3 this determinant is nonzero for Δ𝑡 small
enough, so that the update (71) is well-defined.

When approximating the nonlinear Boussinesq–Abbott system (35)–(37) with the scheme
described above, in practice we need to restrict the time-step with a CFL condition similar to
that usually encountered when discretizing the hyperbolic nonlinear shallow water system, that
is to say we take

Δ𝑡

Δ𝑥
≤ 𝐾

max𝑖 |𝜆(𝑈𝑛
𝑖

)|
with |𝜆(𝑈𝑛

𝑖
)| = |𝑢𝑛

𝑖
| +
√

𝚐ℎ𝑛
𝑖
the maximum eigenvalue in absolute value of the Jacobian matrix

𝐷𝑓NSW (𝑈𝑛
𝑖

). In our numerical experiments, such a constraint seems to be a requirement to
achieve stable results.

4.3 Second-order MacCormack scheme

Due to the dispersive nature of the Boussinesq-type models, it can be challenging to increase the
order of their numerical approximations while keeping them stable and free of spurious oscilla-
tions in the presence of nonhomogeneous boundary conditions. A strategy introduced in Ref. 24
for the numerical simulation of waves interacting with floating objects is the MacCormack dis-
cretization method, which we describe in the lines below. It consists in alternating a first-order
prediction step with a correction step during which the predicted state is used. The final update
is then obtained by averaging the prediction and correction steps. This procedure is explained in
detail thereafter.
Prediction step—Given an approximation (𝑈𝑛

𝑖
)1≤𝑖≤𝑁 of the solution to (35)–(37) at time 𝑡𝑛,

we first compute 𝑈𝑛+1
P,𝑖

= (𝜁𝑛+1
P,𝑖

, 𝑞𝑛+1
P,𝑖

)𝑇 the predicted state using a forward Euler method with a
left upwinding for the numerical fluxes in every interior cell 2 ≤ 𝑖 ≤ 𝑁 − 1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜁𝑛+1
P,𝑖

− 𝜁𝑛
𝑖

Δ𝑡
+

1

Δ𝑥

(
𝑞𝑛

𝑖
− 𝑞𝑛

𝑖−1

)
= 0

𝑞𝑛+1
P,𝑖

− 𝑞𝑛
𝑖

Δ𝑡
+

𝔣𝑛
𝑖

− 𝔣𝑛
𝑖−1

Δ𝑥
= 𝑅0

𝑏
(𝐵𝑛 )𝑖−1 + 𝛿𝑡 𝑞𝑛

P,1 ⋅ 𝔰(𝑏,0)

𝑖−1
+ 𝛿𝑡 𝑞𝑛

P,𝑁 ⋅ 𝔰(𝑏,𝓁)

𝑖−1

−
1

2

(
𝛼𝑏,𝑖+1 − 𝛼𝑏,𝑖−1

𝛼𝑏,𝑖 Δ𝑥
+

3

2

𝑏𝑖+1 − 𝑏𝑖−1

ℎ𝑏,𝑖 Δ𝑥

)
𝔣𝑛

𝑖−1
,

(73)
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LANNES and RIGAL 33 of 46

where we kept the same definitions for 𝑅0
𝑏

, 𝑅1
𝑏

, 𝔣𝑛 , 𝐵𝑛 , 𝔰(𝑏,0) , 𝔰(𝑏,𝓁) , 𝛼𝑏 as in the previous sec-
tion, which involve the second-order centered operator 𝛿𝑥 given in (55). The boundary cells
are treated similarly to the first-order scheme described in Section 4.2; that is to say we
enforce

𝜉 +
0

(
𝑈𝑛+1

P,1

)
= 𝑔𝑛+1

0 , 𝜉 −
𝓁

(
𝑈𝑛+1

P,𝑁

)
= 𝑔𝑛+1

𝓁
,

then compute the output functions according to (71) to get (𝑋, 𝑌)𝑛+1
P , and finally use the

reconstruction formulas (41) to get 𝑈𝑛+1
P,1 , 𝑈𝑛+1

P,𝑁 and define

𝛿𝑡 𝑞𝑛
P,1 =

𝑞𝑛+1
P,1 − 𝑞𝑛

1

Δ𝑡
, 𝛿𝑡 𝑞𝑛

P,𝑁 =
𝑞𝑛+1

P,𝑁 − 𝑞𝑛
𝑁

Δ𝑡
.

Notice that, although in (73) we did not write the discharge update under a form involv-
ing an explicit discretization of (ℎ𝑏 𝑆)∗, it is of course possible to rewrite it in a form similar
to (63), where (ℎ𝑏 𝑆)∗ defined in (57) has to be substituted with its left-upwinded counter-
part, and without the numerical diffusion term. A similar comment will hold in the correction
step.
Correction step — Next the correction term 𝑈𝑛+1

C,𝑖
= (𝜁𝑛+1

C,𝑖
, 𝑞𝑛+1

C,𝑖
)𝑇 is computed using

a forward Euler update with right upwinding in the interior cells 2 ≤ 𝑖 ≤ 𝑁 − 1. It involves
the predicted state obtained in the previous step in order to evaluate the flux and source
terms:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜁𝑛+1
C,𝑖

− 𝜁𝑛
𝑖

Δ𝑡
+

1

Δ𝑥

(
𝑞𝑛+1

P,𝑖+1
− 𝑞𝑛+1

P,𝑖

)
= 0

𝑞𝑛+1
C,𝑖

− 𝑞𝑛
𝑖

Δ𝑡
+

𝔣𝑛+1
P,𝑖+1

− 𝔣𝑛+1
P,𝑖

Δ𝑥
= 𝑅0

𝑏

(
𝐵𝑛+1

P

)
𝑖+1

+ 𝛿𝑡 𝑞𝑛
C,1 ⋅ 𝔰(𝑏,0)

𝑖+1
+ 𝛿𝑡 𝑞𝑛

C,𝑁 ⋅ 𝔰(𝑏,𝓁)

𝑖+1

−
1

2

(
𝛼𝑏,𝑖+1 − 𝛼𝑏,𝑖−1

𝛼𝑏,𝑖 Δ𝑥
+

3

2

𝑏𝑖+1 − 𝑏𝑖−1

ℎ𝑏,𝑖 Δ𝑥

)
𝔣𝑛+1

P,𝑖+1
.

(74)

In the above, the fluxes 𝔣𝑛+1
P,𝑖

and the source term 𝐵𝑛+1
P,𝑖

are defined as in (67) and (62) but making
use of the prediction state, that is to say

∀1 ≤ 𝑖 ≤ 𝑁,

⎧⎪⎪⎨⎪⎪⎩
𝐵𝑛+1

P,𝑖
= −𝚐𝜁𝑛+1

P,𝑖
𝛿𝑥 (𝑏)𝑖 +

3

2

𝛿𝑥 (𝑏)𝑖

ℎ𝑏,𝑖
𝑓NSW

(
𝑈𝑛+1

P,𝑖

)
,

𝔣𝑛+1
P,𝑖

=
ℎ2

𝑏,𝑖

𝛼𝑏,𝑖
𝑅1

𝑏

⎛⎜⎜⎝
{

1

ℎ2
𝑏,𝑗

𝑓NSW

(
𝑈𝑛+1

P,𝑗

)}
1≤𝑗≤𝑁

⎞⎟⎟⎠
𝑖

.

The handling of the border cells is the same as before, except that in (71), for 𝑘 ∈ {1, 2} the matri-
ces 𝐷𝑘 , 𝐷̃𝑘 and the quadratic forms 𝑛

𝑘
need to be evaluated with the predicted values (𝑋, 𝑌)𝑛+1

P
obtained in the previous step instead of (𝑋, 𝑌)𝑛, and the vectors 𝑉𝑛

bdry
, 𝑉𝑛

int
need to be evaluated
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34 of 46 LANNES and RIGAL

with 𝑈𝑛+1
P instead of 𝑈𝑛. Therefore, the correction update for the output functions can be written

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑋𝑛+1
C − 𝑋𝑛

Δ𝑡
= 𝑌𝑛+1

C

𝐷̃𝑛+1
P,1

𝑌𝑛+1
C − 𝑌𝑛

Δ𝑡
+ 𝔖

′

𝑏
𝐷̃𝑛+1

P,2 𝑌𝑛+1
C +

⎛⎜⎜⎜⎜⎜⎝
𝑛+1

P,1

(
𝑔𝑛+1

0 − 𝑔𝑛−1
0

2Δ𝑡
, 𝑌𝑛+1

P,1

)

𝑛+1
P,2

(
𝑌𝑛+1

P,2 ,
𝑔𝑛+1

𝓁
− 𝑔𝑛−1

𝓁

2Δ𝑡

)
⎞⎟⎟⎟⎟⎟⎠

+ 𝑉𝑛+1
bdry,P

= 𝑉𝑛+1
int,P

− 𝐷𝑛+1
P,1

⎛⎜⎜⎜⎜⎝
𝑔𝑛+1

0 − 2𝑔𝑛
0 + 𝑔𝑛−1

0

Δ𝑡2

𝑔𝑛+1
𝓁

− 2𝑔𝑛
𝓁

+ 𝑔𝑛−1
𝓁

Δ𝑡2

⎞⎟⎟⎟⎟⎠
− 𝔖

′

𝑏
𝐷𝑛+1

P,2

⎛⎜⎜⎜⎜⎝
𝑔𝑛+1

0 − 𝑔𝑛−1
0

2Δ𝑡

𝑔𝑛+1
𝓁

− 𝑔𝑛−1
𝓁

2Δ𝑡

⎞⎟⎟⎟⎟⎠
,

(75)

and after computing 𝑈𝑛+1
C,1 = (𝑔𝑛+1

0 , 𝑋𝑛+1
C,1 ) and 𝑈𝑛+1

C,𝑁 = (𝑋𝑛+1
C,2 , 𝑔𝑛+1

𝓁
) we set

𝛿𝑡 𝑞𝑛
C,1 =

𝑞𝑛+1
C,1 − 𝑞𝑛

1

Δ𝑡
, 𝛿𝑡 𝑞𝑛

C,𝑁 =
𝑞𝑛+1

C,𝑁 − 𝑞𝑛
𝑁

Δ𝑡
.

Final step—The final update is defined as the average between the prediction and correction
states for all 2 ≤ 𝑖 ≤ 𝑁 − 1, and likewise the output functions are averaged in the border cells
𝑖 = 1, 𝑁:

⎧⎪⎨⎪⎩
𝜁𝑛+1

𝑖
=

1

2

(
𝜁𝑛+1

P,𝑖
+ 𝜁𝑛+1

C,𝑖

)
𝑞𝑛+1

𝑖
=

1

2

(
𝑞𝑛+1

P,𝑖
+ 𝑞𝑛+1

C,𝑖

)
,

⎧⎪⎨⎪⎩
𝜉 −

0

(
𝑈𝑛+1

1

)
=

1

2

(
𝜉 −

0

(
𝑈𝑛+1

P,1

)
+ 𝜉 −

0

(
𝑈𝑛+1

C,1

))
𝜉 +

𝓁

(
𝑈𝑛+1

𝑁

)
=

1

2

(
𝜉 +

𝓁

(
𝑈𝑛+1

P,𝑁

)
+ 𝜉 +

𝓁

(
𝑈𝑛+1

C,𝑁

))
.

(76)

The final border elevations and discharges 𝜁𝑛+1
1 , 𝑞𝑛+1

1 , 𝜁𝑛+1
𝑁 , 𝑞𝑛+1

𝑁 are recovered through
the formula (41) involving the reconstruction maps 0 , 𝓁 evaluated, respectively, with
(𝑔0 (𝑡𝑛+1 ), 𝜉 −

0 (𝑈𝑛+1
1 )) and (𝜉 +

𝓁
(𝑈𝑛+1

𝑁 ), 𝑔𝓁 (𝑡𝑛+1 )).

Remark 8. Nothing prevents us from switching the upwinding direction in the first two steps, so
that a right upwinding is performed in the prediction step together with a left upwinding in the
correction step. This does not seem to affect the numerical results in practice. What is important
is that the direction of upwinding alternates between these two stages, otherwise the method
becomes first order in space.

Remark 9. Since we do not make use of ghost cells, the alternation of the upwinding direction
characterizing theMacCormack scheme cannot be performed in the border cells, wherewe always
need to upwind toward the interior of the domain. This does not prevent the scheme from reaching
a second order of accuracy in space in the border cells. Indeed (71), (72), and (75) are already second
order in space thanks to the use of the discrete operator 𝛿𝑥 given by (55) to discretize 𝔖′

𝑏
, 𝑉int.
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LANNES and RIGAL 35 of 46

5 NUMERICAL SIMULATIONS

In this section, we aim to validate the proposed first-order Lax–Friedrichs and second-order
MacCormack schemes, and to assess the effect that different boundary conditions can have on
the solutions; in particular, we numerically investigate the issue of asymptotic stability of the
boundary conditions. To this end, we consider three cases:

1. Input functions given by the elevation, output functions given by the discharge

𝜉 +
0 (𝜁, 𝑞) = 𝜉 −

𝓁
(𝜁, 𝑞) = 𝜁, 𝜉 −

0 (𝜁, 𝑞) = 𝜉 +
𝓁

(𝜁, 𝑞) = 𝑞;

2. Input functions given by the discharge, output functions given by the elevation

𝜉 +
0 (𝜁, 𝑞) = 𝜉 −

𝓁
(𝜁, 𝑞) = 𝑞, 𝜉 −

0 (𝜁, 𝑞) = 𝜉 +
𝓁

(𝜁, 𝑞) = 𝜁;

3. Input functions given by the incoming Riemann invariants, output functions given by the
outgoing Riemann invariants{

𝜉 +
0 (𝜁, 𝑞) = 𝑢 + 2

√
𝚐ℎ

𝜉 −
𝓁

(𝜁, 𝑞) = 𝑢 − 2
√

𝚐ℎ,

{
𝜉 −

0 (𝜁, 𝑞) = 𝑢 − 2
√

𝚐ℎ

𝜉 +
𝓁

(𝜁, 𝑞) = 𝑢 + 2
√

𝚐ℎ.

The gravitational acceleration 𝚐 will be taken equal to 9.81, and unless specified otherwise
the ratio Δ𝑡∕Δ𝑥 will be taken equal to 0.8 for the Lax–Friedrichs scheme and to 0.45 for the
MacCormack scheme.
We propose in Section 5.1 a numerical resolution of the initial boundary value problem with

the different boundary conditions presented above. In the case of a flat bottom, considered in
Section 5.1.1, the Boussinesq–Abbott system possesses solitary waves that can be used to study
the convergence of the schemes. In the case of a nonflat topography investigated in Section 5.1.2,
this is no longer true and we therefore use a solution computed in a wider domain and for a very
refined mesh to study the convergence. The theoretical open problem of asymptotic stability is
then numerically investigated in Section 5.2.

5.1 Numerical resolution of the initial boundary value problem

5.1.1 The Boussinesq–Abbott system with flat topography

We consider the case of a solitary wave traveling over a flat bottom, which consists in a solution
of (1) of the form

𝜁(𝑡, 𝑥) = 𝜁(𝑥 − 𝑥0 − 𝑐𝑡), 𝑞(𝑡, 𝑥) = 𝑞(𝑥 − 𝑥0 − 𝑐𝑡), (77)

where 𝑐 is the celerity at which the solitary wave propagates without deformation, andwhere 𝑥0 ∈

ℝ is the initial position of the maximum elevation 𝜁(0, 𝑥0 ) denoted 𝜁max . Despite the apparent
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36 of 46 LANNES and RIGAL

simplicity of this solution, it involves nonlinear and dispersive effects whichmake it an interesting
test-case for numerical validation purposes. As explained in Ref. 7, the wave profile 𝜁 verifies the
following second-order ODE:

−𝑐2 ℎ0 𝜁

ℎ0 + 𝜁
+

𝑐2 ℎ2
0

3
𝜁′′ +

𝚐

2
(𝜁2 + 2ℎ0 𝜁) = 0. (78)

It is obtained by remarking that (77) implies 𝑞 = 𝑐𝜁 from the first equation of (1). Injecting this in
the second equation of (1) and upon integration in space with the hypothesis that 𝜁 vanishes at
infinity, one recovers (78). Furthermore, keeping in mind that 𝜁(0) = 𝜁max , the celerity is shown
to satisfy the relation

𝑐2 =

𝚐

6
𝜁3

max +
𝚐ℎ0

2
𝜁2

max

ℎ2
0 (𝜁max ∕ℎ0 − ln(1 + 𝜁max ∕ℎ0 ))

by integrating (78) against 𝜁′, using again that 𝜁 cancels at infinity and that 𝜁′ (0) = 0.
Once the solution of (78) has been approximated, it can be used to generate initial and boundary

conditions in the domain (0, 𝓁), and can also serve as a reference solution to measure the error of
the proposed numerical schemes. The initial condition is taken as (𝜁in , 𝑞in )(𝑥) = (𝜁, 𝑐 𝜁)(𝑥 − 𝑥0 )

and the general boundary conditions write

𝜉 +
0 (𝜁0 , 𝑞0 )(𝑡) = 𝑔0 (𝑡) ∶= 𝜉 +

0 (𝜁(−𝑥0 − 𝑐𝑡), 𝑐 𝜁(−𝑥0 − 𝑐𝑡)),

𝜉 −
𝓁

(𝜁𝓁 , 𝑞𝓁 )(𝑡) = 𝑔𝓁 (𝑡) ∶= 𝜉 −
𝓁

(𝜁(𝓁 − 𝑥0 − 𝑐𝑡), 𝑐 𝜁(𝓁 − 𝑥0 − 𝑐𝑡)).

In practice, we take 𝓁 = 60, ℎ0 = 1, 𝜁max = ℎ0 ∕5, and 𝑐 > 0. In order to validate the treatment of
the boundary conditions, we consider the two settings below.

Incoming solitary wave – The solitary wave is initially centered on 𝑥0 = −𝓁∕2 outside of
the computational domain (0, 𝓁). It then enters the domain from the left boundary, and
the simulation stops at time 𝑡 = 𝓁∕𝑐 when the solitary wave is centered on 𝓁∕2.

Outgoing solitary wave – The solitary wave is initially centered on 𝑥0 = 𝓁∕2 inside the
computational domain, and the simulation is stopped once most of the wave left the
domain through the right boundary at time 𝑡 = 3𝓁∕4𝑐.

Figure 1 compares the Lax–Friedrichs andMacCormack schemes at final time for both settings
with incoming Riemann invariants enforced as boundary conditions. Unsurprisingly, the Lax–
Friedrichs is much more diffusive than MacCormack, and also creates more reflections when
trying to evacuate the wave through the right boundary.
Next we compare the three different choices for 𝜉+

0 , 𝜉 −
𝓁
mentioned at the beginning of Section 5,

and for each case we display the following 𝓁2 error on the elevation

𝐸𝑛
num =

√
Δ𝑥

𝓁

(
𝑁∑

𝑖=1

(
𝜁𝑛

𝑖
− 𝜁(𝑥𝑖 − 𝑥0 − 𝑐𝑡𝑛 )

)2
)1∕2

(79)

at final time 𝑡 = 𝓁∕𝑐.
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x x

F IGURE 1 Free surface elevation for the incoming and outgoing solitary wave test-cases (respectively, top
and bottom); incoming Riemann invariants imposed at the boundaries.

TABLE 1 Lax–Friedrichs scheme for the incoming solitary wave with different boundary conditions. In the
last column, 𝑅± refers to the incoming Riemann invariant associated with the shallow water system.

𝜻 enforced 𝒒 enforced 𝑹± enforced
𝚫𝒙 𝑳𝟐-error Order 𝑳𝟐-error Order 𝑳𝟐-error Order
8.82E−02 4.409E−03 — 4.728E−03 — 4.482E−03 —
6.25E−02 3.263E−03 0.87 3.484E−03 0.88 3.312E−03 0.87
4.42E−02 2.387E−03 0.90 2.539E−03 0.91 2.420E−03 0.91
3.12E−02 1.727E−03 0.93 1.833E−03 0.94 1.750E−03 0.93
2.21E−02 1.244E−03 0.95 1.318E−03 0.95 1.260E−03 0.95
1.56E−02 8.906E−04 0.97 9.411E−04 0.97 9.015E−04 0.97

Tables 1 and 2 correspond, respectively, to the Lax–Friedrichs and MacCormack schemes for
the incoming solitary wave test-case. Experimentally, both methods achieve the expected order of
convergence, that is to say first order for Lax–Friedrichs and second order for MacCormack. The
difference between the various boundary conditions in terms of the 𝓁2 error is marginal, except
when enforcing the discharge with theMacCormack schemewhich leads to a substantially larger
error than the two other choices.
Likewise, the outgoing solitary wave test-case is addressed in Table 3 for Lax–Friedrichs and

Table 4 for MacCormack. The latter method shows good agreement with a second-order conver-
gence. For Lax–Friedrichs, the situation is comparable to the incoming solitary wave test-case,
except that a more refined mesh is required to start approaching a first-order convergence. Note
also that when enforcing the incoming Riemann invariants with the Lax–Friedrichs scheme, the
order of convergence seems smaller than for the other boundary conditions, however we remark
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38 of 46 LANNES and RIGAL

TABLE 2 MacCormack scheme for the incoming solitary wave.

𝜻 enforced 𝒒 enforced 𝑹± enforced
𝚫𝒙 𝑳𝟐-error Order 𝑳𝟐-error Order 𝑳𝟐-error Order
1.00E+00 7.846E−03 — 1.186E−02 — 9.424E−03 —
5.00E−01 2.473E−03 1.67 3.789E−03 1.65 2.783E−03 1.76
2.50E−01 6.670E−04 1.89 1.026E−03 1.89 7.199E−04 1.95
1.25E−01 1.696E−04 1.98 2.662E−04 1.95 1.832E−04 1.97
6.25E−02 4.312E−05 1.98 6.804E−05 1.97 4.624E−05 1.99
3.12E−02 1.107E−05 1.96 1.731E−05 1.97 1.162E−05 1.99

TABLE 3 Lax–Friedrichs scheme for the outgoing solitary wave.

𝜻 enforced 𝒒 enforced 𝑹± enforced
𝚫𝒙 𝑳𝟐-error Order 𝑳𝟐-error Order 𝑳𝟐-error Order
6.25E−02 2.363E−03 — 2.666E−03 — 1.331E−04 —
4.42E−02 1.785E−03 0.81 2.031E−03 0.78 1.070E−04 0.63
3.12E−02 1.322E−03 0.87 1.514E−03 0.85 8.401E−05 0.70
2.21E−02 9.725E−04 0.89 1.119E−03 0.87 6.503E−05 0.74
1.56E−02 7.053E−04 0.93 8.145E−04 0.92 4.939E−05 0.79
1.11E−02 5.098E−04 0.94 5.903E−04 0.93 3.711E−05 0.83

TABLE 4 MacCormack scheme for the outgoing solitary wave.

𝜻 enforced 𝒒 enforced 𝑹± enforced
𝚫𝒙 𝑳𝟐-error Order 𝑳𝟐-error Order 𝑳𝟐-error Order
1.00E+00 6.430E−03 — 1.031E−02 — 4.287E−03 —
5.00E−01 1.885E−03 1.77 4.437E−03 1.22 1.993E−03 1.11
2.50E−01 5.568E−04 1.76 1.257E−03 1.82 5.607E−04 1.83
1.25E−01 1.459E−04 1.93 3.252E−04 1.95 1.318E−04 2.09
6.25E−02 3.674E−05 1.99 8.223E−05 1.98 2.826E−05 2.22
3.12E−02 9.162E−06 2.00 2.067E−05 1.99 7.085E−06 2.00

that in this case the errors differ by one order of magnitude in favor of the boundary conditions
obtained by enforcing the incoming Riemann invariants.

5.1.2 The Boussinesq–Abbott system with varying bathymetry

Since no analytic expression is available for solutions of the Boussinesq–Abbott model (15) in the
general case of unsteady flows over a nonflat bottom, we instead approximate a reference solution
over a large domain (−𝓁, 2𝓁) with periodic boundary conditions by the mean of a fine mesh;
this approximated reference solution is then used to generate boundary conditions for the small
domain (0, 𝓁), in which the solution can be solved numerically with the proposed Lax–Friedrichs
and MacCormack schemes.
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LANNES and RIGAL 39 of 46

x xLx L

F IGURE 2 Left: initial condition. Right: reference solution, Lax–Friedrichs and MacCormack
approximations at time 𝑡 = 15, both obtained using the same CFL constant of 0.45.

The small domain length is set to 𝓁 = 25, and we choose the following values for the
characteristic depth, bathymetry, and wave amplitudes:

ℎ0 = 1, 𝛽 = 1∕4, 𝐴 = ℎ0 ∕4.

The bathymetry profile is defined as follows:

𝑏(𝑥) = 𝛽ℎ0 ⋅

⎧⎪⎪⎨⎪⎪⎩
1 if |𝑥 − 𝓁∕2| <

𝓁

4

𝜎

(
1.5 −

2

𝓁
|𝑥 − 𝓁∕2|) if 𝓁

4
≤ |𝑥 − 𝓁∕2| ≤ 3𝓁

4

0 otherwise,

(80)

where𝜎 ∶ [0, 1] → [0, 1] is a smooth step function given here by𝜎(𝑥) = 6𝑥5 − 15𝑥4 + 10𝑥3, which
allows the bathymetry (80) to be 𝐶2. The initial condition is taken as a Gaussian centered outside
of the small domain:

𝜁in (𝑥) = 𝐴 ⋅ exp(−(𝑥 − 11)2 ∕3), 𝑞in (𝑥) = 5 ⋅ 𝜁in (𝑥). (81)

Recalling the shallowness parameter 𝜇 = (2𝜋ℎ0)2 ∕𝜆2 with the characteristic wavelength defined
here as 𝜆 = length {𝑥, 𝜁in (𝑥) > 𝐴∕100}, one has 𝜇 ≈ 0.6 so that the flow is only moderately
shallow. The nonlinearity parameter 𝐴∕ℎ0 is 𝜖 = 0.25.
The periodic reference solution is approximated over the large domain (−𝓁, 2𝓁) with a spatial

step Δ𝑥 ≈ 8.14 ⋅ 10−3, and the simulation stops at time 𝑡 = 15; see Figure 2 for plots of the ini-
tial and final states. Note that the shape of the initial free surface elevation (81) is not preserved
through time. More specifically, the Gaussian splits into right- and left-going signals; owing to
the periodic condition, both of these signals will enter the small domain (0, 𝓁), respectively, from
the left and right boundaries, moreover the right-going signal begins to exit the small domain
before the simulation ends. Therefore, this can be considered a rich test-case featuring wave gen-
eration, interaction, and evacuation over a nonflat bottom 𝑏 whose derivative does not vanish at
boundaries 𝑥 = 0, 𝓁.
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40 of 46 LANNES and RIGAL

TABLE 5 Lax–Friedrichs scheme for the Gaussian over bump test-case.

𝜻 enforced 𝒒 enforced 𝑹± enforced
𝚫𝒙 𝑳𝟐-error Order 𝑳𝟐-error Order 𝑳𝟐-error Order
3.26E−02 1.017E−02 — 1.300E−02 — 8.545E−03 —
2.30E−02 7.862E−03 0.74 1.016E−02 0.71 6.604E−03 0.74
1.63E−02 5.962E−03 0.80 7.759E−03 0.78 5.003E−03 0.80
1.15E−02 4.440E−03 0.85 5.802E−03 0.84 3.721E−03 0.85
8.14E−03 3.265E−03 0.89 4.278E−03 0.88 2.733E−03 0.89
5.75E−03 2.375E−03 0.92 3.118E−03 0.91 1.986E−03 0.92

TABLE 6 MacCormack scheme for the Gaussian over bump test-case.

𝜻 enforced 𝒒 enforced 𝑹± enforced
𝚫𝒙 𝑳𝟐-error Order 𝑳𝟐-error Order 𝑳𝟐-error Order
2.60E−01 4.635E−03 — 5.708E−03 — 3.301E−03 —
1.84E−01 2.470E−03 1.81 3.076E−03 1.78 1.690E−03 1.92
1.30E−01 1.288E−03 1.89 1.629E−03 1.84 8.485E−04 2.00
9.19E−02 6.575E−04 1.93 8.402E−04 1.90 4.095E−04 2.09
6.51E−02 3.384E−04 1.93 4.316E−04 1.93 1.930E−04 2.18
4.60E−02 1.777E−04 1.85 2.211E−04 1.92 9.056E−05 2.17

Comparing the numerical solution obtained in the small domain with different mesh sizes
to the reference solution, we can compute the 𝓁2 error (79) and the associated experimental
orders of convergence are shown in Tables 5 and 6. Both the Lax–Friedrichs and MacCor-
mack schemes achieve the expected order for the different boundary conditions considered. The
most advantageous choice seems to enforce the incoming Riemann invariants, as it leads to the
smallest error.

5.2 Asymptotic stability

Finally, we wish to assess the feasibility of achieving a reliable approximation of the solution to
the Boussinesq–Abbott system (15) over a varying bathymetry when starting the simulation with
a wrong initial condition. This is motivated by the fact that in real life, measurements of the free
surface elevation can only be performed at a limited number of points, preventing us from know-
ing the state of the flow everywhere in the domain of interest. Instead, one has to provide an initial
guess, which might not be accurate at all.
To this end, we use a setup similar to the one from Section 5.1.2: a periodic reference solu-

tion computed on the large domain (−𝓁, 2𝓁) is used to generate boundary conditions for the
small domain (0, 𝓁). We keep the same domain length 𝓁 = 25 and the same definition (80) for
the bottom, however the characteristic depth and wave amplitude are now scaled with respect to
a parameter 𝐾𝜇 as follows:

ℎ0 =
√

𝐾𝜇 , 𝐴 =
√

𝐾𝜇 ∕4.
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x xL

F IGURE 3 Initial elevation
for reference and small domain
solutions (𝜇 = 1).

The initial data of the reference solution consists in a sine wave of period 𝜆 = 3𝓁∕5 and amplitude
𝐴 for the elevation, together with a nonzero discharge:

𝜁in (𝑥) = 𝐴 ⋅ sin(2𝜋𝑥∕𝜆), 𝑞in (𝑥) = 2 ⋅ 𝜁in (𝑥). (82)

The factor 𝐾𝜇 be taken equal to (2𝜋∕𝜆)−2 𝜇, with 𝜇 the shallowness parameter valued in
{0.01, 0.1, 1}. The nonlinearity parameter 𝜖 and bathymetry parameter 𝛽 are kept to 0.25. We also
introduce the characteristic time 𝑇0 given by 2𝜋𝑇0 = 𝜆∕

√
𝚐ℎ0.

When approximating the reference solution over the small domain (0, 𝓁) with the proposed
MacCormack scheme, the simulation is initialized with a lake at rest (𝜁in , 𝑞in ) = (0, 0) which is
different from the initial state of the reference solution. This initial setup is plotted in Figure 3 for
𝜇 = 1. In order to comply with the system (48), which we recall provides compatibility conditions
when enforcing 𝜁, the reference solution (𝜁, 𝑞) is progressively enforced at the boundaries of the
small domain by the mean of the smooth step function 𝜎 defined in Section 5.1.2:

𝜉 +
0 (𝜁0 , 𝑞0 )(𝑡) = 𝑔0 (𝑡) ∶= 𝜎(5𝑡∕𝑇0 ) ⋅ 𝜉 +

0 (𝜁(𝑡, 0), 𝑞(𝑡, 0)),

𝜉 −
𝓁

(𝜁𝓁 , 𝑞𝓁 )(𝑡) = 𝑔𝓁 (𝑡) ∶= 𝜎(5𝑡∕𝑇0 ) ⋅ 𝜉 −
𝓁

(𝜁(𝑡, 𝓁), 𝑞(𝑡, 𝓁)).

If, on the contrary, the boundary conditions on the elevation were enforced directly at 𝑡 = 0,
then system (48) would be violated, and the well-posedness result from Theorem 1 does not hold
anymore in this situation.
We plot the results obtained at final time 𝑡 = 50 𝑇0 in Figure 4 for 𝜇 = 1 and 𝜇 = 0.1, and in

Figure 5 for 𝜇 = 0.01. Of the three boundary conditions tested, only the choice of enforcing the
incoming Riemann invariants seems to allow the 𝓁2 error (79) to decay to zero, which is consis-
tent with the considerations of Section 3.5. On the other hand, this is not the case when enforcing
the elevation or the discharge; our interpretation is that the initial information—which repre-
sents the perturbation of the reference solution—is prevented from leaving the domain due to
reflections. Reducing the shallowness parameter to 0.01, one eventually observes a blowup of the
numerical approximation for these two boundary conditions, and which is avoided with the

 14679590, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12751 by U
niversitã©

 D
e B

ordeaux, W
iley O

nline L
ibrary on [03/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



42 of 46 LANNES and RIGAL

x xL x xL

x xLx xL

R

q

L

R

q

R

q

F IGURE 4 Flow over bar test-case for 𝜇 = 1 (first column) and 𝜇 = 10−1 (second column). First and second
rows correspond, respectively, to the MacCormack elevation and its deviation from the reference elevation 𝜁 at
final time 𝑡 = 50 𝑇0 for various boundary conditions. The last row represents the 𝓁2 error (79) over time. Out of
the three boundary conditions investigated here, only enforcing the incoming Riemann invariants allows this
error to decay toward zero.

incoming Riemann invariants. As a conclusion, the latter should clearly be preferred over the
elevation or discharge in a situation where waves need to be evacuated from the computational
domain.

Remark 10. In practice, enforcing the incoming Riemann invariant at only one of the two bound-
aries is enough to recover a good approximation of the reference solution. In this case, the 𝓁2 error
on the elevation decays slightly slower toward zero compared to when the incoming Riemann
invariants are enforced at both boundaries.
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R

R

x L

L

x

F IGURE 5 Flow over bar test-case for 𝜇 = 10−2. The first plot was obtained at final time 𝑡 = 50 𝑇0.
Enforcing 𝜁 or 𝑞 as boundary conditions led to a blowup of the MacCormack approximation, therefore only the
case of incoming Riemann invariants is displayed here. The 𝓁2 error (79) decays over time but does not quite
vanish; this is most likely due to the coarseness of the mesh which make it difficult to accurately capture the high
frequencies that develop in the solution. A fix would be to refine the mesh further.

6 CONCLUSION AND PERSPECTIVES

In this paper, the initial boundary value problem linked to the Boussinesq–Abbott model with
nonflat bottom has been considered. When imposing the values of the surface elevation at the
boundaries, we have seen that like in the case of a flat bottom over a half-line treated in Ref. 7, this
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problem can be equivalently reformulated as an initial value problem involving a nonlocal flux
and an ODE on the trace of the discharge, even in presence of a varying topography and over a
bounded domain. This formulation is howevermore complex because some commutation proper-
ties used in the case of a flat bottomare no longer true.We thenproposed anewmethod allowing to
prescribe a nonlinear function of the unknowns at the endpoints of the domain by a given function
of time. This method is based on the notion of input functions, which represent the information
that one wants to let in the domain, and that of output functions. We believe that the ability to
enforce such general boundary conditions is quite relevant for complex applications such as the
ones encountered in oceanography. Importantly, our reformulatedmodel defines anODEon some
functional space; under regularity assumptions on the boundary data and on the initial condition,
it is possible to obtain the well-posedness of this model in finite time by the Cauchy–Lipschitz
theorem. We do not believe however that this approach can be transposed to the Serre–Green–
Naghdi model, for which the infinite-dimensional ODE structure of the Boussinesq–Abbott
system is lost.
This theoretical study was then followed by a numerical discretization of the equations using

a hybrid finite difference/finite volumes approach. New schemes of first and second orders were
designed using, respectively, the Lax–Friedrichs numerical flux and the MacCormack strategy,
similarly to what was proposed in Ref. 24 for wave-structure interactions over a flat bottom and
for boundary conditions on the horizontal discharge. Owing to a simple adaptation of the equa-
tions, these schemes can be renderedwell-balanced, that is to say that they preserve the lake at rest
equilibrium. Next we performed numerical experiments validating the expected orders of conver-
gence for various types of boundary conditions, in a complex setup featuring wave generation and
evacuation over a varying topography. Finally, we explored numerically the question of asymp-
totic stability, which is to know whether solutions arising from different initial data but with the
same boundary conditions converge to each other after a transitory regime. We found that this
is the case when enforcing the incoming Riemann invariants of the shallow water equations, but
not when enforcing the elevation nor the discharge. Again this underlines the interest there is to
be able to enforce general boundary conditions.
We consider several perspectives to the present work. The first one is related to a limitation

inherent to dispersive models in general (including Boussinesq and Serre–Green–Naghdi), that
is their inability to describe the breaking of waves; in fact for steep variations of the elevation it
is well-known that these models produce nonphysical spurious oscillations. Despite being less
accurate than these dispersive models, the shallow water equations present the benefit of being
able to handle breaking waves in a physically relevant way by dissipating the energy in the form of
shocks, see Ref. 27 for a physical justification and Ref. 28 for a general methodology on Riemann
problems. Note also that the nonlinear shallow water equations are able to take into account the
vanishing of the water height ℎ (see Ref. 29 for the mathematical analysis of this singularity and
Ref. 30 for its numerical treatment); therefore this model is pertinent to describe the wave dynam-
ics in the surf and swash areas. For these reasons, several authors propose to use a dispersive
model and to switch the dispersive terms off in the vicinity of wave breaking,31–33 hereby working
locally with the less precise but more robust nonlinear shallow water equations. The coupling
between the nonlinear shallow water equations and dispersive models like the Boussinesq and
Serre–Green–Naghdi equation is however not well understood essentially because the boundary
conditions that must be imposed on the dispersive component is unclear. A natural perspective
of this work is therefore to investigate this coupling.
As pointed in Ref. 3, the shoaling phenomenon is systematically underestimated (respectively,

overestimated) by Boussinesq-type models written in elevation-discharge form (respectively, in
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elevation-velocity form). Preliminary tests show that our reformulated Boussinesq–Abbott model
is no different; it would thus be interesting to try circumventing this issue. An idea that we would
like to explore would consist to perform some form of averaging between the Boussinesq–Abbott
model in (𝜁, 𝑞) coordinates and the classical Boussinesq–Peregrine model in (𝜁, 𝑣) coordinates.
To conclude, wemention a long-term goal related to the statistical study of extremewaves. This

would require to generate random waves at the boundaries of the domain so as to force a realistic
wave field in the domain. We presume that the use of asymptotically stable boundary conditions
is crucial in this setting.
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