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ABSTRACT. Motivated by a new kind of initial boundary value prob-
lem (IBVP) with a free boundary arising in wave-structure interac-
tion, we propose here a general approach to one-dimensional IBVP as
well as transmission problems. For general strictly hyperbolic N ×N
quasilinear hyperbolic systems, we derive new sharp linear estimates
with refined dependence on the source term and control on the traces
of the solution at the boundary. These new estimates are used to
obtain sharp results for quasilinear IBVP and transmission problems,
and we also use them to propose a general approach to 2×2 quasilin-
ear IBVP and transmission problems with a moving or possibly free
boundary. In the latter case, two kinds of evolution equations for
the boundary are considered. The first one is of “kinematic type” in
the sense that the velocity of the interface has the same regularity as
the trace of the solution. Several applications that fall into this cat-
egory are considered: the interaction of waves with a lateral piston,
and a new version of the well-known stability of shocks (classical and
undercompressive) that improves the results of the general theory by
taking advantage of the specificities of the one-dimensional case. We
also consider “fully nonlinear” evolution equations characterized by
the fact that the velocity of the interface is one derivative more sin-
gular than the trace of the solution. This configuration is the most
challenging; it is motivated by a free boundary problem arising in
wave-structure interaction: namely, the evolution of the contact line
between a floating object and the water. This problem is solved as an
application of the general theory developed here.
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1. INTRODUCTION

1.1. General setting. This article is devoted to a general analysis of free
boundary and free transmission hyperbolic problems in the one-dimensional case.
It is mainly motivated by a new kind of free boundary problem arising in the study
of wave-structure interactions and for which the evolution of the free boundary is
governed by a singular equation.

To explain the singular structure of this problem, let us recall some results on
hyperbolic initial boundary value problems (a good reference on this subject is the
book [BGS07]). Let us, for instance, consider a general quasilinear equation of
the form

∂tU +A(U)∂xU = 0

for t > 0 and x ∈ R. It is well known that if the system is Friedrichs symmetriz-
able, that is, if there is a positive definite matrix S(u) such that S(u)A(u) is sym-
metric, then the associated initial value problem is well posed in C([0, T ];Hs(R))
if s > d/2 + 1 (with d = 1 as the space dimension). The proof is based on
the study of the linearized system and an iterative scheme. If we consider the
same equation on R+, and impose a boundary condition on U at x = 0, then
the corresponding initial boundary value problem might not be well-posed, even
if the system is Friedrichs symmetrizable. Well-posedness is, however, ensured
if there exists a Kreiss symmetrizer which, as the Friedrichs symmetrizer, trans-
forms the system into a symmetric system, but with the additional property that
the boundary condition for this symmetric system is strictly dissipative (roughly
speaking, this means that the trace of the solution at the boundary is controlled
by the natural energy estimate). The construction of such a Kreiss symmetrizer
is extremely delicate and is usually done under the so-called uniform Lopatinskĭı
condition which can formally be derived as a stability condition for the normal
mode solutions of the linearized equations with frozen coefficients. Under such
a condition (and additional compatibility conditions between the boundary and
initial data), a unique solution can again be constructed (though with many more
technical issues) via estimates on the linearized system and an iterative scheme.
The typical result for quasilinear initial boundary value problems satisfying the
aforementioned condition, as announced in [RMey] and proved in [Mok87], is
that the equations are well posed but with higher regularity requirements, and
more importantly, with a loss of half a derivative with respect to the initial and
boundary data.

In some situations, the boundary of the domain on which the equations are
cast depends on time. In dimension d = 1, for instance, this means that instead of
working on R+, one works on (x(t),+∞), where the function x is either a known
function (boundary in forced motion) or an unknown function determined by an
equation involving the solution U of the hyperbolic system, typically,

ẋ(t) = χ(U|x=x(t))
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for some smooth function χ (we shall say that this kind of boundary evolution is
of “kinematic type” because, as for kinematic boundary conditions, the regularity
of ẋ is the same as the regularity of the solution at the boundary). Such problems
are called free-boundary hyperbolic problems.

It is noteworthy that, up to a doubling of the dimension of the system of
equations under consideration, the considerations above can be extended to trans-
mission problems, where two possibly different hyperbolic systems are considered
on the two different sides of an interface, and where the boundary condition is
replaced by a condition involving the traces of the solution on both sides. One
of the most famous transmission problems with a free boundary is the stability
of shocks. The problem consists in finding solutions to a quasilinear hyperbolic
system that are smooth on both sides of a moving interface and whose traces on
the interface satisfy the Rankine-Hugoniot condition together with the so-called
Lax shock inequalities). In dimension d = 1, this latter condition provides an
evolution equation for the interface of the same form as above.

Showing the well-posedness of free boundary hyperbolic problems requires
new ingredients, and in particular, the following:

• A diffeomorphism must be used to transform the problem into a bound-
ary value problem with a fixed boundary.

• A change of unknown must be introduced to study the linearized equa-
tion. Indeed, with the standard linearization procedure, a derivative loss
occurs due to the dependence of the transformed problem on the dif-
feomorphism. This loss is removed by working with Alinhac’s so-called
“good unknown.”

The proof of the stability of multi-dimensional shocks is a celebrated achievement
of Majda [Maj83a, Maj83b, Maj12], with improvements in [Mét01]. Since the
proof relies on the theory of initial boundary value problems, the same loss of half
a derivative with respect to the initial and boundary data is observed.

The free boundary problem that motivates this work is the evolution of the
contact line between a floating object and the water, in the situation where the
motion of the waves is assumed to be governed by the (hyperbolic) nonlinear
shallow water equations, and in horizontal dimension d = 1. In a simplified
version, this problem can be reduced to a free boundary hyperbolic problem, but
with a more singular evolution equation for the free boundary, which is of the
form

U(t,x(t)) = Ui(t, x(t)),

where Ui is a known function (for the contact line problem, this condition ex-
presses the fact that the surface elevation and the horizontal flux of the water are
continuous across the contact point). Time differentiating this condition yields an
evolution equation for x of the form

ẋ(t) = χ((∂tU)|x=x(t) , (∂xU)|x=x(t) , (∂tUi)|x=x(t) , (∂xUi)|x=x(t)
)
.
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The standard procedure for free boundary hyperbolic problems described above
does not work with such a boundary equation, because there is obviously a loss of
one derivative in the estimates: the boundary condition is fully nonlinear. In order
to handle this new difficulty without using a Nash-Moser type scheme, we propose
to work with a second-order linearization and introduce a second-order Alinhac
good unknown in order to cancel out the terms responsible for the derivative loss.

Proving the well-posedness of this fully nonlinear free boundary hyperbolic
problem also requires sharp and new estimates for one-dimensional hyperbolic ini-
tial boundary values problems that are of independent interest. One-dimensional
hyperbolic boundary value problems are generally dealt with using the method of
characteristics [LY85]. In the Sobolev setting, there is no specific work dealing
with the one-dimensional setting, and the general multi-dimensional results are
used, with their drawbacks: high regularity requirements and derivative loss with
respect to the boundary and initial data. These drawbacks, however, can easily
be bypassed by taking advantage of the specificities of the one-dimensional case,
and in particular of the explicit construction of the Kreiss symmetrizers. For this
reason, we propose in this article a general study of initial boundary value prob-
lems (as well as transmission problems) for fixed, moving, and free boundaries.
This study is based on the new sharp estimates developed to solve the fully non-
linear free boundary problem mentioned above, and fully exploits the specificities
of the one-dimensional case. In particular, the high regularity requirements and
the derivative loss of the general theory are removed. This is of interest in solving,
for instance, the problem of transparent conditions for hyperbolic systems. We
use this general approach to solve several problems coming from wave-structure
interactions, as well as other problems such as conservation laws with a discontin-
uous flux and the stability of one-dimensional standard and nonstandard shocks.
Another advantage of our approach is that it is much more elementary than the
general results, and does not require refined paradifferential calculus, for instance.

1.2. Organization of the paper. Section 2 is devoted to the study of several
kinds of free boundary problems for 2×2 quasilinear (strictly) hyperbolic systems
(the general case of N×N systems is postponed to Appendix C). The case of non-
homogeneous linear initial boundary value problems with variable coefficients and
a fixed boundary is considered first in Section 2.1. The main focus is the deriva-
tion of a sharp estimate, given in Theorem 2.5, which requires only a weak control
in time of the source term (weaker than L1(0, T ), which is itself weaker than the
standard L2(0, T ) that can be found in the literature [BGS07]), and which pro-
vides a better control of the trace of the solution at the boundary. We first assume
the existence of a Kreiss symmetrizer, and derive a priori weighted L2-estimates
in Section 2.1.2, and higher-order estimates in Section 2.1.4. In order to com-
plete the proof of Theorem 2.5, the main step, performed in Section 2.1.5, is the
explicit construction of a Kreiss symmetrizer under an explicit Lopatinskĭı condi-
tion. In Section 2.2, these linear estimates are used to prove the well-posedness of
quasilinear systems; Theorem 2.25 provides a sharp result for such systems, which
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takes advantage of the specifities of the one-dimensional case and improves the
results provided by the general (multi-dimensional) theorems. It can be used for
improving, for instance, the existing results concerning transparent boundary con-
ditions for the nonlinear shallow water equations. In Section 2.3 we go back to
the analysis of linear initial boundary value problems, but this time on a moving
domain, that is, in the case where the domain on which the equations are cast is
(x(t),∞), with x assumed here to be a known function. Using a diffeomorphism
that maps R+ to (x(t),∞) for all times, this problem is transformed into an initial
boundary value problem with fixed boundary, but whose coefficients depend on
the diffeomorphism. One could apply Theorem 2.5 to this problem, but would
lose an unnecessary derivative in the dependence on the diffeomorphism. This
loss is avoided in Theorem 2.31 by applying Theorem 2.5 to the system satisfied
by Alinhac’s good unknown; in order to get a sharp result in terms of regular-
ity requirements on the initial data, the sharp dependence on the source terms
proved in Theorem 2.5 is necessary at this point. These linear estimates are then
used in Section 2.4 to study quasilinear initial boundary value problems with free
boundary, that is, where the function x(t) is no longer assumed to be known, but
satisfies an evolution equation. The case of an evolution equation of “kinematic”
type is considered first, so that a diffeomorphism of “Lagrangian” type can be used
and a solution constructed by an iterative scheme based on the linear estimates
of Theorem 2.31. The more complicated case of fully nonlinear boundary con-
ditions of the type mentioned above is addressed in Section 2.5. To handle this
problem, another kind of diffeomorphism must be used and a generalization of
Alinhac’s good unknown to the second order must be introduced to remove the
loss of derivative induced by the fully nonlinear boundary condition. A more gen-
eral type of fully nonlinear condition is also considered in Section 2.5.4, where a
coupling with a system of ODEs is allowed.

As a first illustration of the fact that the theory developed above for 2×2 initial
boundary value problems can be generalized to systems involving a higher number
of equations (the general case of N × N hyperbolic systems is treated in Appen-
dix C), we propose in Section 3 a rather detailed study of transmission problems.
More precisely, we consider two 2 × 2 hyperbolic systems cast on both sides of
an interface, and coupled through transmission conditions at the interface. Such
transmission problems can be transformed into 4×4 initial boundary value prob-
lems to which the above theory can be adapted. Linear transmission problems are
first considered in Section 3.1, the main step being the construction of a Kreiss
symmetrizer whose nature depends on the number of characteristics pointing to-
wards the interface; the nonlinear case is then considered in Section 3.2. Moving
interfaces are then treated in Section 3.3 for linear systems, and an application
to free boundary transmission problems with “kinematic” boundary condition is
given in Section 3.4.

A first application of the general theory described above to wave-structure in-
teractions is given in Section 4. The problem consists in studying the interaction
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of waves in shallow water with a lateral piston. The nonlinear shallow water equa-
tions are a quasilinear hyperbolic problem that falls into the class studied above.
The domain is a half-line delimited by a piston which can move under the pressure
force exerted by the wave. Its motion (and therefore the position of the boundary)
is given by the resolution of a second-order ODE in time (Newton’s equation)
coupled with the nonlinear shallow water equations. The key step is to show
that this evolution equation is essentially of “kinematic” type so that the results of
Section 2.4 can be applied.

In Section 5 we present the problem that motivated this work, namely, the
description of the evolution of the contact line between a floating body and the
surface of the water in the shallow water regime. We recall in Section 5.1 the
derivation of the equations proposed in [Lan17] to describe this problem, and in-
vestigate first, in Section 5.2, the case of a fixed floating body. We show that the
problem can be reduced to an initial boundary value problem with free boundary
governed by a fully nonlinear equation, which allows us to use the results of Sec-
tion 2.5. The extension to the case of a floating object with a prescribed motion is
then presented in Section 5.3, and the more complicated case of a freely floating
object is studied in Section 5.4. For this latter case, the evolution of the con-
tact point is more complicated because it is coupled with the three-dimensional
Newton equation for the solid (on the vertical and horizontal coordinates of the
center of mass and on the rotation angle). Technical computations are postponed
to Appendix A.

We finally present in Section 6 several applications of our results on transmis-
sion problems. The first one, considered in Section 6.1, is a general 2 × 2 system
of conservation laws with a discontinuous flux (a typical example is provided by
the nonlinear shallow water equations over a discontinuous topography). We then
investigate in Section 6.2 the stability of one-dimensional shocks (both classical
and undercompressive); using our sharp one-dimensional results, we are able to
improve the results one would obtain by considering the one-dimensional case
in the general multi-dimensional theory of [Maj83a, Maj83b, Maj12, Mét01] for
classical shocks and [Cou03] for undercompressive shocks.

1.3. General notation.

- We write ΩT = (0, T )×R+.
- The notation ∂ stands for either ∂x or ∂t , so that ∂f ∈ L∞(ΩT ), for

instance, means

∂xf ∈ L∞(ΩT ) and ∂tf ∈ L∞(ΩT ).

- We denote by · the R2 scalar product and by (·, ·)L2 the L2(R+) scalar
product.

- If A is a vector or matrix, and X a functional space, we simply writeA ∈ X
to express the fact that all the elements of A belong to X.



Hyperbolic Free Boundary Problems and Applications 359

- To define smooth solutions of hyperbolic systems in ΩT = (0, T )×R+, it
is convenient to introduce the space Wm(T) as

W
m(T) =

m⋂

j=0

Cj([0, T ];Hm−j(R+)),

with associated norm

‖u‖Wm(T) = sup
t∈[0,T]

9u(t)9m with 9u(t)9m =
m∑

j=0

‖∂jtu(t)‖Hm−j(R+).

We have in particular Hm+1(ΩT ) ⊂Wm(T) ⊂ Hm(ΩT ).
- In order to control the boundary regularity of the solution, it is convenient

to use the norm

|u|x=0 |m,t =
( m∑

j=0

∣∣(∂jxu)|x=0

∣∣2
Hm−j(0,t)

)1/2
=
( ∑

|α|≤m

∣∣(∂αu)|x=0

∣∣2
L2(0,t)

)1/2
.

- We also use weighted norms with an exponential function e−γt for γ > 0
defined by

|g|L2
γ(0,t) =

(∫ t

0
e−2γt′|g(t′)|2 dt′

)1/2

,

|g|Hmγ (0,t) =
( m∑

j=0

∣∣∂jtg
∣∣2
L2
γ(0,t)

)1/2
,

9u(t)9m,γ = e−γt 9u(t)9m,
‖u‖Wmγ (T) = sup

t∈[0,T]
9u(t)9m,γ,

|u|x=0 |m,γ,t =
( m∑

j=0

∣∣(∂jxu)|x=0

∣∣2

H
m−j
γ (0,t)

)1/2
.

2. HYPERBOLIC INITIAL BOUNDARY VALUE PROBLEMS WITH

A FREE BOUNDARY

This section is devoted to the analysis of a general class of initial boundary value
problems, with a boundary that can be either fixed, in prescribed motion, or freely
moving. We refer to Section 1.3 for the notation, and in particular for the defini-
tion of the functional spaces.
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2.1. Variable coefficients linear 2 × 2 initial boundary value problems.
The aim of this section is to provide an existence theorem with sharp estimates
for a general linear initial boundary value problem with variable coefficients of the
following form:

(2.1)





∂tu+A(t,x) ∂xu+ B(t, x)u = f (t, x) in ΩT ,
u|t=0 = uin(x) on R+,
ν(t) ·u|x=0 = g(t) on (0, T ),

where u, uin, f , and ν are R2-valued functions and g is a real-valued function,
while A and B take their values in the space of 2 × 2 real-valued matrices. We
also make the following assumption on the hyperbolicity of the system and on the
boundary condition.

Assumption 2.1. There exists c0 > 0 such that the following assertions hold:

(i) A ∈ W 1,∞(ΩT ), B ∈ L∞(ΩT ), ν ∈ C([0, T ]).
(ii) For any (t, x) ∈ ΩT , the matrix A(t,x) has eigenvalues λ+(t, x) and

−λ−(t, x) satisfying λ±(t, x) ≥ c0.

(iii) (The uniform Kreiss-Lopatinskiı̆ condition). Denoting by e+(t, x) a unit
eigenvector associated with the eigenvalue λ+(t, x) of A(t,x), for any t ∈
[0, T ] we have |ν(t,0) · e+(t,0)| ≥ c0.

Example 2.2. A typical example of application is to consider the linearized
shallow water equations with a boundary condition on the horizontal water flux
q. This system has the form





∂tζ + ∂xq = 0,

∂tq + 2
q

h
∂xq +

(
gh−

q2

h2

)
∂xζ = 0,

with initial and boundary conditions

(ζ, q)|t=0 = (ζ in, qin) and q|x=0 = g,

where g is the gravitational constant. This problem is of the form (2.1) with
u = (ζ, q)T, B = 0, f = 0, ν = (0,1)T, and

(2.2) A(t,x) = A(u) =




0 1

gh−
q2

h2 2
q

h


 .

The eigenvalues ±λ± and the corresponding unit eigenvectors e± of A are given

by λ± =
√
gh± q/h and e± = (1/

√
1+ λ2±)(1,±λ±)T, so that Assumption 2.1 is
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satisfied provided that h,q ∈ W 1,∞(ΩT ), and

h(t,x) ≥ c0,
√
gh(t,x)±

q(t, x)

h(t, x)
≥ c0

with some positive constant c0 independent of (t, x) ∈ ΩT .

Notation 2.3. To define an appropriate norm to the source term f (t, x) in
(2.1), it is convenient to use the following norm to functions of t:

S∗γ,T (f ) = sup
ϕ

{∣∣∣∣
∫ T

0
e−2γtf (t)ϕ(t)dt

∣∣∣∣ :

sup
t∈[0,T]

e−γt|ϕ(t)| +
(
γ

∫ T

0
e−2γt|ϕ(t)|2 dt

)1/2

≤ 1
}
,

which is the norm of the dual space to L∞γ (0, T ) ∩ L2
γ(0, T ) equipped with the

norm

sup
t∈[0,T]

e−γt|ϕ(t)| +
(
γ

∫ T

0
e−2γt|ϕ(t)|2 dt

)1/2

associated with the inner product of L2
γ(0, T ).

It is easy to check that S∗γ,t(f ) is a nondecreasing function of t ≥ 0 for each
fixed f and that S∗γ,t(f ) is monotone with respect to f in the sense that if 0 ≤
f1(t) ≤ f2(t) for t ∈ [0, T ], then we have S∗γ,t(f1) ≤ S∗γ,t(f2) for t ∈ [0, T ].
Moreover, we have

S∗γ,T (f ) ≤
∫ T

0
e−γt|f (t)|dt,

S∗γ,T (f ) ≤
(

1
γ

∫ T

0
e−2γt|f (t)|2 dt

)1/2

.

Remark 2.4. The first of these two inequalities implies an L2-type control
through the Cauchy-Schwarz inequality,

∫ T

0
e−γt|f (t)|dt ≤

√
T

(∫ T

0
e−2γt|f (t)|2 dt

)1/2

,

but with a righthand side involving a factor
√
T . This is not the case for the L2-

type control (with respect to time) deduced from S∗γ,T (f ), and this improvement
allows us to derive energy estimates with exponential growth in Theorems 2.5,
2.31, and 3.5, for instance.

The main result of this section is the following theorem (see Section 1.3 for the
definition ofWm−1(T) and of the various weighted norms used in the statement).
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Theorem 2.5. Let m ≥ 1 be an integer, T > 0, and assume Assumption 2.1 is
satisfied for some c0 > 0. Assume, moreover, there are constants 0 < K0 ≤ K such that





1
c0
, ‖A‖L∞(ΩT ), |ν|L∞(0,T) ≤ K0,

‖A‖W 1,∞(ΩT ), ‖B‖L∞(ΩT ), ‖(∂A, ∂B)‖Wm−1(T), |ν|Wm,∞(0,T) ≤ K.

Then, for any data uin ∈ Hm(R+), g ∈ Hm(0, T ), and f ∈ Hm(ΩT ) satisfying the
compatibility conditions up to order m − 1 in the sense of Definition 2.8 below, there
exists a unique solution u ∈ W

m(T) to the initial boundary value problem (2.1).
Moreover, the following estimate holds for any t ∈ [0, T ] and any γ ≥ C(K):

9u(t) 9m,γ +
(
γ

∫ t

0
9u(t′)92

m,γ dt′
)1/2

+ |u|x=0 |m,γ,t
≤ C(K0)

(
9u(0) 9m +|g|Hmγ (0,t) + |f|x=0 |m−1,γ,t + S∗γ,t(9∂tf (·)9m−1)

)
.

In particular, we have

9u(t)9m +|u|x=0 |m,t ≤ C(K0)e
C(K)t

(
9u(0) 9m +|g|Hm(0,t)

+ |f|x=0 |m−1,t +
∫ t

0
9∂tf (t′) 9m−1 dt′

)
.

Remark 2.6. A more general version of this theorem for N × N systems is
provided in Theorem C.4 in Appendix C. The estimates provided by the theorem
are a refinement of classical estimates that can be found in the extensive literature
on initial boundary value problems (see, e.g., [Sch86, Mét01, BGS07, Mét12]).

(i) Most of the time, these references provide a control of the source term in L2-
norm with respect to time; it turns out that such a control is not enough to handle
“fully nonlinear” boundary conditions as in Section 2.5 below. In [Mét01], a
more precise upper bound involving only the L1-norm in time of f is provided
but only for constant coefficient symmetric systems (this kind of estimate has also
been derived in the case of maximally dissipative boundary conditions (see, e.g.,
[Rau85])). The above theorem extends this result to variable coefficients systems
and also refines it since it provides a control in terms of S∗γ,t instead of L1. This
latter refinement is important, for instance, to get low regularity results—W

2(T)
instead of W3(T)—in Theorems 2.25, 2.39, 2.44, 2.54, and 3.12.

(ii) In addition to the classical L∞(0, T ) upper bound on t ֏ 9u(t)9m, our es-
timates provide a control of its L1(0, T )-norm which is uniform with respect to
t (see the comments in Remark 2.4 above) which is typical of weighted estimates
[Mét12, BGS07]. This term is essential in the derivation of the higher-order esti-
mates (see the proof of Proposition 2.17).

Remark 2.7. The assumption |ν|Wm,∞(0,T) ≤ K can be weakened into

|ν|W 1,∞∩Wm−1,∞(0,T) ≤ K, |∂mt ν|L2(0,T) ≤ K
(this is a particular case of Theorem 2.31 below with x ≡ 0).
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2.1.1. Compatibility conditions. From the interior equations, denoting
uk = ∂kt u, we have u1 = −A∂xu − Bu + f . More generally, differentiating the
equation k-times with respect to t, we have a recursion relation

uk+1 = −
k∑

j=0

(
k

j

)
{(∂k−jt A)∂xuj + (∂k−jt B)uj} + ∂kt f .

For a smooth solution u, uin
k = uk|t=0

is thus given inductively by uin
0 = uin and

(2.3) uin
k+1 = −

k∑

j=0

(
k

j

)
{(∂k−jt A)|t=0 ∂xu

in
j + (∂

k−j
t B)|t=0u

in
j } + (∂kt f )|t=0 .

The boundary condition ν(t)·u|x=0 = g also implies ∂kt (ν(t)·u|x=0) = ∂kt g.On
the edge {t = 0, x = 0}, smooth enough solutions must therefore satisfy

(2.4)
k∑

j=0

(
k

j

)
(∂
j
tν)|t=0 ·uin

k−j |x=0
= (∂kt g)|t=0 .

Definition 2.8. Letm≥1 be an integer. We say that the data uin∈ Hm(R+),
f ∈ Hm(ΩT ), and g ∈ Hm(0, T ) for the initial boundary value problem (2.1)
satisfy the compatibility condition at order k if the {uin

j }mj=0 defined in (2.3) satisfy
(2.4). We also say that the data satisfy the compatibility conditions up to order
m−1 if they satisfy the compatibility conditions at order k for k = 0,1, . . . ,m−1.

2.1.2. A priori L2-estimate. We prove here an L2 a priori estimate using the
following assumption, which we verify later as a consequence of Assumption 2.1.

Assumption 2.9. There exists a symmetric matrix S(t, x) ∈ M2(R) such that
for any (t, x) ∈ ΩT , S(t, x)A(t, x) is symmetric and the following conditions hold:

(i) There exist constants α0, β0 > 0 such that for any (v, t, x) ∈ R2 × ΩT we
have α0|v|2 ≤ vTS(t, x)v ≤ β0|v|2.

(ii) There exist constants α1, β1 > 0 such that for any (v, t) ∈ R2 × (0, T ) we
have

vTS(t,0)A(t,0)v ≤ −α1|v|2 + β1|ν(t) · v|2.

(iii) There exists a constant β2 such that

‖∂tS + ∂x(SA)− 2SB‖L2(ΩT )→L2(ΩT ) ≤ β2.

Notation 2.10. We denote by βin
0 ≤ β0 any constant such that the inequality

in (i) of the assumption is satisfied at t = 0.
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In the L2 a priori estimate provided by the proposition, the control of the
source term by S∗γ,t(‖f (·)‖L2) is crucial to get the refined higher-order estimates
of Theorem 2.5.

Proposition 2.11. Under Assumption 2.9, there are constants

c0 = C
(
βin

0

α0
,
βin

0

α1

)
and c1 = C

(
β0

α0
,
β1

α0
,
α0

α1

)

such that for any u ∈ H1(ΩT ) solving (2.1), any t ∈ [0, T ], and any γ ≥ β2/α0,
the following inequality holds:

9u(t)90,γ +
(
γ

∫ t

0
9u(t′) 92

0,γ dt′
)1/2

+ |u|x=0 |L2
γ(0,t)

≤ c0‖uin‖L2 + c1(|g|L2
γ (0,t) + S∗γ,t(‖f (·)‖L2)),

where we recall that S∗γ,t(‖f (·)‖L2) is defined in Notation 2.3.

Proof. Multiplying the first equation of (2.1) by S and taking the L2(Ωt) scalar
product with e−2γtu, we get after integration by parts

e−2γt(Su(t),u(t))L2 + 2γ
∫ t

0
e−2γt′(Su,u)L2 dt′

−
∫ t

0
e−2γt′(SAu ·u)|x=0 dt

′

= (S|t=0u
in, uin)L2 +

∫ t

0
e−2γt′((∂tS + ∂x(SA)− 2SB)u+ 2Sf ,u)L2 dt′.

Using Assumption 2.9 with Notation 2.10, this yields

α0 9u(t)92
0,γ +(2α0γ − β2)

∫ t

0
9u(t′) 92

0,γ dt′ +α1

∣∣u|x=0

∣∣2
L2
γ(0,t)

≤ βin
0

∥∥uin
∥∥2
L2 + β1

∣∣g
∣∣2
L2
γ(0,t) + 2β0

∫ t

0
e−2γt′‖f (t′)‖L2 ‖u(t′)‖L2 dt′.

We evaluate the last term as
∫ t

0
e−2γt′‖f (t′)‖L2 ‖u(t′)‖L2 dt′

≤ S∗γ,t(‖f (·)‖L2)

{
‖u‖

W
0
γ(t) +

(
γ

∫ t

0
9u(t′)92

0,γ dt′
)1/2}

≤ S∗γ,t(‖f (·)‖L2)‖u‖
W

0
γ(t) +

β0

α0
S∗γ,t(‖f (·)‖L2)2

+ 1
4
α0

β0
γ

∫ t

0
9u(t′) 92

0,γ dt′,
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and we deduce that

9u(t)92
0,γ +

γ

2

∫ t

0
9u(t′) 92

0,γ dt′ + α1

α0

∣∣u|x=0

∣∣2
L2
γ(0,t)(2.5)

≤ β
in
0

α0

∥∥uin
∥∥2
L2 + β1

α0

∣∣g
∣∣2
L2
γ(0,t) + 2

β0

α0
S∗γ,t(‖f (·)‖L2)‖u‖

W
0
γ(t)

+ 2
(
β0

α0
S∗γ,t(‖f (·)‖L2)

)2

≤ β
in
0

α0

∥∥uin
∥∥2
L2 + β1

α0

∣∣g
∣∣2
L2
γ(0,t) +

1
2

∥∥u
∥∥2
W

0
γ(t)

+ 4
(
β0

α0
S∗γ,t(‖f (·)‖L2)

)2

for γ ≥ β2/α0. In particular, we have

1
2

∥∥u
∥∥2
W

0
γ(t) ≤

βin
0

α0

∥∥uin
∥∥2
L2 + β1

α0

∣∣g
∣∣2
L2
γ(0,t) + 4

(
β0

α0
S∗γ,t(‖f (·)‖L2)

)2

.

Plugging this into (2.5), we obtain the desired estimate. ❐

2.1.3. Product and commutator estimates. To obtain higher-order a priori
estimates, we need to use calculus inequalities. By the standard Sobolev imbedding
theorem H1(R+) ⊆ L∞(R+), we can easily obtain the following lemma.

Lemma 2.12. Let m ≥ 1 be an integer. There exists a constant C such that the
following inequalities hold:

9u(t)v(t)9m ≤ C(‖u(t)‖L∞(R+) + 9∂u(t)9m−1)9 v(t)9m,(i)
∥∥[∂α, u(t)]v(t)

∥∥
L2(R+) ≤ C(‖∂u(t)‖L∞(R+) + 9∂u(t)9m−1)(ii)

× 9v(t)9m−1 if |α| ≤m,
‖∂[∂α, u(t)]v(t)‖L2(R+) ≤ C(‖∂u(t)‖L∞(R+) + 9∂u(t)9m−1)(iii)

× 9v(t)9m−1 if |α| ≤m− 1,

‖∂[∂α;u(t), v(t)]‖L2(R+) ≤ C 9 ∂u(t) 9m−2 9∂v(t)9m−2(iv)

if 2 ≤ |α| ≤m− 1,

where [∂α;u,v] = ∂α(uv)− (∂αu)v −u(∂αv) is the symmetric commutator.
The following Moser-type inequality is a direct consequence of the above

lemma.

Lemma 2.13. Let U be an open set in RN , F ∈ C∞(U), and F(0) = 0. If
m ∈ N and u ∈ W

m(T) takes its values in a compact set K ⊂ U, then for any
t ∈ [0, T ] we have

9(F(u))(t)9m ≤ C(‖u‖W [m/2],∞(Ωt))9u(t)9m,

where [m/2] is the integer part of m/2.
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Remark 2.14. In the standard Moser-estimate

‖F(u)‖Hs(ΩT ) ≤ CT (‖u‖L∞(ΩT ))‖u‖Hs(ΩT ),

the constant CT (·) depends singularly on T for small T . The estimate provided in
the lemma is far from being optimal but the constant that appears in the righthand
side is independent of T . In order to derive blowup criteria, for instance (which
we do not carry out here), it is necessary to use sharp and tame nonlinear estimates
in the spirit of, for instance, Section 4.5 in [Mét01] and Section 5.2 in [BLM].

We also need Moser-type inequalities for the trace at the boundary of the
nonlinear terms, as in the following lemma.

Lemma 2.15. Let U be an open set in RN , F ∈ C∞(U), and F(0) = 0. If
m ∈ N and u = u(t,x) takes its values in a compact set K ⊂U, then we have

|F(u)|x=0 |m,t ≤ C
( ∑

|α|≤[m/2]
|(∂αu)|x=0 |L∞(0,t)

)
|u|x=0 |m,t,(i)

|F(u)|x=0 |m,t ≤ C(‖u‖W[m/2]+1(t))|u|x=0 |m,t ,(ii)

|∂t(F(u))|x=0 |m,t ≤ C(‖u‖Wm(t),‖u‖L∞(ΩT ))(iii)

× (|(∂tu)|x=0 |m,t + ‖∂tu‖Wm(t) |u|x=0 |m,t),

where [m/2] is the integer part of m/2.

Proof. The proof of (i) is straightforward and (i) together with the Sobolev
imbedding theorem H1(R+) ⊆ L∞(R+) yields (ii). We will prove (iii). The
case m = 0 is obvious so that we assume m ≥ 1. In view of ∂α ∂t(F(u)) =
F ′(u) ∂α ∂tu+ [∂α, F ′(u)] ∂tu, we have

|∂t(F(u))|x=0 |m,t ≤
≤ C|(∂tu)|x=0 |m,t + C‖∂tu‖Wm−1,∞(Ωt)

∑

1≤|α|≤m
|∂αF ′(u)|L2(0,t)

≤ C|(∂tu)|x=0 |m,t + C(‖u‖W[m/2]+1(t))‖∂tu‖Wm(t) |u|x=0 |m,t .

Since [m/2]+ 1 ≤m, we obtain the desired inequality. ❐

Lemma 2.16. There exists an absolute constant C such that for any γ > 0 and
any integer m ≥ 1 we have

e−γt|u(t)| +
(
γ

∫ t

0
e−2γt′|u(t′)|2 dt′

)1/2

≤ C(|u(0)| + S∗γ,t(|∂tu|)),(2.6)

|u|x=0 |m−1, γ,t ≤ C(γ−1/2 9u(0) 9m +γ−1|u|x=0 |m,γ,t),(2.7)

9u(t)9m−1,γ +
(
γ

∫ t

0
9u(t′) 92

m−1,γ dt′
)1/2

(2.8)

≤ C(9u(0) 9m−1 +S∗γ,t(9∂tu(·)9m−1)).
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Proof. Integrating the identity

d

dt
(e−2γt|u(t)|2)+ 2γe−2γt|u(t)|2 = 2e−2γtu(t) · ∂tu(t),

we have

e−2γt|u(t)|2 + 2γ
∫ t

0
e−2γt′ |u(t′)|2 dt′

= |u(0)|2 + 2
∫ t

0
e−2γt′u(t′) · ∂tu(t′)dt′.

The last term is evaluated as

2
∫ t

0
e−2γt′u(t′) · ∂tu(t′)dt′

≤ 2
∫ t

0
e−2γt′|u(t′)| |∂tu(t′)|dt′

≤ 2S∗γ,t(|∂tu|)
{

sup
t′∈[0,t]

e−γt
′|u(t′)| +

(
γ

∫ t

0
e−2γt′|u(t′)|2 dt′

)1/2}

≤ 1
2

sup
t′∈[0,t]

e−2γt′|u(t′)|2 + γ
∫ t

0
e−2γt′|u(t′)|2 dt′ + 3S∗γ,t(|∂tu|)2,

so that we obtain (2.6). Similarly, we can show (2.8). As a corollary of (2.6), we
have

|u|L2
γ(0,t) ≤ C(γ−1/2|u(0)| + γ−1|∂tu|L2

γ(0,t)).

Applying this to (∂αu)|x=0 , summing the resulting inequality over |α| ≤ m − 1,
and using the Sobolev imbedding theorem H1(R+)⊆L∞(R+), we get (2.7). ❐

2.1.4. Higher order a priori estimate. We can now state the generalization
of Proposition 2.11 to higher-order Sobolev spaces.

Proposition 2.17. Letm ≥ 1 be an integer, T > 0, and assume Assumption 2.9
is satisfied. Assume, moreover, there are two constants 0 < K0 ≤ K such that





c0, c1,‖A‖L∞(ΩT ),‖A−1‖L∞(ΩT ), |ν|L∞(0,T) ≤ K0,

β2

α0
,‖A‖W 1,∞(ΩT ),‖B‖L∞(ΩT ),‖(∂A, ∂B)‖Wm−1(T), |ν|Wm,∞(0,T) ≤ K,

where c0 and c1 are as in Proposition 2.11. Then, every solution u ∈ Hm+1(ΩT )
to the initial boundary value problem (2.1) satisfies, for any t ∈ [0, T ] and any
γ ≥ C(K),

9u(t) 9m,γ +
(
γ

∫ t

0
9u(t′)92

m,γ dt′
)1/2

+ |u|x=0 |m,γ,t
≤ C(K0)

(
9u(0) 9m +|g|Hmγ (0,t) + |f|x=0 |m−1,γ,t + S∗γ,t(9∂tf (t′)9m−1)

)
.
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Remark 2.18. The weighted estimates provided in this proposition allow an
exponentially growing (in time) control of 9u(t)9m in Theorem 2.5. It is possible
to bypass the use of weighted estimates by a repeated use of Gronwall’s estimate,
but it seems hard to get better than a double exponential control in Theorem 2.5
with such techniques.

Proof. Let um = ∂mt u. Then, um solves





∂tum +A(t,x) ∂xum + B(t, x)um = fm in ΩT ,
um|t=0

= (∂mt u)|t=0 on R+,
ν(t) ·um|x=0

= gm(t) on (0, T ),

where {
fm = ∂mt (f − Bu)− [∂mt , A] ∂xu,
gm = ∂mt g − [∂mt , ν] ·u|x=0 .

Applying Proposition 2.11, we obtain

9um(t)90,γ +
(
γ

∫ t

0
9um(t′) 92

0,γ dt′
)1/2

+ |um|x=0
|L2
γ(0,t)

≤ c0 9u(0) 9m +c1
(|gm|L2

γ(0,t) + S∗γ,t(‖fm(·)‖L2)
)
.

On the other hand, it follows from Lemma 2.12 that



‖fm(t)‖L2 ≤ 9∂tf (t)9m−1 +C(K) 9u(t)9m,
|gm|L2

γ(0,t) ≤ |g|Hmγ (0,t) + C(K)|u|x=0 |m−1,γ,t.

Therefore, we obtain

9um(t) 90,γ +
(
γ

∫ t

0
9um(t′) 92

0,γ dt′
)1/2

+ |um|x=0
|L2
γ(0,t)(2.9)

≤ C(K0)
(
9u(0) 9m +|g|Hmγ (0,t) + S∗γ,t(9∂tf (·)9m−1)

)

+ C(K)(|u|x=0 |m−1,γ,t + S∗γ,t(9u(t′)9m)
)
.

We proceed to control the other derivatives. Let k and ℓ be nonnegative integers
satisfying k+ ℓ ≤m− 1. Applying ∂kt ∂

ℓ
x to the equation, we get

∂k+1
t ∂ℓxu+A∂kt ∂ℓ+1

x u = ∂kt ∂ℓx(f − Bu)− [∂kt ∂ℓx , A] ∂xu =: fk,ℓ.

By using these two expressions of fk,ℓ together with Lemma 2.12, we see that





‖fk,ℓ(0)‖L2 ≤ C(K0)9u(0)9m,
‖∂tfk,ℓ(t)‖L2 ≤ 9∂tf (t)9m−1 +C(K) 9u(t)9m,
|fk,ℓ|x=0

|L2
γ(0,t) ≤ |f|x=0 |m−1,γ,t + C(K)|u|x=0 |m−1,γ,t .
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We have now the relation ∂kt ∂
ℓ+1
x u = A−1(fk,ℓ − ∂k+1

t ∂ℓxu) so that





‖∂kt ∂ℓ+1
x u(t)‖L2 ≤ C(K0)(‖∂k+1

t ∂ℓxu(t)‖L2 + ‖fk,ℓ(t)‖L2),

|(∂kt ∂ℓ+1
x u)|x=0|L2

γ(0,t)

≤ C(K0)(|(∂k+1
t ∂ℓxu)|x=0 |L2

γ(0,t) + |fk,ℓ|x=0
|L2
γ(0,t)).

Therefore,

9 ∂kt ∂ℓ+1
x u(t)90,γ +

(
γ

∫ t

0
9∂kt ∂ℓ+1

x u(t′) 92
0,γ dt′

)1/2

+ |(∂kt ∂ℓ+1
x u)|x=0 |L2

γ(0,t)

≤ C(K0)

{
9 ∂k+1

t ∂ℓxu(t) 90,γ +
(
γ

∫ t

0
9∂k+1
t ∂ℓxu(t

′) 92
0,γ dt′

)1/2

+ |(∂k+1
t ∂ℓxu)|x=0 |L2

γ(0,t) + 9fk,ℓ(t)90,γ

+
(
γ

∫ t

0
9fk,ℓ(t′)92

0,γ dt′
)1/2

+ |fk,ℓ|x=0
|L2
γ(0,t)

}
.

Here, by Lemma 2.16 we have

9 fk,ℓ(t) 90,γ +
(
γ

∫ t

0
9fk,ℓ(t′)92

0,γ dt′
)1/2

≤ C(‖fk,ℓ(0)‖L2 + S∗γ,t(‖∂tfk,ℓ(·)‖L2)
)

≤ C(K0)
(

9u(0)9m +S∗γ,t(9∂tf (·)9m−1)
)+ C(K)S∗γ,t(9u(·)9m).

By using the above inequality inductively, we obtain

9u(t)9m,γ +
(
γ

∫ t

0
9u(t′) 92

m,γ dt′
)1/2

+ |u|x=0 |m,γ,t

≤ C(K0)

{
9u(0) 9m +S∗γ,t(9∂tf (·)9m−1)+ |f|x=0 |m−1,γ,t

+ 9um(t)90,γ +
(
γ

∫ t

0
9um(t′) 92

0,γ dt′
)1/2

+ |um|x=0 |L2
γ(0,t)

+ 9u(t)9m−1,γ +
(
γ

∫ t

0
9u(t′) 92

m−1,γ dt′
)1/2}

+ C(K)(|u|x=0 |m−1,γ,t + S∗γ,t(9u(·)9m)
)
.



370 TATSUO IGUCHI & DAVID LANNES

This together with (2.9) and Lemma 2.16 implies

9u(t)9m,γ +
(
γ

∫ t

0
9u(t′) 92

m,γ dt′
)1/2

+ |u|x=0 |m,γ,t

≤ C(K0)
(

9u(0) 9m +|g|Hmγ (0,t) + |f|x=0 |m−1,γ,t

+ S∗γ,t(9∂tf (·)9m−1)
)
+ C(K)(|u|x=0 |m−1,γ,t + S∗γ,t(9u(t′)9m)

)

≤ C(K0)
(
9u(0)9m +|g|Hmγ (0,t) + |f|x=0|m−1,γ,t + S∗γ,t(9∂tf (·)9m−1)

)

+ C(K)
{
γ−1/2 9u(0) 9m +γ−1

(
γ

∫ t

0
9u(t′)92

m,γ dt′
)1/2

+ γ−1|u|x=0 |m,γ,t
}
.

Therefore, by taking γ sufficiently large compared to C(K), we obtain the desired
estimate (note that this would not be possible without the second term of the
lefthand side). ❐

2.1.5. Proof of Theorem 2.5. Under Assumption 2.9, the existence and
uniqueness of a solution u ∈ W

m(T) to (2.1) can be deduced from Propo-
sition 2.17 and the compatibility conditions along classical lines (see [Mét01,
Mét12, BGS07], e.g.). We still have to prove that the assumptions made in the
statement of Theorem 2.5 imply that Assumption 2.9 is satisfied. This is given by
the following lemma.

Lemma 2.19. Let c0 > 0 be such that Assumption 2.1 is satisfied. There exist a
symmetrizer S ∈ W 1,∞(ΩT ) and constants α0, α1 and β0, β1, β2 such that Assump-
tion 2.9 is satisfied. Moreover, we have

c0 ≤ C
(

1
c0
,‖A|t=0‖L∞(R+)

)
and c1 ≤ C

(
1
c0
,‖A‖L∞(ΩT )

)
,

where c0 and c1 are as defined in Proposition 2.11, and we also have

β2

β0
≤ C

(
1
c0
,‖A‖W 1,∞(ΩT ),‖B‖L∞(ΩT )

)
.

This lemma is a simple consequence of the following proposition and its
proof, which characterizes the uniform Kreiss-Lopatinskĭı condition (iii) in As-
sumption 2.1.

Proposition 2.20. Suppose that the condition (ii) in Assumption 2.1, |ν(t)| ≥
c0, and |A(t,x)| ≤ 1/c0 hold for some positive constant c0. Then, the following four
statements are all equivalent.

(i) There exist a symmetrizer S ∈ W 1,∞(ΩT ) and positive constants α0 and β0

such that α0 Id ≤ S(t, x) ≤ β0 Id and that, for any v ∈ R
2 satisfying
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ν(t) · v = 0, we have

vTS(t,0)A(t,0)v ≤ 0.

(ii) There exist a symmetrizer S ∈ W 1,∞(ΩT ) and positive constants α0, β0, α1,
and β1 such that α0 Id ≤ S(t, x) ≤ β0 Id and that, for any v ∈ R

2, we
have

vTS(t,0)A(t,0)v ≤ −α1|v|2 + β1|ν(t) · v|2.

(iii) There exists a positive constant α0 such that |π−(t,0)ν(t)⊥| ≥ α0, where
π±(t, x) is the eigenprojector associated with the eigenvalue ±λ±(t, x) of
A(t,x).

(iv) There exists a positive constant α0 such that |ν(t) · e+(t,0)| ≥ α0, where
e±(t, x) is the unit eigenvector associated with ±λ±(t, x), the eigenvalue of
A(t,x).

Proof. We note that the eigenprojector π±(t, x) is given explicitly by

π+(t, x) = A(t,x)+ λ−(t, x) Id
λ+(t, x)+ λ−(t, x)

, π−(t, x) = −A(t,x)− λ+(t, x) Id
λ+(t, x)+ λ−(t, x)

and that, under the assumption, λ±(t, x) and |π±(t, x)| are bounded from above
by a constant depending on c0. We see that

|ν(t) · e+(t,0)| = |ν(t)⊥ · e+(t,0)⊥|
= |(π−(t,0)ν(t)⊥) · e+(t,0)⊥|
≤ |π−(t,0)ν(t)⊥|

and that

|π−(t,0)ν(t)⊥| = |(ν(t)⊥ · e+(t,0)⊥)π−(t,0)e+(t,0)⊥|
≤ |π−(t,0)| |ν(t) · e+(t,0)|.

These imply the equivalence of (iii) and (iv). Obviously, (ii) implies (i).
We proceed to show that (i) implies (iii). By the assumption, we have

(ν(t)⊥)TS(t,0)A(t,0)ν(t)⊥ ≤ 0,

which together with the spectral decomposition

A(t,x) = λ+(t, x)π+(t, x)− λ−(t, x)π−(t, x)
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implies

c0α0|π+(t,0)ν(t)⊥|2

≤ λ+(t,0)(π+(t,0)ν(t)⊥)TS(t,0)π+(t,0)ν(t)⊥

≤ (λ−(t,0)− λ+(t,0))(π+(t,0)ν(t)⊥)TS(t,0)π−(t,0)ν(t)⊥

+ λ−(t,0)(π−(t,0)ν(t)⊥)TS(t,0)π−(t,0)ν(t)⊥
≤ β0|λ−(t,0)− λ+(t,0)| |π+(t,0)ν(t)⊥| |π−(t,0)ν(t)⊥|

+ β0λ−(t,0)|π−(t,0)ν(t)⊥|2.

In particular, we have

c0α0|π+(t,0)ν(t)⊥|2

≤
(
β2

0|λ−(t,0)− λ+(t,0)|2
c0α0

+ 2β0λ−(t,0)

)
|π−(t,0)ν(t)⊥|2.

Therefore, in view of c0 ≤ |ν(t)| ≤ |π−(t,0)ν(t)⊥|+|π+(t,0)ν(t)⊥| we obtain
the desired inequality in the statement (iii).

Finally, we will show that (iii) implies (ii). This is the most important part of
this proposition. We want to show that for a suitably large M > 1, a symmetrizer
S(t, x) satisfying the conditions in the statement (ii) is provided by the formula

S(t, x) = π+(t, x)Tπ+(t, x)+Mπ−(t, x)Tπ−(t, x),

so that the first point of (i) is satisfied with α0 = 1 and β0 = M‖π−‖R2→R2 (and
‖π−‖R2→R2 being itself controlled by a constant of the form C(1/c0)). By the
definition of π±, we compute indeed that

SA = λ+πT
+π+ −Mλ−πT

−π−,

which is obviously symmetric. For the second point of (ii), we just note that

vTSAv = λ+|π+v|2 −Mλ−|π−v|2.

We need to show that this quantity is negative on the kernel Rν⊥ of the boundary
condition. Under the hypothesis, we can assume that |ν(t)| = 1 without loss of
generality. Then, we see that

−|π−v|2 = −|(ν⊥ · v)π−ν⊥ + (ν · v)π−ν|2

≤ −1
2
|ν⊥ · v|2 |π−ν⊥|2 + |ν · v|2 |π−ν|2

≤ −1
2
|π−ν⊥|2 |v|2 + (|π−ν|2 + |π−ν⊥|2) |ν · v|2
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and that

|π+v|2 = |(ν⊥ · v)π+ν⊥ + (ν · v)π+ν|2

≤ 2|π+ν⊥|2 |ν⊥ · v|2 + 2|π+ν|2 |ν · v|2

≤ 4|π+ν⊥|2 |v|2 + 4(|π+ν⊥|2 + |π+ν|2)|ν · v|2.

Therefore, we obtain

vTSAv ≤ −λ−|π−ν⊥|2
(
M

2
− 4
λ+
λ−

|π+ν⊥|2
|π−ν⊥|2

)
|v|2

+ {λ−M(|π−ν|2 + |π−ν⊥|2)+ 4λ+(|π+ν⊥|2 + |π+ν|2)
}|ν · v|2.

Taking for instance

M = 2+ 8 sup
ΩT

λ+
λ−

|π+ν⊥|2
|π−ν⊥|2

,

we easily obtain the desired inequality in the statement (ii). ❐

2.2. Application to quasilinear 2 × 2 initial boundary value problems.
The aim of this section is to use the results of the previous section to handle general
quasilinear boundary value problems of the form

(2.10)





∂tu+A(u)∂xu+ B(t, x)u = f (t, x) in ΩT ,
u|t=0 = uin(x) on R+,
Φ(t,u|x=0) = g(t) on (0, T ),

where u, uin, and f are R2-valued functions and g and Φ are real-valued func-
tions, while A and B take their values in the space of 2 × 2 real-valued matrices.
We also make the following assumption on the hyperbolicity of the system and on
the boundary condition.

Assumption 2.21. Let U be an open set in R2, which represents a phase space of
u. The following conditions hold:

(i) A ∈ C∞(U).
(ii) For any u ∈ U, the matrix A(u) has eigenvalues λ+(u) and −λ−(u)

satisfying
λ±(u) > 0.

(iii) There exist a diffeomorphism Θ : U→ Θ(U) ⊂ R2 and ν ∈ C([0, T ]) such
that for any t ∈ [0, T ] and any u ∈ U we have

Φ(t,u) = ν(t) ·Θ(u) and |∇uΦ(t,u) · e+(u)| > 0,

where e+(u) is a unit eigenvector associated with the eigenvalue λ+(u) of
A(u).
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Remark 2.22. In the case of a linear boundary condition as we considered for
Theorem 2.5, we have Φ(t,u) = ν(t) · u so that by taking Θ(u) = u, the third
point of the assumption reduces to

|ν(t) · e+(u)| > 0.

Remark 2.23. If Φ(t,u) = Φ(u) is independent of t and if for some u0

we have |∇uΦ(t,u0) · e+(u0)| > 0, then by the inverse function theorem and
up to shrinking U to a sufficiently small neighborhood of u0, the existence of a
diffeomorphism Θ satisfying the properties of point (iii) is automatic.

Example 2.24. For the nonlinear shallow water equations

∂tu+A(u)∂xu = 0

with u = (ζ, q)T and A(u) as given by (2.2), whose linear version has been
considered in Example 2.2, the first two points of the assumption are equivalent
to

h > 0,
√
gh± q

h
> 0, (with h = h0 + ζ).

The condition (iii) of the assumption depends of course on the boundary condi-
tion under consideration. Let us consider here two important examples:

• Boundary condition on the horizontal water flux, that is, q|x=0 = g. As
seen in Example 2.2 and Remark 2.22, this corresponds to Φ(t,u) = ν ·u
with ν = (0,1)T, and the condition (iii) of the assumption is satisfied.

• Boundary condition on the outgoing Riemann invariant, that is,

2(
√
gh−

√
gh0)+

q

h
= g.

We then have Φ(t,u) = Φ(u) = 2(
√
gh−

√
gh0)+ q/h, and we can take

the diffeomorphism defined on U = {(h, q) ∈ R2 : h > 0} by

Θ(h, q) =
(

2(
√
gh−

√
gh0)+ q

h
,2(

√
gh−

√
gh0)− q

h

)T

,

where 2(
√
gh−

√
gh0) − q/h is the incoming Riemann invariant. Then,

Φ(u) = ν · Θ(u) with ν = (1,0)T; moreover, we compute ∇uΦ =
(1/h)(λ−,1)T so that all the conditions of the third point of the assump-
tion are satisfied.

The main result is the following.

Theorem 2.25. Let m ≥ 2 be an integer, B ∈ L∞(ΩT ), ∂B ∈ Wm−1(T), and
assume that Assumption 2.21 is satisfied with Θ ∈ C∞(U) and ν ∈ Wm,∞(0, T ).
If uin ∈ Hm(R+) takes its values in a compact and convex set K0 ⊂ U, and if the
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data uin, f ∈ Hm(ΩT ), and g ∈ Hm(0, T ) satisfy the compatibility conditions up
to order m − 1 in the sense of Definition 2.27 below, then there exist T1 ∈ (0, T ]
and a unique solution u ∈ W

m(T1) to the initial boundary value problem (2.10).
Moreover, the trace of u at the boundary x = 0 belongs toHm(0, T1), and |u|x=0 |m,T1

is finite.
Remark 2.26. A generalization of this result for N ×N hyperbolic systems is

provided by Theorem C.9 in Appendix C. There is a wide literature devoted to the
analysis of quasilinear hyperbolic initial boundary value problems. For the general
multi-dimensional case, assuming that the uniform Kreiss-Lopatinskĭı condition

holds, the existence is obtained form> (d+ 1)/2+ 1, with a loss of 1
2 derivative

with respect to the boundary and initial data [RMey, Mok87] (see also [BGS07]).
Existence for m > d/2 + 1 without loss of derivative is obtained under the addi-
tional assumption that the system is Friedrichs symmetrizable [Sch86,Mét12], but
one cannot expect, when the boundary conditions are not maximal dissipative, an
Hm(0, T1) estimate for the trace of the solution at the boundary. In the particular
one-dimensional case, a C1 solution is constructed in [LY85] by using the method
of characteristics; more recently, in the Sobolev setting, it is shown in [PT13] that
the general procedure of [RMey, Mok87] can be implemented in the particular
case of the shallow water equations with transparent boundary conditions, that is,
a boundary data on the outgoing Riemann invariant (see Example 2.24 above):
for data in H7/2, a solution is constructed in W3(T). As noted in Example 2.24,
our result covers this situation, and taking advantage of the specificities of the
one-dimensional case proves existence inWm(T), withm ≥ 2 and without loss of
derivative, and provides an Hm(0, T1) trace estimate.

2.2.1. Compatibility conditions. From the interior equations, denoting
uk = ∂kt u, we have

u1 = −A(u)∂xu− Bu+ f .
More generally, by induction, we have uk = ck(u, B, f ), where ck(u, B, f ) is a
smooth function of u and of its space derivatives of order at most k, and of the
time and space derivatives of order lower than k − 1 of B and f . For a smooth
solution u to (2.10), uin

k = uk|t=0
is therefore given by

(2.11) uin
k = cin

k (u, B, f ),

where cin
k (u, B, f ) = ck(u, B, f )|t=0 . The boundary condition Φ(t,u|x=0) = g

also implies that
∂kt Φ(t,u|x=0) = ∂kt g.

On the edge {t = 0, x = 0}, smooth enough solutions must therefore satisfy

{
Φ(0, uin|x=0) = g|t=0 k = 0,

u1
in|x=0

· ∇uΦ(0, uin|x=0)+ ∂tΦ(0, uin|x=0) = (∂tg)|t=0 k = 1,
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and more generally, for any k ≥ 1,

(2.12) uin
k |x=0

· ∇uΦ(0, uin|x=0)+ Fk(uin
0≤j≤k−1|x=0

) = (∂kt g)|t=0 ,

where Fk(u
in
1≤j≤k|x=0

) is a smooth function of its arguments that can be computed

explicitly by induction.

Definition 2.27. Letm≥1 be an integer. We say that the data uin∈Hm(R+),
f ∈ Hm(ΩT ), and g ∈ Hm(0, T ) for the initial boundary value problem (2.10)
satisfy the compatibility condition at order k if the {uin

j }mj=0 defined in (2.11)
satisfy (2.12). We also say that the data satisfy the compatibility conditions up
to order m − 1 if they satisfy the compatibility conditions at order k for k =
0,1, . . . ,m− 1.

2.2.2. Proof of Theorem 2.25. Without loss of generality, we can assume
Θ(0) = 0. The first step is to linearize the boundary condition. Under Assump-
tion 2.21, this is possible by introducing

v = Θ(u), J(v) = dv(Θ−1(v)), and A♯(v) = J(v)−1A(Θ−1(v))J(v).

Then, u is a classical solution to (2.10) if and only if v is a classical solution of

(2.13)





∂tv +A♯(v) ∂xv + J(v)−1B(t, x)Θ−1(v)

= J(v)−1f (t, x) in ΩT ,
v|t=0 = Θ(uin(x)) on R+,
ν(t) · v|x=0 = g(t) on (0, T ),

with ν(t) as in Assumption 2.21. Let K1 be a compact and convex set in R2

satisfying K0 ⋐ K1 ⋐ U. Then, there exists a constant c0 > 0 such that for any
u ∈ K1 and any t ∈ [0, T ], we have

λ±(u) ≥ c0, |∇uΦ(t,u) · e+(u)| ≥ c0.

Note there exists a constant δ0 > 0 such that ‖v − Θ(uin)‖L∞ ≤ δ0 implies that
u = Θ−1(v) takes its values in K1. We therefore construct a solution v to (2.13)
satisfying ‖v(t) − Θ(uin)‖L∞ ≤ δ0 for 0 ≤ t ≤ T1. The solution is classically
constructed by using the iterative scheme

(2.14)





∂tvn+1 +A♯(vn) ∂xvn+1 = fn in ΩT ,
vn+1|t=0 = Θ(uin(x)) on R+,
ν(t) · vn+1|x=0 = g(t) on (0, T ),

for all n ∈ N and with

fn(t, x) = J(vn)−1f (t, x)− J(vn)−1B(t, x)Θ−1(vn).
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For the first iterate u0, we choose a function u0 ∈ Hm+1/2(R×R+) such that

(∂kt u
0)|t=0 = uin

k for k = 0,1, . . . ,m

with uin
k as defined in (2.11). Such a choice ensures along a classical procedure

[Mét01, Mét12] that the data (Θ(uin), fn, g) are compatible for the linear ini-
tial boundary value problem (2.14) in the sense of Definition 2.8. Moreover,
9vn(0)9m is independent of n, and there is therefore K0 such that

1
c0
, 9vn(0)9m, ‖A♯(vn)‖L∞(ΩT1 )

, ‖A♯(vn)−1‖L∞(ΩT1 )
≤ K0,

as long as vn satisfies ‖vn(t) − Θ(uin)‖L∞ ≤ δ0 for 0 ≤ t ≤ T1. We prove now
that for M large enough and T1 small enough, for any n ∈ N we have

(2.15)

{
‖vn‖Wm(T1) + |vn|x=0 |m,T1 ≤M,
‖vn(t)−Θ(uin)‖L∞ ≤ δ0 for 0 ≤ t ≤ T1.

The main tool to prove this assertion is to apply Theorem 2.5 to (2.14). In order
to do so, we first need to check that Assumption 2.1 is satisfied. The only non-
trivial point to check is the third condition of this assumption. The fact that this
is a consequence of Assumption 2.21 for the original system (2.10) is proved in
the following lemma.

Lemma 2.28. For any v ∈ Θ(U), the matrix A♯(v) has two eigenvalues
±λ♯±(v) and associated eigenvectors e♯±(v) given by

λ♯±(v) = λ±(Θ−1(v)) and e♯±(v) = J(v)−1e±(Θ−1(v)).

Moreover, denoting u = Θ−1(v) we have

ν(t) · e♯+(v) = ∇uΦ(t,u) · e+(u).

Proof. The first part of the lemma is straightforward. For the second point,
notice that by definition of Θ, one has ∇uΦ(t,u) = (Θ′(u))Tν(t). Since more-
over Θ′(u) = (dv(Θ−1(v)))−1 = J(v)−1, we have

∇uΦ(t,u) · e+(u) = ν(t) · J(v)−1e+(Θ−1(v)),

and the result follows from the first point. ❐

We can therefore use Theorem 2.5 to prove (2.15) by induction. Since it is
satisfied for n = 0 for a suitable M and T1, we just need to prove that it holds at
rank n+ 1 if it holds at rank n. There is K = K(M) such that

‖A♯(vn)‖W 1,∞(ΩT1 )
, ‖∂(A♯(vn))‖Wm−1(T1) ≤ K.
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Taking a greater K if necessary, we can assume also that

‖B‖L∞(ΩT ), ‖∂B‖Wm−1(T) ≤ K,

and therefore that

9fn(t)9m ≤ C(K)(1 + 9f (t)9m).

It follows therefore from Theorem 2.5 that

‖vn+1‖Wm(T1) + |vn+1|x=0 |m,T1

≤ C(K0)e
C(K)T1

(
1+ |g|Hm(0,T1)

+ |f|x=0 |m−1,T1 + C(K)
∫ T1

0
(1+ 9f (t)9m)dt

)
.

We also have

‖vn+1(t)−Θ(uin)‖L∞ ≤ ‖∂tvn+1‖L∞(ΩT1 )
T1 ≤ C‖vn+1‖W2(T1)T1.

Therefore, by choosing M large enough and T1 small enough, the claim is proved.
The convergence is classically obtained by proving that {vn}n is a Cauchy se-
quence and, therefore, convergent in L2, and that the limit is actually in Wm(T).
We omit the details.

2.3. Variable coefficients 2×2 initial boundary value problems on moving
domains. We now turn to consider initial boundary value problems that are still
cast on a half-line, but instead of R+, we now consider (x(t),+∞), where the left
boundary x(t) is a time-dependent function. First, we consider linear problems
with variable coefficients. For the sake of simplicity and to prepare the ground
for applications to quasilinear systems, we consider a slightly less general system
of equations than in (2.1): the variable coefficient matrix A(t,x) is of the form
A(U(t, x)). More precisely,

(2.16)





∂tU +A(U)∂xU + BU = F in (x(t),∞), for t ∈ (0, T ),
U|t=0 = uin(x) on (0,∞),
ν(t) · U|x=x(t) = g(t) on (0, T ),

where without loss of generality we assumed x(0) = 0. The first thing to do is of
course to transform this initial boundary value problem on a moving domain into
another one cast on a fixed domain, say R+. This is done through a diffeomor-
phism ϕ(t, ·) that maps at all times R+ onto (x(t),∞) and such that, for any t,
we have ϕ(t,0) = x(t). Several choices are possible for ϕ and shall be discussed
later. At this point, we just assume that ϕ ∈ C1(ΩT ) and that ϕ(0, x) = x.
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Composing the interior equation in (2.16) with the diffeomorphism ϕ to work
on the fixed domain (0,∞), introducing the notation

u = U ◦ϕ, u = U ◦ϕ, ∂ϕt u = (∂tU) ◦ϕ, ∂ϕx u = (∂xU) ◦ϕ,

so that, in particular,

(2.17) ∂
ϕ
x = 1

∂xϕ
∂x , ∂

ϕ
t = ∂t −

∂tϕ

∂xϕ
∂x ,

and writing B = B ◦ϕ and f = F ◦ϕ, we obtain the following equation for u:

(2.18) ∂
ϕ
t u+A(u)∂ϕx u+ B(t, x)u = f (t, x).

The initial boundary value problem on a moving domain (2.16) can therefore be
recast as an initial boundary value problem on a fixed domain

(2.19)





∂tu+A(u, ∂ϕ)∂xu+ B(t, x)u = f (t, x) in ΩT ,
u|t=0 = uin(x) on R+,
ν(t) ·u|x=0 = g(t) on (0, T ),

with

A(u, ∂ϕ) = 1
∂xϕ

(A(u)− (∂tϕ) Id
)
.

If we want to apply Theorem 2.5 to construct solutions to (2.19), it is neces-
sary to get some information on the regularity of ϕ, which is of course related to
the properties of the boundary coordinate x(t). A direct application of Theorem
2.5 requires that ∂ϕ be in Wm(T) in order to get solutions u in Wm(T). Using
Alinhac’s good unknown [Ali89], it is however possible to obtain refined regular-
ity estimates, as shown in the following theorem which requires only the following
assumption.

Assumption 2.29. We have u ∈ W 1,∞(ΩT ), x ∈ C1([0, T ]), x(0) = 0, and
the diffeomorphism ϕ is in C1(ΩT ). Moreover, there exists a constant c0 > 0 such
that the following three conditions hold:

(i) There exists an open set U ⊂ R
2 such that A ∈ C∞(U) and that for any

u ∈ U, the matrix A(u) has eigenvalues λ+(u) and −λ−(u). Moreover, u
takes its values in a compact set K0 ⊂ U, and for any (t, x) ∈ ΩT we have

λ±(u(t, x))∓ ∂tϕ(t,x) ≥ c0 and λ±(u(t, x)) ≥ c0.

(ii) Denoting by e+(u) a unit eigenvector associated with the eigenvalue λ+(u)
of A(u), for any t ∈ [0, T ] we have |ν(t) · e+(u(t,0))| ≥ c0.
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(iii) The Jacobian of the diffeomorphism is uniformly bounded from below and
from above, that is, for any (t, x) ∈ ΩT we have c0 ≤ ∂xϕ(t,x) ≤ 1/c0.

Example 2.30. Considering as in Example 2.2 the linearized shallow water
equations, but this time on a moving domain, Assumption 2.29 reduces to the
conditions

h,q ∈ W 1,∞(ΩT ), h(t, x) ≥ c0,

and
√
gh(t,x)±

(
q(t, x)

h(t, x)
− ∂tϕ(t,x)

)
≥ c0,

√
gh(t,x)±

q(t, x)

h(t, x)
≥ c0

with some positive constant c0 independent of (t, x) ∈ ΩT .

Theorem 2.31. Let m ≥ 1 be an integer, T > 0, and assume Assumption 2.29
is satisfied for some c0 > 0. Assume also there are two constants 0 < K0 ≤ K such that





1
c0
,9∂ϕ̃(0)9m−1, |ν|L∞(0,T), ‖∂ϕ‖L∞(ΩT ), ‖A‖L∞(K0) ≤ K0,

‖∂ϕ̃‖Wm−1(T), ‖∂tϕ‖Hm(ΩT ), |(∂mϕ)|x=0 |L∞(0,T) ≤ K,
‖u‖W 1,∞(ΩT )∩Wm(T), ‖B‖W 1,∞(ΩT ), ‖∂B‖Wm−1(T) ≤ K,
|ν|W 1,∞∩Wm−1,∞(0,T), |∂mt ν|L2(0,T) ≤ K,

where ϕ̃(t, x) = ϕ(t,x)− x. Then, for any data uin ∈ Hm(R+), f ∈ Hm(ΩT ),
and g ∈ Hm(0, T ) satisfying the compatibility conditions up to order m − 1 in
the sense of Definition 2.8, there exists a unique solution u ∈ W

m(T) to (2.19).
Moreover, the following estimate holds for any t ∈ [0, T ] and any γ ≥ C(K):

9u(t) 9m,γ +
(
γ

∫ t

0
9u(t′)92

m,γ dt′
)1/2

+ |u|x=0 |m,γ,t

≤ C(K0)
(
(1+ |∂mt ν|L2(0,t)) 9u(0) 9m +|g|Hmγ (0,t)

+ |f|x=0 |m−1,γ,t + S∗γ,t(9f (·)9m)
)
.

In particular, we have

9u(t) 9m +|u|x=0 |m,t
≤ C(K0)e

C(K)t
(
(1+ |∂mt ν|L2(0,t))9u(0)9m +|g|Hm(0,t)

+ |f|x=0 |m−1,t +
∫ t

0
9f (t′)9m dt′

)
.

2.3.1. Proof of Theorem 2.31. A direct estimate in Wm(T) for the solu-
tion of (2.19) through Theorem 2.5 is not possible because it would require that
∂2ϕ ∈ W

m−1(T) while, under the assumptions made in the statement of the
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theorem, we only have ∂2ϕ ∈ Wm−2(T). The key step is to derive a Wm−1(T)

estimate on u as well as on ∂ϕt u = ∂tu− (∂tϕ)∂ϕx u.

Proposition 2.32. Under the assumptions of Theorem 2.31, there is a unique
solution u ∈Wm−1(T) to (2.19) satisfying

9u(t) 90 +|u|x=0 |0,t(2.20)

≤ C(K0)e
C(K)t

(
9u(0) 90 +|g|H0(0,t) +

∫ t

0
9f (t′) 90 dt′

)

in the casem = 1 and

9u(t) 9m−1 +|u|x=0 |m−1,t(2.21)

≤ C(K0)e
C(K)t

(
9u(0) 9m−1 +|g|Hm−1(0,t) + |f|x=0 |m−2,t

+
∫ t

0
9∂tf (t′) 9m−2 dt′

)

in the casem ≥ 2. Moreover, ∂ϕt u ∈Wm−1(T), and we have

9 ∂ϕt u(t)9m−1,γ +
(
γ

∫ t

0
9∂ϕt u(t′) 92

m−1,γ dt′
)1/2

(2.22)

+ |(∂ϕt u)|x=0 |m−1,γ,t

≤ C(K0)
(
(1+ |∂mt ν|L2(0,t)) 9u(0) 9m +|g|Hmγ (0,t)

+ |f|x=0 |m−1,γ,t + S∗γ,t(9f (·)9m)
)

+ C(K)(S∗γ,t(9u(·)9m)+ |u|x=0 |m−1,γ,t
)
.

Proof. Step 1. We first show there exists a solution u ∈ Wm−1(T) to (2.19)
satisfying (2.20)–(2.21). A direct application of Theorem 2.5 almost yields the
result, but with a constant C(K′) bigger than C(K) in the sense that it depends on
‖∂ϕ‖W 1,∞(ΩT ) instead of ‖∂ϕ‖L∞(ΩT ). The improved estimate that is claimed in
(2.20)–(2.21) is made possible by the particular structure of the matrixA(u, ∂ϕ),
as shown in the following lemma which improves Lemma 2.19.

Lemma 2.33. Suppose that Assumption 2.29 is satisfied. Then, there are a sym-
metrizer S ∈ W 1,∞(ΩT ) and constants α0, α1 and β0, β1, β2 such that Assump-
tion 2.9 is satisfied for the initial boundary value problem (2.19). Moreover, we have

c0 ≤ C
(

1
c0
,‖A(uin)‖L∞(R+),‖(∂tϕ)|t=0‖L∞(R+)

)
,

c1 ≤ C
(

1
c0
,‖A(u)‖L∞(ΩT ),‖∂tϕ‖L∞(ΩT )

)
,
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where uin = u|t=0
and c0 and c1 are as defined in Proposition 2.11, and

β2

β0
≤ C

(
1
c0
,‖A(u)‖W 1,∞(ΩT ),‖∂tϕ‖L∞(ΩT ),‖B‖L∞(ΩT )

)
.

Proof of Lemma 2.33. The proof is an adaptation of the proof of Lemma 2.19.
We still denote by π± the eigenprojector associated with the eigenvalues ±λ± of
A(u). As a symmetrizer for A(u,ϕ), we choose

S = (∂xϕ)(πT
+π+ +MπT

−π−)

with sufficiently large M . Since we have

β2 = ‖∂tS + ∂x(SA)− 2SB‖L∞(ΩT )
= ‖(∂xϕ)∂tS + ∂x(SA)− (∂tϕ)∂xS − 2(∂xϕ)SB‖L∞(ΩT ),

where we denoted S = πT+π+ +MπT−π−, and since π± depends only on A(u),
we deduce the desired results. ❐

Using Lemma 2.33 instead of Lemma 2.19 in the proof of Theorem 2.5 in the
particular case of the initial boundary value problem (2.19), we get (2.20)–(2.21).

Step 2. We prove here an extra regularity on ∂ϕt u that implies the inequality
stated in the theorem. The main tool to get this extra regularity is Alinhac’s good
unknown [Ali89], which removes the loss of derivative due to the dependence on
ϕ in the coefficients of the initial boundary value problem (2.19). Differentiating
with respect to time the interior equation in (2.19), and writing u̇ = ∂tu, ḟ =
∂tf , and so on, we get
(2.23)
∂tu̇+A(u, ∂ϕ)∂xu̇+A′(u)[u̇] ∂ϕx u+M(u, ∂ϕ, ∂xu)∂ϕ̇ + Bu̇ = ḟ − Ḃu

with
M(u, ∂ϕ, ∂xu)∂ϕ̇ = −((∂xϕ̇)A(u, ∂ϕ)+ (∂tϕ̇) Id) ∂ϕx u.

Obviously, the term M(u, ∂ϕ, ∂xu)∂ϕ̇ is responsible for the loss of one deriva-
tive, in the sense that a control ofϕ inWm+1(T) is required to control theWm(T)
norm of u. This singular dependence is removed by working with Alinhac’s good

unknown u̇ϕ = u̇ − ϕ̇ ∂ϕx u instead of u̇. The notation ḟϕ and Ḃϕ is defined
similarly. The following lemma is due to Alinhac [Ali89] and can be checked by
simple computations.

Lemma 2.34. With u̇ϕ = u̇ − ϕ̇ ∂ϕx u, the equation (2.23) can be rewritten
under the form

∂tu̇
ϕ +A(u, ∂ϕ)∂xu̇ϕ +A′(u)[u̇ϕ] ∂ϕx u+ Bu̇ϕ = ḟϕ − Ḃϕu.
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We can use (2.18) to write

∂
ϕ
x u = A(u)−1(f − Bu− u̇ϕ),

so that the lemma yields

∂tu̇
ϕ +A(u, ∂ϕ)∂xu̇ϕ + B(1)u̇ϕ = f(1),

where
(2.24){

B(1) = B −A′(u)[u̇ϕ]A(u)−1,

f(1) = ḟϕ −A′(u)[u̇ϕ]A(u)−1f − (Ḃϕ −A′(u)[u̇ϕ]A(u)−1B)u.

Therefore, u̇ϕ = ∂ϕt u solves an interior equation similar to those considered in
Theorem 2.5. Let us now consider the initial and boundary conditions for u̇ϕ.
For the initial condition, we have

(u̇ϕ)|t=0 = uin
(1) with uin

(1) = (∂tu)|t=0 − (∂tϕ)|t=0 ∂xu
in.

For the boundary condition, let us differentiate with respect to time the boundary
condition in (2.19) to obtain ν(t) · ∂tu|x=0 = ∂tg − ν′(t) ·u|x=0 , or equivalently

ν(t) · (u̇ϕ + ẋ ∂ϕx u)|x=0 = ∂tg − ν′(t) ·u|x=0 .

By using (2.18), this yields

ν(t)·((Id−ẋA(u)−1)u̇ϕ)|x=0 = ∂tg−ν′(t)·u|x=0−ẋν(t)·A(u)−1(f−Bu)|x=0 .

It follows that u̇ϕ satisfies an initial boundary value problem of the form (2.1),
namely,





∂tu̇ϕ +A(u, ∂ϕ)∂xu̇ϕ + B(1)u̇ϕ = f(1) in ΩT ,
u̇
ϕ
|t=0

= uin
(1) on R+,

ν(1)(t) · u̇ϕ|x=0
= g(1) on (0, T ),

(2.25)

where f(1) and B(1) are as in (2.24) and

{
g(1) = ∂tg − (∂tν) ·u|x=0 − ẋν ·A(u)−1(f − Bu)|x=0 ,

ν(1) = (Id−ẋA(u|x=0
)−1)Tν.

(2.26)

Concerning the boundary condition, we have the following lemma which shows
that the initial boundary value problem (2.25) satisfies condition (iii) in Assump-
tion 2.1.
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Lemma 2.35. Under Assumption 2.29, for any t ∈ [0, T ] we have

|ν(1)(t) · e+(u(t,0))| ≥
c2

0

λ+(u(t,0))
.

Proof. We see that

ν(1)(t) · e+(u(t,0)) = ν(t) · (Id−ẋ(t)A(u(t,0))−1)e+(u(t,0))

=
(

1− ẋ(t)

λ+(u(t,0))

)
ν(t) · e+(u(t,0)).

Since ẋ(t) = (∂tϕ)(t,0), this gives the desired inequality. ❐

Here, we see that |ν(1)|L∞(0,T) ≤ C(K0) and ‖B(1)‖L∞(ΩT ) ≤ C(K), and that
in the casem ≥ 2,

‖∂B(1)‖Wm−2(T), |ν(1)|Wm−1,∞(0,T) ≤ C(K).

Therefore, we can apply the result in Step 1 on page 381 to obtain

9 u̇ϕ(t) 9m−1,γ +
(
γ

∫ t

0
9u̇ϕ(t′)92

m−1,γ dt′
)1/2

+ |u̇ϕ|x=0
|m−1,t(2.27)

≤ C(K0)
(

9 u̇ϕ(0) 9m−1 +|g(1)|Hm−1
γ (0,t)

+ |f(1)|x=0 |m−2,γ,t + S∗γ,t(9f(1)(·)9m−1)
)
,

where the term |f(1)|x=0 |m−2,γ,t is dropped in the case m = 1. Here, we have




9u̇ϕ(0)9m−1 ≤ C(K0)9u(0)9m,
9f(1)(t)9m−1 ≤ C(K)(9f (t) 9m + 9u(t)9m−1),

|f(1)|x=0 |m−2,γ,t ≤ C(K)(|f|x=0 |m−1,γ,t + |u|x=0 |m−1,γ,t).

Concerning the term |g(1)|Hm−1(0,t), especially the term (∂tν) · u|x=0 , we need
to estimate it carefully, because we do not assume ν ∈ Wm,∞(0, T ). In the case
m = 1, we estimate it directly as

|(∂tν) ·u|x=0|L2
γ(0,t) ≤ C(K)|u|x=0 |L2

γ(0,t).

In the case m ≥ 2, we see that

|(∂tν) ·u|x=0 |Hm−1
γ (0,t) ≤ |ν|Wm−1,∞(0,t) |u|x=0 |m−1,γ,t

+ |∂mt ν|L2(0,t) sup
t′∈[0,t]

e−γt
′ |u(t′,0)|

≤ C(K)|u|x=0 |m−1,γ,t + C|∂mt ν|L2(0,t) 9u(0)9m−1,
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where we used supt′∈[0,t] e
−γt′ |u(t′,0)|≤C(‖u(0)‖H1+γ−1/2|u|x=0 |1,γ,t), which

is a simple consequence of (2.6) in Lemma 2.5. In any case, we have

|g(1)|Hm−1
γ (0,t) ≤ |g|Hmγ (0,t) + C|∂mt ν|L2(0,t) 9u(0)9m−1

+ C(K)(|u|x=0 |m−1,t + |f|x=0|m−1,t).

Therefore, by (2.27) we obtain

9 u̇ϕ(t) 9m−1,γ +
(
γ

∫ t

0
9u̇ϕ(t′)92

m−1,γ dt′
)1/2

+ |u̇ϕ|x=0
|m−1,t

≤ C(K0)((1+ |∂mt ν|L2(0,t)) 9u(0) 9m +|g|Hm(0,t))
+ C(K)

(
|f|x=0 |m−1,t + |u|x=0 |m−1,t

+ S∗γ,t(9f (·)9m)+ S∗γ,t(9u(·)9m−1)
)
,

which shows ∂ϕt u ∈Wm−1(T).

Step 3. Finally, we improve the above inequality to show (2.22). It follows directly
from Lemma 2.34 that we have also the equation for u̇ϕ of the form

∂tu̇
ϕ +A(u, ∂ϕ)∂xu̇ϕ = f̃(1)

with

f̃(1) = ∂ϕt f −A′(u)[∂ϕt u]∂ϕx u− ∂ϕt (Bu).

Moreover, we have (2.27) with f(1) replaced by f̃(1). In order to give modified

estimates for f̃(1) and g(1), in the case ofm ≥ 2 we use the following expressions:

∂αf̃(1) = ∂ϕt ∂αf + [∂α, ∂ϕt ](∂ϕt u+A(u)∂ϕx u+ Bu)
− ∂α(A′(u)[∂ϕt u]∂ϕx u+ ∂ϕt (Bu)),

∂kt g(1) = ∂kt (∂tg − (∂tν) ·u|x=0)− ẋν ·A(u)−1 ∂kt (f − Bu)|x=0

− [∂kt , ẋν ·A(u)−1](∂
ϕ
t u+A(u)∂ϕx u)|x=0 ,

where we used (2.18). These expressions together with Lemma 2.12 give

9 f̃(1)(t)9m−1 ≤ C(K0) 9 f (t)9m +C(K) 9u(t)9m,
|g(1)|Hm−1

γ (0,t) + |f̃(1)|x=0 |m−2,γ,t

≤ C(K0)(|∂mt ν|L2(0,t) 9u(0)9m−1 +|g|Hm(0,t) + |f|x=0 |m−1,t)

+ C(K)|u|x=0 |m−1,t ,

which yields (2.22). The proof of Proposition 2.32 is complete. ❐
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In order to conclude the proof of Theorem 2.31, we need to show that Propo-
sition 2.32 provides a control of u in Wm(T).

Lemma 2.36. Under the assumptions of Theorem 2.31, if u solves (2.19), then
we have

9 ∂u(t) 9m−1,γ +
(
γ

∫ t

0
9∂u(t′) 92

m−1,γ dt′
)1/2

+ |(∂u)|x=0 |m−1,t

≤ C(K0)

{
9u(0)9m +|f|x=0|m−1,γ,t + S∗γ,t(9∂tf (·)9m−1)

+ 9∂ϕt u(t)9m−1,γ +
(
γ

∫ t

0
9∂ϕt u(t′)92

m−1,γ dt′
)1/2

+ |(∂ϕt u)|x=0 |m−1,t

}

+ C(K)
{(∫ t

0
9u(t′) 92

m,γ dt′
)1/2

+ |u|x=0 |m−1,t

}
.

Proof. We will use the same notation u̇ϕ = ∂ϕt u in the proof of Proposi-
tion 2.32. Then, (2.18) can be written as

(2.28) u̇ϕ +A(u)∂ϕx u = f − Bu =: f0.

We first consider the casem = 1. Here, it holds that





‖f0(0)‖L2 ≤ C(K0) 9u(0)91,

‖∂tf0(t)‖L2 ≤ ‖∂tf (t)‖L2 + C(K) 9u(t)91,

|f0|x=0
|L2
γ(0,t) ≤ |f|x=0 |L2

γ(0,t) + C(K)|u|x=0 |L2
γ(0,t).

It follows from (2.28) that ∂xu = (∂xϕ)A(u)−1(f0 − u̇ϕ). We also have

∂tu = u̇ϕ − ∂tϕ
∂xϕ

∂xu.

Therefore, we obtain

|∂u(t, x)| ≤ C(K0)(|u̇ϕ(t, x)| + |f0(t, x)|).

By Lemma 2.5 we have

9 f0(t)90,γ +
(
γ

∫ t

0
9f0(t

′)92
0,γ dt′

)1/2

≤ C(‖f0(0)‖L2 + S∗γ,t(‖∂tf0(·)‖L2))

≤ C(K0)(9u(0) 91 +S∗γ,t(‖∂tf (·)‖L2))+ C(K)S∗γ,t(9u(·)91).
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Using the above inequalities, we get the desired estimate in the casem = 1.
We proceed to consider the case m ≥ 2. Applying ∂α with a multi-index α

satisfying |α| ≤m− 1 to (2.28), and using the identity

(2.29) ∂
ϕ
x ∂

αu = ∂α ∂ϕx u+ (∂ϕx ∂αϕ)∂ϕx u+ (∂xϕ)−1[∂α; ∂xϕ,∂
ϕ
x u]

with the symmetric commutator [∂α;v,w] = ∂α(vw)− (∂αv)w−v(∂αw), we
obtain

A(u)∂
ϕ
x ∂

αu+ ∂αu̇ϕ = ∂α(f − Bu)− [∂α, A(u)] ∂ϕx u
+ A(u)((∂ϕx ∂αϕ)∂ϕx u+ (∂xϕ)−1[∂α; ∂xϕ,∂

ϕ
x u])

=: f1,α.

Here, by Lemma 2.12 it holds that





‖f1,α(0)‖L2 ≤ C(K0) 9u(0)9m,
‖∂tf1,α(t)‖L2 ≤ C(K0) 9 ∂tf (t)9m−1

+ C(K)(1 + 9∂tϕ(t)9m) 9u(t)9m,
|f1,α|x=0

|L2
γ(0,t) ≤ |f|x=0 |m−1,γ,t + C(K)|u|x=0 |m−1,γ,t .

We also have
∂α ∂xu = (∂xϕ)A(u)−1(f1,α − ∂αu̇ϕ),

which will be used to evaluate ∂xu. Applying ∂α to the identity ∂tu = u̇ϕ +
(∂tϕ)∂

ϕ
x u, and using (2.29), we obtain

∂α ∂tu− ∂αu̇ϕ − (∂tϕ)(∂xϕ)−1∂α∂xu

= (∂α ∂tϕ)∂ϕx u+ [∂α; ∂tϕ,∂
ϕ
x u]

− (∂tϕ)(∂xϕ)−1((∂α ∂xϕ)∂
ϕ
x u+ [∂α; ∂xϕ,∂

ϕ
x u])

=: f2,α.

Here, by Lemma 2.12 it holds that





‖f2,α(0)‖L2 ≤ C(K0) 9u(0)9m,
‖∂tf2,α(t)‖L2 ≤ C(K)(1 + 9∂tϕ(t)9m) 9u(t)9m,
|f2,α|x=0

|L2
γ(0,t) ≤ C(K)|u|x=0 |m−1,γ,t .

We also have

∂α ∂tu = ∂αu̇ϕ + (∂tϕ)(∂xϕ)−1∂α ∂xu+ f2,α,
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which will be used to evaluate ∂tu. Therefore, we obtain

|∂α ∂u(t, x)| ≤ C(K0)(|∂αu̇ϕ(t, x)| + |f1,α(t, x)| + |f2,α(t, x)|),

so that

9 ∂u(t) 9m−1,γ +
(
γ

∫ t

0
9∂u(t′) 92

m−1,γ dt′
)1/2

+ |(∂u)|x=0 |m−1,t

≤ C(K0)

{
9 u̇ϕ(t) 9m−1,γ +

(
γ

∫ t

0
9u̇ϕ(t′)92

m−1,γ dt′
)1/2

+ |u̇ϕ|x=0
|m−1,t +

∑

|α|≤m−1, j=1,2

(
9 fj,α(t)90,γ

+
(
γ

∫ t

0
9fj,α(t′) 92

0,γ dt′
)1/2

+ |fj,α|x=0 |L2
γ(0,t)

)}
.

Here, by Lemma 2.5 we see that

9 fj,α(t) 90,γ +
(
γ

∫ t

0
9fj,α(t′) 92

0,γ dt′
)1/2

≤ C(‖fj,α(0)‖L2 + S∗γ,t(‖∂tfj,α(·)‖L2)
)

≤ C(K0)(9u(0)9m +S∗γ,t(9∂tf (·)9m−1))

+ C(K)S∗γ,t((1+ 9∂tϕ(·)9m)9u(·)9m)

and that

S∗γ,t((1+ 9∂tϕ(·)9m) 9u(·)9m)

≤
(

1
γ

∫ t

0
9u(t′)92

m,γ dt′
)1/2

+
∫ t

0
e−γt

′ 9 ∂tϕ(t′) 9m 9u(t′) 9m dt′

≤
(

1
γ

∫ t

0
9u(t′)92

m,γ dt′
)1/2

+ ‖∂tϕ‖Hm(Ωt)
(∫ t

0
9u(t′) 92

m,γ dt′
)1/2

.

Summarizing the above inequalities, we obtain the desired estimate. ❐

Now, it follows from the estimates in Proposition 2.32 and Lemma 2.36 to-
gether with Lemma 2.16 that

9u(t)9m,γ +
(
γ

∫ t

0
9u(t′) 92

m,γ dt′
)1/2

+ |u|x=0 |m,t

≤ 9∂u(t)9m−1,γ +
(
γ

∫ t

0
9∂u(t′)92

m−1,γ dt′
)1/2

+ |(∂u)|x=0 |m−1,t

+ 9u(t)9m−1,γ +
(
γ

∫ t

0
9u(t′) 92

m−1,γ dt′
)1/2

+ |u|x=0 |m−1,t
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≤ C(K0)
(
(1+ |∂mt ν|L2(0,t))9u(0) 9m +|g|Hmγ (0,t)

+ |f|x=0 |m−1,γ,t + S∗γ,t(9∂tf (·)9m−1)
)

+ C(K)
{
γ−1/2

(
γ

∫ t

0
9u(t′) 92

m,γ dt′
)1/2

+ γ−1/2 9u(0)9m +γ−1|u|x=0 |m,γ,t
}
.

Therefore, by taking γ sufficiently large compared to C(K), we obtain the desired
estimate in Theorem 2.31. The proof of Theorem 2.31 is complete.

2.4. Application to free boundary problems with a boundary equation of
“kinematic” type. We investigate here a general class of free boundary problems.
We consider a quasilinear hyperbolic system cast on a moving domain (x(t),∞),

(2.30)





∂tU +A(U)∂xU = 0 in (x(t),∞), for t ∈ (0, T ),
U|t=0 = uin(x) on (x(0),∞),
ν · U|x=x(t) = g(t) on (0, T ),

and assume that the evolution of the boundary is governed by a nonlinear equation
of the form

(2.31) ẋ = X(U|x=x(t))

for some smooth function X. The set of equations (2.30)–(2.31) is a free bound-
ary problem. In the following, without loss of generality, we assume x(0) = 0. By
using as in Section 2.3 a diffeomorphism ϕ(t, ·) : R+ → (x(t),∞), and recalling
the notation

u = U ◦ϕ, ∂
ϕ
x = 1

∂xϕ
∂x , ∂

ϕ
t = ∂t −

∂tϕ

∂xϕ
∂x ,

the free boundary problem (2.30)–(2.31) can therefore be recast as an initial
boundary value problem on a fixed domain,

(2.32)





∂tu+A(u, ∂ϕ)∂xu = 0 in ΩT ,
u|t=0 = uin(x) on R+,
ν ·u|x=0 = g(t) on (0, T ),

where ν ∈ R2 is a constant vector, and where

A(u, ∂ϕ) = 1
∂xϕ

(A(u)− (∂tϕ) Id),
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complemented by the evolution equation

(2.33) ẋ = X(u|x=0), x(0) = 0.

As shown in Section 2.3, the regularity ofϕ plays an important role in the analysis
of the initial boundary value problem (2.32). It is therefore important to make an
appropriate choice for the diffeomorphism. For a boundary equation of the form
(2.33) which is of “kinematic” type, a “Lagrangian” diffeomorphism is appropri-
ate. In particular, in the second point of the lemma, the structure of ϕ allows the
control of ∂tϕ inWm(T) (which involvesm+1 derivatives ofϕ) by u inWm(T)
(which involves onlym derivatives of u).

Lemma 2.37. Let U be an open set in R2 and X ∈ C∞(U). Suppose that
u ∈ W 1,∞(ΩT ) takes its values in a compact and convex set K1 ⊂ U, and that

‖u‖W 1,∞(ΩT ),‖X‖W 1,∞(K1) ≤ K.

Then, x ∈ C1([0, T ]) can be defined by the ODE

{
ẋ(t) = X(u|x=0(t)) for t ∈ (0, T ),
x(0) = 0.

Moreover, there exists T1 ∈ (0, T ] depending on K such that the mappingϕ : ΩT → R

defined by

(2.34) ϕ(t,x) = x +
∫ t

0
X(u(t′, x))dt′

satisfies the following properties:

(i) We have ϕ(t,0) = x(t) and that, for any t ∈ [0, T1], ϕ(t, ·) is a diffeo-
morphism mapping R+ onto (x(t),∞) and satisfying 1

2 ≤ ∂xϕ(t,x) ≤ 2.

(ii) If moreover m ≥ 2, u ∈ W
m(T1), and X(0) = 0, then we have, with

ϕ̃(t, x) = ϕ(t,x)− x,

9 ∂ϕ̃(0)9m−1,‖∂ϕ‖L∞(ΩT1 )
≤ C(9u(0)9m),

‖ϕ̃‖Wm(T1),‖∂tϕ‖Wm(T1), |(∂mϕ)|x=0 |L∞(0,T1) ≤ C(‖u‖Wm(T1), |u|x=0 |m,T1).

We can now state the main result of this section, which holds under the fol-
lowing assumption.

Assumption 2.38. Let U be an open set in R2, which represents a phase space of
u. The following conditions hold:

(i) A,X ∈ C∞(U), X(0) = 0.
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(ii) For any u ∈ U, the matrix A(u) has eigenvalues λ+(u) and −λ−(u)
satisfying

λ±(u) > 0 and λ±(u)∓X(u) > 0.

(iii) Denoting by e+(u) a unit eigenvector associated with the eigenvalue λ+(u)
of A(u), for any u ∈ U we have

|ν · e+(u)| > 0.

Theorem 2.39. Let m ≥ 2 be an integer. Suppose that Assumption 2.38 is
satisfied. If uin ∈ Hm(R+) takes its values in a compact and convex set K0 ⊂ U,
and if the data uin and g ∈ Hm(0, T ) satisfy the compatibility conditions up to
order m− 1 in the sense of Definition 2.40 below, then there exist T1 ∈ (0, T ] and a
unique solution (u,x) to (2.32)–(2.33) with u ∈ Wm(T1), x ∈ Hm+1(0, T1), and
ϕ given by Lemma 2.37.

2.4.1. Compatibility conditions. For the free boundary problem, x(t) and
ϕ(t,x) are unknowns so that the interior equation ∂tu+A(u, ∂ϕ)∂xu = 0 does
not determine (∂kt u)|x=0 directly in terms of the initial data uin and its derivatives.
In order to determine them, we need to use (2.34), or equivalently, the evolution
equation ∂tϕ = X(u) at the same time.

Suppose that u is a smooth solution to (2.32)–(2.33). We note that the inte-
rior equation in (2.32) can be written as

∂
ϕ
t u+A(u)∂ϕx u = 0

and that ∂ϕt and ∂ϕx commute. Therefore, denoting u(k) = (∂ϕt )ku and using the
above equation inductively, we have

u(k) = c1,k(u, ∂
ϕ
x u, . . . , (∂

ϕ
x )
ku),

where c1,k is a smooth function of its arguments. In view of this, we define uin
(k)

by

uin
(k) = c1,k(u

in, ∂xu
in, . . . , ∂kxu

in)(2.35)

for k = 1,2, . . . . Using the relation ∂t = ∂ϕt + (∂tϕ)∂ϕx inductively, we see that

∂kt = (∂ϕt )k + (∂ktϕ)∂ϕx

+
k∑

ℓ=2

∑

j0+j1+···+jℓ=k
1≤j1,...,jℓ

cℓ,j0,...,jℓ(∂
j1

t ϕ) · · · (∂jℓt ϕ)(∂ϕt )j0(∂
ϕ
x )
ℓ,
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so that denoting uk = ∂kt u and ϕk = ∂ktϕ, we have

uk = u(k) +ϕk ∂ϕx u+
k∑

ℓ=2

∑

j0+j1+···+jℓ=k
1≤j1,...,jℓ

cℓ,j0,...,jℓϕj1 · · ·ϕjℓ(∂
ϕ
x )
ℓu(j0).

In particular, denoting uin
k = (∂kt u)|t=0 and ϕin

k = (∂ktϕ)|t=0 , we obtain

uin
k = uin

(k) +ϕin
k (∂xu

in)(2.36)

+
k∑

ℓ=2

∑

j0+j1+···+jℓ=k
1≤j1,...,jℓ

cℓ,j0,...,jℓϕ
in
j1
· · ·ϕin

jℓ
∂ℓxu

in
(j0)
.

This implies that uin
k is written in terms of ϕin

j and ∂jxuin for 0 ≤ j ≤ k. On
the other hand, differentiating the evolution equation ∂tϕ = X(u) k-times with
respect to t, we have

ϕk+1 = c2,k(u, ∂tu, . . . , ∂
k
t u),

where c2,k is a smooth function of its arguments. Therefore, we get

ϕin
k+1 = c2,k(u

in, uin
1 , . . . , u

in
k ).(2.37)

Using (2.36) and (2.37), we can alternatively determine uin
k and ϕin

k . Now, the
boundary condition ν ·u|x=0 = g implies that

ν · ∂kt u|x=0 = ∂kt g.

On the edge {t = 0, x = 0}, smooth enough solutions must therefore satisfy

ν ·uin
k |x=0

= (∂kt g)|t=0 .(2.38)

Definition 2.40. Letm≥1 be an integer. We say that the data uin∈Hm(R+)
and g ∈ Hm(0, T ) for the initial boundary value problem (2.32)–(2.33) satisfy the
compatibility condition at order k if the {uin

j }mj=0 defined by (2.35)–(2.37) satisfy
(2.38). We also say that the data satisfy the compatibility conditions up to order
m−1 if they satisfy the compatibility conditions at order k for k = 0,1, . . . ,m−1.

Remark 2.41. These compatibility conditions do not depend on the partic-
ular choice of the diffeomorphism ϕ such as (2.34). The other choice of the
diffeomorphismϕ : R+ → (x(t),∞) will give the same conditions.
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2.4.2. Proof of Theorem 2.39. Let K1 be a compact and convex set in R2

satisfying K0 ⋐ K1 ⋐ U. Then, there exists a constant c0 > 0 such that for any
u ∈ K1 we have

λ±(u) ≥ c0, λ±(u)∓X(u) ≥ c0, |ν · e+(u)| ≥ c0.

We will construct the solution u with values in K1. Note that there exists a
constant δ0 > 0 such that ‖u−uin‖L∞ ≤ δ0 implies u(x) ∈ K1 for all x ∈ R+.
Therefore, it is enough to construct the solution u satisfying ‖u(t)−uin‖L∞ ≤ δ0

for 0 ≤ t ≤ T1. The solution is classically constructed using the iterative scheme

ϕn(t, x) = x +
∫ t

0
X(un(t′, x))dt′

and

(2.39)





∂tun+1 +A(un, ∂ϕn) ∂xun+1 = 0 in ΩT ,
un+1|t=0 = uin(x) on R+,
ν ·un+1|x=0 = g(t) on (0, T ),

for all n ∈ N. For the first iterate u0, we choose a function

u0 ∈ Hm+1/2(R×R+)

such that (∂kt u
0)|t=0 = uin

k for 0 ≤ k ≤ m with uin
k defined by (2.35)–(2.37).

Then, for the initial boundary value problem (2.39) to the unknowns un+1, the
data (uin, g) satisfy the compatibility conditions up to order m − 1 in the sense
of Definition 2.8. Moreover, 9un(0)9m is independent of n, and there exists
therefore K0 such that

1
c0
, 9un(0)9m, 9∂ϕ̃(0)9m−1, ‖∂ϕn‖L∞(ΩT1 )

, |ν|, ‖A‖L∞(K1) ≤ K0,

as long as ‖un‖W 1,∞(ΩT ) ≤ K and T1 ∈ (0, T ] sufficiently small depending on K.
We prove now that for M large enough and T1 small enough, for any n ∈ N we
have {

‖un‖Wm(T1) + |un|x=0 |m,T1 ≤ M,
‖un(t)−uin‖L∞ ≤ δ0 for 0 ≤ t ≤ T1.

We prove this assertion by induction. Since it is satisfied for n = 0 for a suitable
M and T1, we just need to prove that it holds at rank n+ 1 if it holds at rank n.
By the Sobolev imbedding theorem and Lemma 2.37, we have

‖un‖W 1,∞(ΩT1 )
, ‖ϕ̃n‖Wm(T1), ‖∂tϕn‖Wm(T1), |(∂mϕn)|x=0 |L∞(0,T1) ≤ K(M).
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It follows therefore from Theorem 2.31 that

‖un+1(t)‖Wm(T1) + |un+1|x=0 |m,T1 ≤ C(K0)e
C(M)t(1+ |g|Hm(0,T1)).

Choosing M = 2C(K0)(1 + |g|Hm(0,T)), it is possible to choose T1 small enough
to get that the righthand side is smaller than M . We also have

‖un+1(t)−uin‖L∞ ≤ C‖un+1‖W2(T1)T1 ≤ δ0

for 0 ≤ t ≤ T1. Therefore, the claim is proved.
We proceed to show that the sequence {(un,ϕn)}n of approximate solutions

converges to the solution (u,ϕ) to (2.32)–(2.33) satisfying u ∈ W
m(T1) and

x = ϕ|x=0 ∈ Hm+1(0, T1). We have





∂t(un+2 −un+1)+A(un, ∂ϕn) ∂x(un+2 −un+1) = fn in ΩT ,
(un+2 −un+1)|t=0 = 0 on R+,
ν · (un+2 −un+1)|x=0 = 0 on (0, T ),

with
fn = −(A(un+1, ∂ϕn+1)−A(un, ∂ϕn)) ∂xun+1.

It follows therefore from (2.21) in Proposition 2.32 that

9 (un+2 −un+1)(t)9m−1 +|(un+2 −un+1)|x=0 |m−1,t

≤ C(M)
(
|fn|x=0

|m−2,t +
∫ t

0
9∂tfn(t′) 9m−2 dt′

)

≤ C(M)
∫ t

0
(9∂tfn(t′) 9m−2 +|(∂tfn)|x=0 |m−2,t′)dt

′

for 0 ≤ t ≤ T1, where we used Lemma 2.16 and the fact that (∂kt u
n)|t=0 = uin

k
does not depend on n. Here, we see that

‖∂tfn‖Wm−2(T1)

≤ C(M)‖(un+1 −un,ϕn+1 −ϕn, ∂t(ϕn+1 −ϕn))‖Wm−1(T1)

≤ C(M)‖un+1 −un‖Wm−1(T1)

and that

|(∂tfn)|x=0 |m−2,T1 ≤
≤ C(M)

(
‖(un+1 −un,ϕn+1 −ϕn, ∂t(ϕn+1 −ϕn))‖Wm−1(T1)

+ |(un+1 −un,ϕn+1 −ϕn, ∂t(ϕn+1 −ϕn))|x=0 |m−1,T1

)

≤ C(M)(‖un+1 −un‖Wm−1(T1) + |(un+1 −un)|x=0 |m−1,T1),
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where we used Lemma 2.15. Note that in the above inequalities, the quantity
∂t(ϕn+1 − ϕn) has been controlled in Wm−1(T1); controling ∂x(ϕn+1 − ϕn)
in a similar way is not possible, and this is the reason why it is important to
have 9∂tf (t)9m−2 rather than 9f (t)9m−1 in the righthand side of (2.21) in
Proposition 2.32. Therefore, by taking T1 sufficiently small if necessary, we obtain

‖un+2 −un+1‖Wm−1(T1) + |(un+2 −un+1)|x=0 |m−1,T1

≤ 1
2
(‖un+1 −un‖Wm−1(T1) + |(un+1 −un)|x=0 |m−1,T1).

This together with an interpolation inequality

∥∥u
∥∥2
W 1,∞(ΩT1 )

≤ C‖u‖Wm−1(T1)‖u‖Wm(T1)

shows that {(un, ϕ̃n)}n converges to (u, ϕ̃) in Wm−1(T1) ∩W 1,∞(ΩT1), so that
(u, ϕ̃) is a solution to (2.32)–(2.33). Moreover, by standard compactness argu-
ments we see that

‖u‖Wm(T1) + |u|x=0 |m,T1 ≤ M.

The regularity and the uniqueness of the solution stated in the theorem are ob-
tained by standard arguments, so we omit them. The proof of Theorem 2.39 is
complete.

2.5. Application to free boundary problems with a fully nonlinear bound-
ary equation. We now consider a 2×2 quasilinear hyperbolic system on a moving
domain (x(t),∞):

(2.40) ∂tU +A(U)∂xU = 0 in (x(t),∞),

with a fully nonlinear boundary condition

(2.41) U = Ui on x = x(t),

where Ui = Ui(t, x) is a given R2-valued function, whereas x(t) is an unknown
function. Compared to the free boundary problem (2.30)–(2.31), the evolution
equation of the boundary is implicitly contained in the above boundary condition.
In fact, differentiating the boundary condition

U(t,x(t)) = Ui(t, x(t))

with respect to t and taking the Euclidean inner product of the resulting equation
with ∂xU − ∂xUi, we obtain

(2.42) ẋ = χ((∂U)|x=x , (∂Ui)|x=x),
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where

χ(∂U, ∂Ui) = −(∂xU − ∂xUi) · (∂tU − ∂tUi)

|∂xU − ∂xUi|2
.

In view of this, a discontinuity of the spatial derivative ∂xU on the free boundary
is crucial to the free boundary problem (2.40)–(2.41) whereas U itself is contin-
uous. Compared to the boundary equation (2.31) of kinematic type, (2.42) does
not depend on U itself but on its derivative ∂U . Therefore, (2.40)–(2.42) is more
difficult than (2.30)–(2.31) in the previous subsection. We will use again a dif-
feomorphism ϕ(t, ·) : R+ → (x(t),∞), and set u = U ◦ϕ and ui = Ui ◦ϕ.
Then, the free boundary problem (2.40)–(2.41) is recast as a problem on the fixed
domain:

{
∂
ϕ
t u+A(u)∂ϕx u = 0 in ΩT ,
u|x=0 = ui|x=0

on (0, T ).
(2.43)

We impose the initial conditions of the form

{
u|t=0 = uin(x) on R+,
x(0) = 0.

(2.44)

We also note that the equation (2.42) for the free boundary is then reduced to

(2.45) ẋ = χ((∂ϕu)|x=0 , (∂
ϕui)|x=0).

Assumption 2.42. Let U be an open set in R2, which represents a phase space of
u. We have the following:

(i) A ∈ C∞(U).
(ii) There exists c0 > 0 such that for anyu ∈ U, the matrix A(u) has eigenvalues

λ+(u) and −λ−(u) satisfying λ±(u) ≥ c0.
As before, this condition ensures that the system is strictly hyperbolic. We

denote by e±(u) normalized eigenvectors associated with the eigenvalues ±λ±(u)
of A(u). They are uniquely determined up to a sign. Since both eigenvalues are
simple, we have λ±, e± ∈ C∞(U) under an appropriate choice of the sign of e±.
As mentioned above, a discontinuity of ∂xU at the free boundary is crucial so that
we will work in a class of solutions satisfying

(2.46) |(∂ϕx u− ∂ϕx ui)|x=0 | ≥ c0

for some positive constant c0. The interior equation in (2.43) can be written as

∂tu+A(u, ∂ϕ)∂xu = 0,

where A(u, ∂ϕ) = (∂xϕ)−1(A(u) − (∂tϕ) Id). The eigenvalues of this matrix
are (∂xϕ)−1(±λ±(u) − ∂tϕ), whereas the corresponding eigenvectors are e±(u)



Hyperbolic Free Boundary Problems and Applications 397

which do not depend on ∂ϕ. In view of (i) in Assumption 2.1, we also restrict a
class of solution by

(2.47) λ±(u)∓ ∂tϕ ≥ c0 in (0, T )×R+.

We note that the boundary equation (2.45) is not of the kinematic type con-
sidered in Section 2.4 so that we need to use a diffeomorphism different from
the one given by Lemma 2.37. Let ψ ∈ C∞0 (R) be a cut-off function such that
ψ(x) = 1 for |x| ≤ 1 and = 0 for |x| ≥ 2. We define the diffeomorphism by

(2.48) ϕ(t,x) = x +ψ
(
x

ε

)
x(t),

where ε > 0 is a small parameter which will be determined later. As we will see
below, under this choice of the diffeomorphism, (2.47) would be satisfied if the
solution satisfies

λ±(u|x=0)∓ ẋ ≥ 2c0 on (0, T ).

The following lemma shows that this choice of diffeomorphism behaves differently
than the Lagrangian diffeomorphism studied in Lemma 2.37; in particular, the
latter has a better time regularity, while the former has a better space regularity.

Lemma 2.43. Suppose x ∈ C1([0, T ]) satisfies x(0) = 0 and |ẋ|L2(0,T) ≤ K.
Then, there exists T1 ∈ (0, T ] depending on ε and K such that the mapping ϕ :
ΩT → R defined by (2.48) satisfies the following properties:

(i) We have ϕ(t,0) = x(t) and ϕ(0, x) = x, and for all 0 ≤ t ≤ T1,
ϕ(t, ·) is a diffeomorphism mapping R+ onto (x(t),∞) and satisfying 1

2 ≤
∂xϕ(t,x) ≤ 2.

(ii) For any nonnegative integers k and ℓ, we have

‖∂ℓt ∂kxϕ̃(t)‖L1∩L∞(R+) ≤ C(ε, k)|∂ℓt x(t)|,

where ϕ̃(t, x) = ϕ(t,x) − x. In particular, if moreover m ≥ 2 and
x ∈ Hm(0, T1), then we have

9∂ϕ̃(0)9m−2,‖∂ϕ‖L∞(ΩT1 )
≤ C(ε)

(m−1∑

j=0

|(∂jtx)|t=0 | +
√
T1|ẋ|H2(0,T1)

)
,

‖ϕ̃‖Wm−1(T1), ‖∂tϕ‖Wm−1(T1), |(∂m−1ϕ)|x=0 |L∞(0,T1)

≤ C(ε)|x|Wm−1,∞∩Hm(0,T1).

Theorem 2.44. Let m ≥ 2 be an integer. Suppose Assumption 2.42 is satisfied.
Assume uin ∈ Hm(R+) takes its values in a compact and convex set K0 ⊂ U, and
that the data uin and Ui ∈ Wm,∞((0, T )× (−δ,δ)) satisfy the following:
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(i) λ±(uin|x=0)∓ xin
1 > 0,

(ii) (∂xuin)|x=0 − (∂xUi)|t=x=0 6= 0,

(iii) ((∂xuin)|x=0 − (∂xUi)|t=x=0)
⊥ · e+(uin|x=0) 6= 0,

where xin
1 = (∂tx)|t=0 will be determined by (2.50) below, and the compatibility

conditions up to order m − 1 in the sense of Definition 2.46 below. Then, there
exist T1 ∈ (0, T ] and a unique solution (u,x) to (2.43)–(2.44) with u, ∂xu ∈
W
m−1(T1), x ∈ Hm(0, T1), and ϕ given by Lemma 2.43.

Remark 2.45. Thanks to Proposition 2.49 below, the condition (iii) in the
theorem can be replaced by

(iii’) µ0 · e+(uin|x=0) 6= 0,

where µ0 is the unit vector satisfying µ0 · (∂tUi+A(Ui) ∂xUi)|t=x=0 = 0. This unit
vector µ0 is uniquely determined up to the sign under the other assumptions of
the theorem.

2.5.1. Compatibility conditions. Supposeu is a smooth solution to (2.43)–
(2.44). We note that ∂ϕt and ∂ϕx commute. Denoting u(k) = (∂ϕt )ku and using
the interior equation in (2.43) inductively, we have

u(k) = c1,k(u, ∂
ϕ
x u, . . . , (∂

ϕ
x )
ku),

where c1,k is a smooth function of its arguments. In view of this, we define uin
(k)

by

(2.49) uin
(k) = c1,k(u

in, ∂xu
in, . . . , ∂kxu

in)

for k = 1,2, . . . . We proceed to express (∂kt x)|t=0 in terms of the initial data.
Differentiating the boundary condition in (2.43) with respect to t, we have ∂kt u =
∂kt ui on x = 0. Using the relation ∂t = ∂ϕt + (∂tϕ)∂ϕx inductively, we see that

∂kt = (∂ϕt )k + (∂ktϕ)∂ϕx

+
k∑

ℓ=2

∑

j0+j1+···+jℓ=k
1≤j1,...,jℓ

cℓ,j0,...,jℓ(∂
j1

t ϕ) · · · (∂
jℓ
t ϕ)(∂

ϕ
t )
j0(∂

ϕ
x )
ℓ,

so that denoting xk = ∂kt x, we have

u(k) − (∂ϕt )kui + xk(∂ϕx u− ∂ϕx ui)

+
k∑

ℓ=2

∑

j0+j1+···+jℓ=k
1≤j1,...,jℓ

cℓ,j0,...,jℓx(j1) · · ·xjℓ(∂
ϕ
x )
ℓ(u(j0) − (∂ϕt )j0ui) = 0

on x = 0.
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Decomposing this relation into the direction ∂ϕx u − ∂ϕx ui and its perpendicular
direction, we obtain

xk = −
∂
ϕ
x u− ∂ϕx ui

|∂ϕx u− ∂ϕx ui|2
·
{
u(k) − (∂ϕt )kui

+
k∑

ℓ=2

∑

j0+j1+···+jℓ=k
1≤j1,...,jℓ

cℓ,j0,...,jℓxj1
· · ·xjℓ(∂

ϕ
x )
ℓ(u(j0) − (∂ϕt )j0ui)

}
|x=0

and

(∂
ϕ
x u− ∂ϕx ui)

⊥ ·
{
u(k) − (∂ϕt )kui

+
k∑

ℓ=2

∑

j0+j1+···+jℓ=k
1≤j1,...,jℓ

cℓ,j0,...,jℓxj1
· · ·xjℓ(∂

ϕ
x )
ℓ(u(j0) − (∂ϕt )j0ui)

}
|x=0

= 0,

respectively. In view of this, we define xin
k inductively by xin

0 = 0 and

(2.50) xin
k = −

∂xuin − (∂xUi)|t=0

|∂xuin − (∂xUi)|t=0 |2
·
{
uin
(k) − (∂kt Ui)|t=0

+
k∑

ℓ=2

∑

j0+j1+···+jℓ=k
1≤j1,...,jℓ

cℓ,j0,...,jℓx
in
j1
· · ·xin

jℓ
∂ℓx(u

in
(j0)

− (∂j0

t Ui)|t=0)
}
|x=0

for k = 1,2, . . . .

Definition 2.46. Let m ≥ 1 be an integer. We say that the data

uin ∈ Hm(R+) and Ui ∈ Wm,∞((0, T )× (−δ,δ))

for the initial boundary value problem (2.43)–(2.44) satisfy the compatibility con-
dition at order k if {uin

(j)}mj=0 and {xin
(j)}m−1

j=0 defined by (2.49)–(2.50) satisfy

uin|x=0 = Ui |t=x=0 in the case k = 0 and

(∂xu
in − (∂xUi)|t=0)

⊥ ·
{
uin
(k) − (∂kt Ui)|t=0

+
k∑

ℓ=2

∑

j0+j1+···+jℓ=k
1≤j1,...,jℓ

cℓ,j0,...,jℓx
in
(j1)

· · ·xin
(jℓ)
∂ℓx(u

in
(j0)

− (∂j0

t Ui)|t=0)
}
|x=0

= 0

in the case k ≥ 1. We say also that the data uin and Ui for (2.43)–(2.44) satisfy
the compatibility conditions up to order m − 1 if they satisfy the compatibility
conditions at order k for k = 0,1, . . . ,m− 1.
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Roughly speaking, the definition of xin
k ensures the equality ∂kt u = ∂kt ui at

x = t = 0 in the direction ∂ϕx u − ∂ϕx ui, whereas the compatibility conditions
ensure it in the perpendicular direction (∂ϕx u− ∂ϕx ui)⊥.

We shall need to approximate uin and Ui by more regular data which satisfy
higher-order compatibility conditions. Such an approximation is given by the
following proposition.

Proposition 2.47. Let m and s be integers satisfying s > m ≥ 2, and let
A ∈ C∞(U). If uin ∈ Hm(R+) takes its values in U and if the data uin and
Ui ∈ Wm,∞((0, T )× (−δ,δ)) satisfy

(∂xu
in)|x=0 − (∂xUi)|t=x=0 6= 0

and the compatibility conditions up to order m − 1, then there exists a sequence of

data, {(uin,(n), U(n)i )}n, such that

(uin,(n), U(n)i ) ∈ Hs(R+)×W s,∞((0, T )× (−δ,δ))

converges to (uin, Ui) in Hm(R+) × Bm−1([0, T ] × [−δ,δ]) and satisfies the com-
patibility conditions up to order s − 1.

Proof. Once we fix Ui, the compatibility condition at order k is a nonlinear

relation among (∂
j
xuin)|x=0 for j = 0,1, . . . , k. We need to know the explicit

dependence of the highest-order term (∂kxu
in)|x=0 of the compatibility condition

to show this proposition.
The compatibility conditions at order 0 and 1 are given by (uin)|x=0 = Ui|t=x=0

and

((∂xu
in)|x=0 − (∂xUi)|t=x=0)

⊥ · (A(uin|x=0)(∂xu
in)|x=0 + (∂tUi)|t=x=0) = 0,

respectively. We proceed to consider the compatibility condition at order k in

the case k ≥ 2. We will denote simply by LOT the terms containing ∂
j
xuin for

j = 0,1, . . . , k− 1, Ui, and its derivatives only, and not containing ∂kxu
in. Then,

we have
uin
(k) = (−A(uin))k ∂kxu

in + LOT

and xin
j = LOT for 0 ≤ j ≤ k − 1. Denoting uin

k = (∂kt u)|t=0 and using the

relation ∂t = ∂ϕt + (∂tϕ)∂ϕx inductively, we obtain

uin
k =

k∑

j=0

(
k

j

)
((∂tϕ)t=0)

j ∂
j
xu

in
(k−j) + (∂ktϕ)|t=0 ∂xu

in + LOT

= ((∂tϕ)t=0 Id−A(uin))k ∂kxu
in + (∂ktϕ)|t=0 ∂xu

in + LOT,
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so that

uin
k|x=0

= (xin
1 Id−A(uin|x=0))

k(∂kxu
in)|x=0 + xin

k (∂xu
in)|x=0 + LOT.

We also have
(∂kt ui)|t=x=0 = xin

k (∂xUi)|t=x=0 + LOT.

Therefore, the compatibility condition at order k is given by

((∂xu
in)|x=0 − (∂xUi)|t=x=0)

⊥ · {(xin
1 Id−A(uin|x=0))

k(∂kxu
in)|x=0 + LOT} = 0.

Once we obtain these expressions to the compatibility conditions, the approxima-
tion stated in the proposition is obtained along classical lines. See, for instance,
[RMey]. ❐

2.5.2. Reduction to a system with quasilinear boundary conditions. At
first glance the boundary condition in (2.43) is nothing but a nonhomogeneous
Dirichlet boundary condition. However, ui(t,0) = Ui(t, x(t)) depends on the
unknown free boundary x, which would be determined from the unknown ∂ϕu
through the evolution equation (2.45). Therefore, the boundary condition rep-
resents implicitly a nonlinear relation between u and its derivatives, so that we
will reduce (2.43) to a system with standard quasilinear boundary conditions to
solve the initial value problem (2.43)–(2.44). Now, suppose that u is a solution
to (2.43). Setting

(2.51) u(2) = ∂ϕt ∂ϕt u,

we will derive a system for u and u(2) with quasilinear boundary conditions to-
gether with a quasilinear evolution equation for x. We note that ∂ϕt and ∂ϕx com-
mute. Applying differential operators ∂ϕt and ∂ϕx to the first equation in (2.43),
we can express ∂ϕt ∂

ϕ
x u and ∂ϕx ∂

ϕ
x u in terms of u(2), u, and ∂ϕu as

(2.52)





∂
ϕ
t ∂

ϕ
x u = (−A(u)−1)(u(2) +A′(u)[∂ϕt u]∂ϕx u),

∂
ϕ
x ∂

ϕ
x u = (−A(u)−1)2(u(2) +A′(u)[∂ϕt u]∂ϕx u)

+(−A(u)−1)A′(u)[∂ϕx u]∂
ϕ
x u.

Applying ∂ϕt ∂
ϕ
t to the first equation in (2.43) and using the above relations, we

obtain
∂
ϕ
t u(2) +A(u)∂ϕx u(2) + B(u, ∂ϕu)u(2) = f(2)(u, ∂ϕu),

where

B(u, ∂ϕu)u(2) = A′(u)[u(2)] ∂ϕx u− 2A′(u)[∂ϕt u]A(u)
−1u(2),

f(2)(u, ∂
ϕu) = 2A′(u)[∂ϕt u]A(u)

−1A′(u)[∂ϕt u]∂
ϕ
x u

− 2A′′(u)[∂ϕt u, ∂
ϕ
t u]∂

ϕ
x u.
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This is an equation for u(2). We now derive a boundary condition for u(2) and
an evolution equation for x. Differentiating the boundary condition u = ui on
x = 0 with respect to t twice and using the relation ∂t = ∂ϕt + (∂tϕ)∂ϕx , we have

∂
ϕ
t ∂

ϕ
t u+ 2ẋ ∂ϕt ∂

ϕ
x u+ ẋ2 ∂

ϕ
x ∂

ϕ
x u+ ẍ ∂ϕx u

= ∂ϕt ∂ϕt ui + 2ẋ ∂ϕt ∂
ϕ
x ui + ẋ2 ∂

ϕ
x ∂

ϕ
x ui + ẍ ∂ϕx ui

on x = 0, where we used ∂tϕ(t,0) = ẋ(t). This together with (2.52) implies

(Id−ẋA(u)−1)2u(2) + ẍ(∂ϕx u− ∂ϕx ui) = g1(ẋ,u, ∂
ϕu, ∂ϕ ∂ϕui),

where

g1(ẋ,u, ∂
ϕu, ∂ϕ ∂ϕui) = (2ẋA(u)−1 − ẋ2(A(u)−1)2)A′(u)[∂ϕt u]∂

ϕ
x u

+ ẋ2A(u)−1A′(u)[∂ϕx u]∂
ϕ
x u

+ ∂ϕt ∂ϕt ui + 2ẋ ∂ϕt ∂
ϕ
x ui + ẋ2 ∂

ϕ
x ∂

ϕ
x ui.

Decomposing this relation into the direction ∂ϕx u − ∂ϕx ui and its perpendicular
direction, we obtain an evolution equation for x as

ẍ = χ(ẋ,u,u(2), ∂ϕu, ∂ϕui, ∂
ϕ ∂ϕui),

where

χ(ẋ,u,u(2), ∂
ϕu, ∂ϕui, ∂

ϕ ∂ϕui)

= (∂
ϕ
x u− ∂ϕx ui) · (g1(ẋ,u, ∂ϕu, ∂ϕ ∂ϕui)− (Id−ẋA(u)−1)2u(2))

|∂ϕx u− ∂ϕx ui|2
,

and a boundary condition for u(2) as

ν(2) ·u(2) = g(2),

where ν(2) = ν(2)(ẋ,u, ∂ϕx u, ∂ϕx ui) and g(2) = g(2)(ẋ,u, ∂ϕu, ∂ϕui, ∂ϕ ∂ϕui)
are defined by

(2.53)

{
ν(2) = ((Id−ẋA(u)−1)2)T((∂

ϕ
x u− ∂ϕx ui)⊥),

g(2) = (∂ϕx u− ∂ϕx ui)⊥ · g1(ẋ,u, ∂ϕu, ∂ϕ ∂ϕui).

Concerning a boundary condition for u, we would like to write it in the form
ν · u = g. However, we have a high degree of freedom for choosing the vector
ν. From the point of view of the maximal dissipativity in the sense of (ii) in
Assumption (2.1), the most convenient choice is ν = ν, where

ν = e+(uin(0)).
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As before, we introduce the matrixA(u, ∂ϕ) = (∂xϕ)−1(A(u)−(∂tϕ) Id). The
eigenvalues of this matrix are (∂xϕ)−1(±λ±(u)− ∂tϕ), whereas the correspond-
ing eigenvectors are e±(u), which do not depend on ∂ϕ. By summarizing the
above arguments, the initial value problem (2.43)–(2.44) yields the following:





∂tu+A(u, ∂ϕ)∂xu = 0 in ΩT ,
u|t=0 = uin(x) on R+,
ν ·u|x=0 = ν ·ui|x=0

on (0, T ),

(2.54)

together with




∂tu(2) +A(u, ∂ϕ)∂xu(2)
+ B(u, ∂ϕu)u(2) = f(2)(u, ∂ϕu) in ΩT ,

u(2)|t=0 = uin
(2)(x) on R+,

ν(2) ·u(2)|x=0 = g(2)|x=0 on (0, T ),

(2.55)

and an equation for the evolution of the free boundary given by

{
ẍ = χ(ẋ,u,u(2), ∂ϕu, ∂ϕui, ∂ϕ ∂ϕui)|x=0 for t ∈ (0, T ),
x(0) = 0, ẋ(0) = xin

(1),
(2.56)

where the initial data uin
(2) and xin

(1) should be chosen appropriately for the equiva-
lence of (2.54)–(2.56) with (2.43)–(2.44), and will be given in the next subsection.

Remark 2.48.

(i) In place of ∂ϕt ∂
ϕ
t u we can also use ∂2

tu− (∂2
tϕ)∂

ϕ
x u as u(2). An advan-

tage of the choice (2.51) is that the reduction and calculations become a
little bit simpler.

(ii) It is essential to differentiate (2.43) twice in time to derive a system with
quasilinear boundary conditions. For example, the first derivative u(1) =
∂
ϕ
t u satisfies a boundary condition

(A(u)−1u(1) + ∂ϕx ui)
⊥ · (u(1) − ∂ϕt ui)|x=0 = 0 on (0, T ),

which is still nonlinear in u(1).

Then, we will analyze maximal dissipativity for (2.55) in the sense of (ii) in
Assumption 2.1, that is, the positivity of |ν(2) · e+|. The following proposition
characterizes this condition algebraically under the restrictions (2.46) and (2.47).

Proposition 2.49. Suppose that u together with x is a smooth solution to (2.43)
satisfying (2.46) and (2.47) and that ν(2) is defined by (2.53). Then, there exists a
unique unit vector µ = µ(t) up to the sign such that

µ · (∂ϕt ui +A(ui) ∂
ϕ
x ui)|x=0 = 0.
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Moreover, we have the following identity on x = 0:

|ν(2) · e+| = (λ+ − ẋ)
3

λ2+

|∂ϕx u− ∂ϕx ui|
|(ẋ Id−A(u))Tµ| |µ · e+|.

This proposition implies that the positivity of |ν(2) · e+| is essentially equiv-
alent to the positivity of |µ · e+|, where µ is a unique direction that the quantity
∂
ϕ
t u+A(u)∂ϕx u is continuous across the boundary.

Proof of the proposition. Differentiating the boundary condition in (2.43) with
respect to t, and using the relation ∂t = ∂ϕt + (∂tϕ)∂ϕx , we have ∂ϕt u+ ẋ ∂ϕx u =
∂
ϕ
t ui + ẋ ∂ϕx ui on x = 0. This and the interior equation in (2.43) imply

(2.57) (ẋ Id−A(u))(∂ϕx u− ∂ϕx ui) = ∂ϕt ui +A(ui) ∂
ϕ
x ui on x = 0.

Since the matrix ẋ Id−A(u) is invertible, it should hold that

(∂
ϕ
t ui +A(ui) ∂

ϕ
x ui)|x=0 6= 0.

Therefore, the direction µ is uniquely determined up to the sign as

µ = ((∂
ϕ
t ui +A(ui) ∂

ϕ
x ui)|x=0)

⊥

|(∂ϕt ui +A(ui) ∂
ϕ
x ui)|x=0 |

.

By taking the Euclidean inner product of (2.57) with µ, we have

(ẋ Id−A(u|x=0))
Tµ · (∂ϕx u− ∂ϕx ui)|x=0 = 0.

Since both vectors (ẋ Id−A(u|x=0))
Tµ and (∂ϕx u − ∂ϕx ui)|x=0 are nonzero, we

have

(
∂
ϕ
x u− ∂ϕx ui

)⊥
|x=0

= ± |(∂ϕx u− ∂ϕx ui)|x=0 |
|(ẋ Id−A(u|x=0))

Tµ|(ẋ Id−A(u|x=0))
Tµ.

In particular, we see on x = 0 that

ν(2) · e+ = (∂ϕx u− ∂ϕx ui)
⊥ · (Id−ẋA(u)−1)2e+

= (1− ẋλ−1
+ )

2(∂
ϕ
x u− ∂ϕx ui)

⊥ · e+

= ±(1− ẋλ−1
+ )

2 |∂ϕx u− ∂ϕx ui|
|(ẋ Id−A(u))Tµ|(ẋ − λ+)µ · e+,

which gives the desired identity. ❐
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Once the diffeomorphismϕ is given, we can regard the initial boundary value
problems (2.54) and (2.55) as the same type of problem considered in the previous
sections. Concerning the compatibility conditions for the problems, it is straight-
forward to show the following lemma.

Lemma 2.50. Suppose that the data

uin ∈ Hm(R+) and Ui ∈ Wm,∞((0, T )× (−δ,δ))
for the initial boundary value problem (2.43)–(2.44) satisfy the compatibility condi-
tions up to order m − 1 in the sense of Definition 2.46, and that the diffeomorphism
ϕ satisfiesϕ(0, x) = x and (∂ktϕ)(0,0) = x(k) for k = 1, . . . ,m− 1. We have the
following:

(i) The compatibility conditions for the initial boundary value problem (2.54)
are satisfied up to order m− 1 in the sense of Definitions 2.8 and 2.27.

(ii) Let m ≥ 3. If the initial datum uin
(2) is given by (2.49) and u satisfies

((∂
ϕ
t )
ku)|t=0 = uin

(k) for k = 0,1, . . . ,m − 1, then the compatibility condi-
tions for the initial boundary value problem (2.54) are satisfied up to order
m− 3 in the sense of Definition 2.8.

2.5.3. Proof of Theorem 2.44. We will first show the existence of the solu-
tion (u,u(2), x) to the reduced system (2.54)–(2.56) with the diffeomorphismϕ
given by (2.48) under an additional assumption m ≥ 4. Then, we will show that
(u,x) is in fact the solution to the original problem (2.43)–(2.44). To reduce
the condition on m, we will derive an a priori estimate for the solution (u,x)
under the weaker assumption m ≥ 2, which together with Proposition 2.47 and
the standard approximation technique gives the result stated in the theorem.

Step 1. Let K1 be a compact and convex set in R2 satisfying K0 ⋐ K1 ⋐ U. We
will construct the solution (u,x) satisfying u(t,x) ∈ K1 and (2.46)–(2.47).

Lemma 2.51. Under the assumptions of Theorem 2.44, there exist positive con-
stants c0, ε0, δ0, C0, and T0 ∈ (0, T ] such that if u(t,x) and x(t) satisfy

‖u(t)−uin‖L∞ , |(∂xu(t, ·)− ∂xuin)|x=0 |,(2.58)

|x(t)− xin
0 |, |∂tx(t)− xin

1 | ≤ δ0,

and ifϕ(t,x) is given by (2.48) with the choice ε = ε0, then for 0 ≤ t ≤ T0 we have
the following:

(i) u(t,x) ∈ K1,

(ii) λ±(u(t, x)) ≥ c0, λ±(u(t, x))∓ ∂tϕ(t,x) ≥ c0,

(iii) c0 ≤ |(∂ϕx u(t, ·)− ∂ϕx ui(t, ·))|x=0 | ≤ C0,

(iv) |ν(2)(t) · e+(u(t, ·)|x=0)| ≥ c0,

(v) 1/2 ≤ ∂xϕ(t,x) ≤ 2, |∂tϕ(t,x)| ≤ C0,
where ν(2) is given by (2.53).
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Proof. It follows from the assumptions that there exists c0 > 0 such that





λ±(uin(x)) ≥ 2c0,

λ±(uin|x=0)∓ xin
1 ≥ 4c0,

|(∂xuin)|x=0 − (∂xUi)|t=x=0 | ≥ 2c0,
(

1− xin
1

λ+(uin|x=0)

)2

|((∂xuin)|x=0 − (∂xUi)|t=x=0)
⊥ · e+(uin|x=0)| ≥ 2c0.

In view of ∂tϕ(t,x) = ψ(x/ε) ∂tx(t), we proceed to show that if we choose ε0

sufficiently small, then we have

λ±(uin(x))∓ψ
(
x

ε0

)
xin

1 ≥ 2c0.

Since ψ(x/ε0) = 0 for x ≥ 2ε0, it is sufficient to show this inequality for 0 ≤
x ≤ 2ε0. In the case xin

1 ≤ 0 we easily get

λ+(uin(x))−ψ
(
x

ε0

)
xin

1 ≥ λ+(uin(x)) ≥ 2c0.

In the case xin
1 > 0, for 0 ≤ x ≤ 2ε0 we see that

λ+(uin(x))−ψ
(
x

ε0

)
xin

1 ≥ λ+(uin(x))− xin
1

= λ+(uin|x=0)− xin
1 + (λ+(uin(x))− λ+(uin|x=0))

≥ 4c0 − 2ε0‖∇uin‖L∞ max
u∈K0

|∇uλ+(u)|.

Therefore, if we choose ε0 > 0 so small that

ε0‖∇uin‖L∞ max
u∈K0

|∇uλ+(u)| ≤ c0,

we then obtain λ+(uin(x)) − ψ(x/ε0)x
in
1 ≥ 2c0. Similarly, we can show that

λ−(uin(x))+ψ(x/ε0)x
in
1 ≥ 2c0, so the claim is proved.

Now, we note that

ν(2)(0) · e+(u|t=x=0) =
(

1− (∂tx)|t=0

λ+(u|t=x=0)

)2

× ((∂xu)|t=x=0 − (∂xUi)|t=0,x=x(0))
⊥ · e+(u|t=x=0),

where we used (∂xϕ)|x=0 = 1. Therefore, by taking δ0 and T0 sufficiently small,
we obtain the desired results. ❐
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We will construct the solution (u,u(2), x) as a limit of a sequence of ap-
proximate solutions {(un, un(2), xn)}n, which is defined as follows. We start to
construct x1 by

x1(t) =
m−1∑

k=0

tk

k!
xin
k .

Suppose that xn is given so that (∂kt x
n)|t=0 = xin

k for 0 ≤ k ≤ m − 1. We
define the diffeomorphism ϕn by (2.48) with the choice ε = ε0, where ε0 > 0
is the constant stated in Lemma 2.51. Thanks to Theorem 2.31 together with
Lemma 2.50, using the standard arguments such as those in the proof of Theorems
2.25 and 2.39, we can define un on a maximal time interval [0, Tn∗ ) as a unique
solution to





∂tun +A(un, ∂ϕn) ∂xun = 0 in (0, Tn∗ )×R+,
un|t=0 = uin(x) on R+,
ν ·un|x=0 = ν ·uni on (0, Tn∗ ),

where uni = Ui(t, xn(t)). Then, we see that ((∂ϕ
n

t )kun)|t=0 = uin
(k) for 0 ≤ k ≤

m − 1. Therefore, by Theorem 2.31 together with Lemma 2.50 again, we can
define un(2) as the unique solution to





∂tu
n
(2) +A(un, ∂ϕn) ∂xun(2)
+ B(un, ∂ϕnun)un(2) = fn(2) in (0, Tn∗ )×R+,

un(2)|t=0
= uin

(2)(x) on R+,
νn(2) ·un(2)|x=0

= gn(2)(t) on (0, Tn∗ ),

where fn(2) = fn(2)(un, ∂ϕ
n
un) and




νn(2) = ν(2)(∂txn, un, ∂

ϕn
x un, ∂

ϕn
x uni )|x=0 ,

gn(2) = g(2)(∂txn, un, ∂ϕ
n
un, ∂ϕ

n
uni , ∂

ϕn∂ϕ
n
uni )|x=0 .

Then, we define xn+1 as a unique solution to





∂2
tx
n+1 = χn for t ∈ (0, Tn∗ ),

xn+1(0) = 0,

(∂txn+1)(0) = xin
1 ,

where
χn = χ(∂txn, un, un(2), ∂ϕ

n
un, ∂ϕ

n
uni , ∂

ϕn∂ϕ
n
uni )|x=0 .

We see that (∂kt x
n+1)|t=0 = xin

k for 0 ≤ k ≤ m − 1, so that we can define
(xn, un, un(2)) on a time interval [0, Tn∗ ) for all n ≥ 1.
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We prove now that for M1,M2,M3 large enough and T1 small enough inde-
pendent of n, we have T1 ≤ Tn∗ and

(2.59)





9un 9Wm−1(T1) +|un|x=0 |m−1,T1 ≤ M1,

9un(2) 9Wm−2(T1) +|u(2)|x=0 |m−2,T1 ≤M2,

|xn|Hm(0,T1) ≤M3.

Here, by taking T1 = T1(M1,M2,M3) small enough again we see that un(t, x) and
xn(t) satisfy (2.58) so that we can apply Lemma 2.51. In the following, we denote
inessential constants independent of M1, M2, M3, and n by the same symbol C,
which may change from line to line. By (2.59), without loss of generality we have
also

(2.60) ‖un‖Wm−2,∞(ΩT1 )
, ‖un(2)‖Wm−3,∞(ΩT1 )

, ‖ϕ̃n‖Wm−1,∞(ΩT1 )
≤ C,

where ϕ̃n(t, x) = ϕn(t, x)− x = ψ(x/ε0)xn(t), so that

{
‖B(un, ∂ϕnun)‖Wm−2(T1), |∂m−2

t νn(2)|L2(0,T1) ≤ CM1,

|νn(2)|Wm−3,∞(0,T1) ≤ C.

Therefore, it follows from Lemmas 2.43, 2.51, and Theorem 2.31 that

9un(t) 9m−1 +|un|x=0 |m−1,t ≤ CeC(M1,M3)t(1+ |uni |Hm−1(0,t)),

9un(2)(t)9m−2 +|un(2)|x=0
|m−2,t

≤ CeC(M1,M3)t
(

1+ |∂m−2
t νn(2)|L2(0,t) + |gn(2)|Hm−2(0,t)

+ |fn(2)|x=0
|m−3,t +

∫ t

0
9fn(2)(t′) 9m−2 dt′

)
.

It is easy to see that

|xn+1|Hm(0,T1) ≤ C(1+ |χn|Hm−2(0,T1)).

Here, by (2.59)–(2.60) we have





|uni |Hm−1(0,T1), |fn(2)|x=0
|m−3,T1 ≤ C,

|gn(2)|Hm−2(0,T1), ‖fn(2)‖Wm−2(T1) ≤ C(1+M1),

|χn|Hm−2(0,T1) ≤ C(1+M1 +M2).

Therefore, we obtain




9un 9Wm−1(T1) +|un|x=0 |m−1,T1 ≤ CeC(M1 ,M3)T1 ,

9un(2) 9Wm−2(T1) +|un(2)|x=0
|m−2,T1 ≤ CeC(M1,M3)T1(1+M1),

|xn|Hm(0,T1) ≤ C(1+M1 +M2).
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Setting M1 = 2C, M2 = 2C(1 +M1), and M3 = C(1 +M1 +M2), and taking T1

sufficiently small, we see that (2.59) holds for all n.
Once we have such uniform bounds for the approximate solutions, by consid-

ering the equations for (un+1−un, un+1
(2) −un(2), xn+1−xn) as in the proof of The-

orem 2.39, and by taking T1 sufficiently small, we can show that {(un, un(2), xn)}n
converges to (u,u(2), x) in (Wm−2(T1)∩W 1,∞(ΩT1))×Wm−3(T1)×Hm(0, T1)
and that the limit is a solution to (2.54)–(2.56). Moreover, by the standard com-
pactness and regularity arguments we see that the solution satisfies (u,u(2)) ∈
W
m−1(T1)×Wm−2(T1).

Step 2. We will show that the solution (u,u(2), x) to (2.54)–(2.56) constructed
in Step 1 is in fact a solution to (2.43)–(2.44) and satisfies ∂ϕt ∂

ϕ
t u = u(2). Set-

ting ũ(2) = ∂ϕt ∂ϕt u, it is sufficient to show that ũ(2) = u(2) and the boundary
condition u = ui on x = 0.

Clearly, u satisfies (2.52) with u(2) replaced by ũ(2) so that ũ(2) satisfies the
same interior equation in (2.55) as u(2). The boundary condition in (2.55) for
u(2) and the equation in (2.56) for x are equivalent to

(Id−ẋA(u)−1)2u(2) + ẍ(∂ϕx u− ∂ϕx ui)(2.61)

= g1(ẋ,u, ∂
ϕu, ∂ϕ ∂ϕui) on x = 0.

On the other hand, by differentiating the boundary condition in (2.54) for u
twice with respect to t, we see that

0 = ν · ∂2
t (u−ui)|x=0

= ν · ((Id−ẋA(u)−1)2ũ(2) + ẍ(∂ϕx u− ∂ϕx ui)− g1(ẋ,u, ∂
ϕu, ∂ϕ ∂ϕui))|x=0 .

Eliminating ẍ from these two equations, we obtain

ν · (Id−ẋA(u)−1)2(ũ(2) −u(2))|x=0 = 0.

Therefore, v(2) = ũ(2) −u(2) is a solution to the initial boundary value problem




∂tv(2) +A(u, ∂ϕ)∂xv(2) + B(u, ∂ϕu)v(2) = 0 in ΩT1 ,

v(2)|t=0 = 0 on R+,
ν̃(2) · v(2)|x=0 = 0 on (0, T1),

where ν̃(2) = ((Id−ẋA(u|x=0)
−1)2)Tν . Here, we have

ν̃(2) · e+(u|x=0) =
(

1− ẋ

λ+(u|x=0)

)
e+(uin|x=0) · e+(u|x=0),

which is not zero. Therefore, we can apply Theorem 2.31 to the above problem
and the uniqueness of the solution gives v(2) = 0, that is, ũ(2) = u(2). Particularly,
(2.61) holds with u(2) replaced by ũ(2).
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We now show the boundary condition in (2.43). Settingw(t) = (u−ui)|x=0 ,
we have

ẅ = ((Id−ẋA(u)−1)2ũ(2)+ẍ(∂ϕx u−∂ϕx ui)−g1(ẋ,u, ∂
ϕu, ∂ϕ ∂ϕui))|x=0 = 0.

The compatibility conditions imply w|t=0 = ẇ|t=0 = 0. Therefore, we obtain
w = 0, that is, u = ui on x = 0, so that (u,x) is in fact the solution to (2.43)–
(2.44). Uniqueness of the solution follows from that of the reduced problem
(2.54)–(2.56).

Step 3 In order to reduce the condition m ≥ 4 to m ≥ 2, we will derive an a
priori estimate for the solution (u,x) under this weaker assumption. Although
we will again use the reduced system (2.54)–(2.56), we can now use the relation
∂
ϕ
t ∂

ϕ
t u = u(2) to obtain an additional regularity of u. We will prove again that

for M1,M2,M3 large enough and T1 small enough, we have

(2.62)





9u9Wm−1(T1) +|u|x=0 |m−1,T1 ≤M1,

9u(2) 9Wm−2(T1) +|u(2)|x=0 |m−2,T1 ≤M2,

|x|Hm(0,T1) ≤ M3.

Let c0 and C0 be the constants in Lemma 2.51. By Lemma 2.43, there exists K0

independent of M1,M2,M3 such that

1
c0
, C0, 9∂ϕ̃(0)9m−2, |ν|, 9u(0)9m−1, 9u(2)(0)9m−2,

m−1∑

j=0

|xin
j | ≤ K0.

Moreover, by taking T1 = T1(M1,M2,M3) sufficiently small if necessary, we have

2|ν(2)|L∞(0,T1), |x|Wm−1,∞(0,T1),(2.63)

‖ϕ̃‖Wm−1,∞(ΩT1 )
, ‖∂xϕ̃‖Wm−1,∞(ΩT1 )

≤ C(K0).

Let K be a constant such that K0,M1,M2,M3 ≤ K.

Lemma 2.52. For a smooth solution (u,x) to (2.43) with ϕ given by (2.48)
satisfying (2.62) and (2.63), we have

‖∂xu‖Wm−1(T1), ‖u‖Wm−1,∞(ΩT1 )
, |u|x=0 |m,T1 ≤ C(K).

Proof. We begin to evaluate 9∂xu(t)9m−1. In view of the identities

(2.64)

{
∂2
xu = (∂xϕ)2 ∂ϕx ∂ϕx u+ (∂2

xϕ)∂
ϕ
x u,

∂t ∂xu = (∂xϕ){∂ϕt ∂ϕx u+ (∂tϕ)∂ϕx ∂ϕx u+ (∂ϕx ∂tϕ)∂ϕx u},
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we see that

9 ∂xu(t)9m−1

(2.65)

≤ 9∂2
xu(t)9m−2 + 9 ∂t ∂xu(t) 9m−2 + 9 ∂xu(t)9m−2

≤ C(K0)(9∂ϕx ∂ϕx u(t)9m−2 + 9 ∂ϕt ∂
ϕ
x u(t)9m−2 + 9u(t)9m−1).

We note that u satisfies (2.52). In the casem ≥ 3, by Lemmas 2.12–2.13 we have

9 ∂ϕx ∂ϕx u(t) 9m−2 + 9 ∂ϕt ∂
ϕ
x u(t)9m−2

≤ C(9u(t)9m−2)(9u(2)(t) 9m−2 + 9 ∂ϕu(t)92
m−2),

which together with (2.65) implies 9∂xu(t)9m−1 ≤ C(K). In the case m = 2,

by using the Sobolev imbedding theorem ‖u‖L∞ ≤
√

2‖u‖1/2
L2 ‖∂xu‖1/2

L2 we have

‖∂ϕx ∂ϕx u(t)‖L2 + ‖∂ϕt ∂ϕx u(t)‖L2

≤ C(K0)(‖u(2)(t)‖L2 + ‖∂u(t)‖L2 ‖∂xu(t)‖L∞)
≤ C(K0)(‖u(2)(t)‖L2 + 9u(t)93/2

1 9∂xu(t)91/2
1 ),

which together with (2.65) implies

9∂xu(t)91 ≤ C(K0)(‖u(2)(t)‖L2 + 9u(t)91 + 9u(t)93
1) ≤ C(K).

Therefore, in any case we have 9∂xu(t)9m−1 ≤ C(K), which together with the
Sobolev imbedding theorem yields

‖u‖Wm−1,∞(ΩT1 )
≤ C

∥∥u
∥∥1/2
Wm−1(T1)

∥∥∂xu
∥∥1/2
Wm−1(T1)

≤ C(K).

We proceed to evaluate |u|x=0 |m,t . In view of (2.64) and the identity

∂2
tu = u(2) + (∂2

tϕ)∂
ϕ
x u+ 2(∂tϕ)∂

ϕ
t ∂

ϕ
x u+ (∂tϕ)2 ∂ϕx ∂ϕx u,

we see that

|u|x=0 |m,t ≤ |(∂2
tu)|x=0 |m−2,t + |(∂t ∂xu)|x=0 |m−2,t

+ |(∂2
xu)|x=0 |m−2,t + |u|x=0 |m−1,t

≤ C(K0)
(
|u(2)|x=0 |m−2,t + |u|x=0 |m−1,t

+ |(∂2
tϕ)|x=0 |m−2,t ‖∂xu‖L∞(Ωt)

+ |(∂ϕx ∂ϕx u)|x=0 |m−2,t + |(∂ϕt ∂ϕx u)|x=0|m−2,t

)
.
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Here, we have |(∂2
tϕ)|x=0 |m−2,t ≤ C|x|Hm(0,t). Noting again that u satisfies

(2.52) and using Lemma 2.13, we have

|(∂ϕx ∂ϕx u)|x=0 |m−2,t + |(∂ϕt ∂ϕx u)|x=0 |m−2,t

≤ C(K)(|u(2)|x=0 |m−2,t + 1) ≤ C(K).

Therefore, we obtain |u|x=0 |m,T1 ≤ C(K). ❐

Thanks to this lemma, by taking T1 sufficiently small we have (2.58) and

‖u‖Wm−2,∞(ΩT1 )
≤ C(K0).

Without loss of generality we can also assume ‖Ui‖Wm,∞((0,T)×(−δ,δ)) ≤ K0. Since
u is a solution to (2.54), we can apply Theorem 2.31 with m replaced by m − 1
to u and obtain

9u(t)9m−1 +|u|x=0 |m−1,t ≤ C(K0)e
C(K)t(9u(0)9m−1 +|ui|Hm−1(0,t))

≤ C(K0)e
C(K)t(9u(0)9m−1 +1).

We note that u(2) is a solution to (2.55) and that in the case ofm ≥ 3 we have

‖B(u, ∂ϕu)‖Wm−2(T1), |ν(2)|W 1,∞∩Wm−3,∞(0,T1), |∂m−2
t ν(2)|L2(0,T1) ≤ C(K).

Therefore, thanks to Lemma 2.51 we can apply Theorem 2.31 with m replaced
by m − 2 in the case m ≥ 3 and Proposition 2.11 together with Lemma 2.33 in
the casem = 2 to u(2) and obtain

9u(t) 9m−2 +|u|x=0 |m−2,t

≤ C(K0)e
C(K)t

(
(1+ |∂m−2

t ν(2)|L2(0,t))9u(2)(0)9m−2

+ |g(2)|Hm−2(0,t) + |f(2)|x=0 |m−3,t +
∫ t

0
9f(2)(t′) 9m−2 dt′

)
,

where the term |f(2)|x=0 |m−3,t is dropped in the casem = 2. Here, we have

|ν(2)|Wm−2,∞(0,T1), |g(2)|Wm−2,∞(0,T1), ‖f(2)‖Wm−2,∞(ΩT1 )∩Wm−2(T1) ≤ C(K),

so that

9u(t)9m−2 +|u|x=0|m−2,t ≤ C(K0)e
C(K)t(1+ C(K)

√
t)(9u(2)(0) 9m−2 +1).

Since x is a solution to (2.56), we see that

|x|Hm(0,T1) ≤ C(K0)(1+ |u(2)|x=0 |m−2,t + |u|x=0 |m−1,t).
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Therefore, if we define the constants M1,M2,M3 by





M1 = 2C(K0)(9u(0) 9m−1 +1),

M2 = 2C(K0)(9u(2)(0) 9m−2 +1),

M3 = C(K0)(1+M1 +M2),

and if we take T1 = T1(K) sufficiently small, then (2.62) holds. The proof of
Theorem 2.44 is complete.

2.5.4. An extension to a system coupled with ODEs. In application to
physical and engineering problems, the free boundary problem (2.40)–(2.41) ap-
pears coupled with a system of ordinary differential equations for an unknown
W = W(t), which takes its values in RN . We will extend Theorem 2.44 to such a
problem. More specifically, we consider (2.40)–(2.41) with the boundary data Ui

of the form Ui(t, x) = Gi(W(t), x), where Gi(W,x) is a given function whereas
W(t) satisfies

{
Ẇ = F(W,x) in (0, T ),

W = W in on {t = 0}.(2.66)

As before, we will use the diffeomorphism ϕ(t, ·) : R+ → (x(t),∞) given by
Lemma 2.43 and set u = U ◦ϕ. Then, the problem is recast as





∂
ϕ
t u+A(u)∂ϕx u = 0 in ΩT ,
u|t=0 = uin(x) on R+,
u|x=0 = ui(t) on (0, T )

(2.67)

with x(0) = 0, where ui(t) = Gi(W(t), x(t)).

Assumption 2.53. Let W be an open set in RN , which represents a phase space
of W . We have Gi, F ∈ Wm,∞(W × (−δ,δ)).

Theorem 2.54. Let m ≥ 2 be an integer. Suppose that Assumptions 2.42 and
2.53 are satisfied. Assume uin ∈ Hm(R+) takes its values in a compact and convex
set K0 ⊂ U, and that the data uin and W in ∈W satisfy the following:

(i) λ±(uin|x=0)∓ xin
1 > 0,

(ii) (∂xuin)|x=0 − (∂xGi)|
W=W in,x=0

6= 0,

(iii) ((∂xuin)|x=0 − (∂xGi)|
W=W in ,x=0

)⊥ · e+(uin|x=0) 6= 0,

where xin
1 = (∂tx)|t=0 will be determined by (2.69) below. Assume, moreover, that

the data satisfy the compatibility conditions up to order m − 1 in the sense of Def-
inition 2.56 below. Then, there exist T1 ∈ (0, T ] and a unique solution (u,x) to
(2.66)–(2.67) with u, ∂xu ∈ Wm−1(T1), x ∈ Hm(0, T1), W ∈ Hm+1(0, T1), and
ϕ given by Lemma 2.43.
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Remark 2.55. As stated in Remark 2.45, the condition (iii) in the theorem
can be replaced by

(iii’) µ0 · e+(uin|x=0) 6= 0,

where µ0 is the unit vector satisfying µ0 · (∂tUi + A(Ui)6∂xUi)|t=x=0 = 0 with
Ui(t, x) = Gi(W(t), x). This unit vector µ0 is uniquely determined up to the
sign under the other assumptions of the theorem.

Outline of the proof of Theorem 2.54. We can construct the solution (u,x,W)
as a limit of a sequence of approximate solutions {(un, xn,Wn)}n, which are
defined by





∂tun +A(un, ∂ϕn) ∂xun = 0 in ΩT ,
un|t=0 = uin(x) on R+,
un|x=0 = uni (t) on (0, T ),

with xn(0) = 0, where uni (t) = Gi(Wn(t), xn(t)) and ϕn is given by (2.48)
with ε = ε0 and x replaced by xn, and

{
Ẇn+1 = F(Wn, xn) for t ∈ (0, T ),
Wn+1(0) = W in.

Under the condition |Wn|Wm−1,∞(0,T), |xn|Wm−1,∞(0,T) ≤ C(K0), we have

|Wn+1|Hm+1(0,T) ≤ C(K0)(|Wn|Hm(0,T) + |xn|Hm(0,T) + 1).

Therefore, we can apply Theorem 2.44 for the existence of the solution (un, xn)
with uniform bounds in appropriate function spaces, so that we can pass to the
limit n→∞ to obtain the desired solution. ❐

2.5.5. Compatibility conditions. Suppose that (u,x,W) is a smooth so-
lution to (2.66)–(2.67). As in Section 2.5.1, we define uin

(k) = ((∂
ϕ
t )
ku)|t=0 by

(2.49). We denote

W in
k = (∂ktW)|t=0 and xin

k = (∂kt x)|t=0

as before. It follows from Ẇ = F(W,x) that

(2.68) W in
k+1 = c3,k(W

in
0 ,W

in
1 , . . . ,W

in
k , x

in
0 , x

in
1 , . . . , x

in
k ).

Using the relation Ui(t, x) = Gi(W(t), x), we have

(∂kt ∂
ℓ
xUi)|t=x=0 = c2,k,ℓ(W

in
0 ,W

in
1 , . . . ,W

in
k ).
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This together with (2.50) yields

xin
k = −

∂xuin − (∂xGi)|
W=W in

|∂xuin − (∂xUi)|
W=W in |2

(2.69)

×
{
uin
(k) − c2,k,0(W

in
0 ,W

in
1 , . . . ,W

in
k )

+
k∑

ℓ=2

∑

j0+j1+···+jℓ=k
1≤j1,...,jℓ

cℓ,j0,...,jℓx
in
j1
· · ·xin

jℓ

× (∂ℓxuin
(j0)

− c2,j0,ℓ(W
in
0 ,W

in
1 , . . . ,W

in
j0
))
}
|x=0
.

Now, we can calculate xin
k and W in

k inductively by xin
0 = 0, W in

0 = W in, and
(2.68)–(2.69) in terms of the data uin and W in.

Definition 2.56. Letm≥1 be an integer. We say that the datauin∈Hm(R+)
and W in for the problem (2.66)–(2.67) satisfy the compatibility condition at or-
der k if {uin

(j)}mj=0 and {xin
(j)}m−1

j=0 defined by (2.49) and (2.69) satisfy uin(0) =
Gi(W in,0) in the case k = 0 and

(∂xu
in − (∂xGi)|

W=W in )
⊥ ·

{
uin
(k) − c2,k,0(W

in
0 ,W

in
1 , . . . ,W

in
k )

+
k∑

ℓ=2

∑

j0+j1+···+jℓ=k
1≤j1,...,jℓ

cℓ,j0,...,jℓx
in
(j1)

· · ·xin
(jℓ)

× (∂ℓxuin
(j0)

− c2,j0,ℓ(W
in
0 ,W

in
1 , . . . ,W

in
j0
)
}
|x=0

= 0

in the case k ≥ 1. We say also that the data uin and W in
k for the problem (2.66)–

(2.67) satisfy the compatibility conditions up to order m − 1 if they satisfy the
compatibility conditions at order k for k = 0,1, . . . ,m− 1.

Roughly speaking, the definition of xin
k ensures the equality ∂kt u = ∂kt ui at

x = t = 0 in the direction ∂ϕx u − ∂ϕx ui, whereas the compatibility conditions
ensure it in the perpendicular direction (∂ϕx u− ∂ϕx ui)⊥.

3. TRANSMISSION PROBLEMS

We proposed in Section 2 a general approach to study initial boundary value prob-
lems with a possibly free boundary for 2 × 2 hyperbolic systems. Our results can
easily be extended to systems involving more equations, provided that the diago-
nalizability properties used in Proposition 2.20 to construct the Kreiss symmetrizer
are still valid, and we show in Appendix C how to handle N ×N hyperbolic sys-
tems. Here, we study more specifically and with more details a particular example,
namely, transmission problems involving the coupling of two 2 × 2 hyperbolic
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systems across an interface. Such problems can be transformed into 4 × 4 initial
boundary value problems that have the required diagonalizability properties. As
transmission problems are relevant for many applications, we devote this section
to their study.

3.1. Variable coefficients linear 2×2 transmission problems. We consider
here a linear transmission problem, where we seek a solution u solving a linear
hyperbolic system on Ω−T = (0, T ) × R−, and another one (possibly the same)
for Ω+T = (0, T ) × R+, assuming that a transmission condition is provided at the
interface {x = 0}. More specifically, we study the system

(3.1)





∂tu+ Ã(t, x) ∂xu+ B̃(t, x)u = f̃ (t, x) in Ω−T ,
∂tu+A(t,x) ∂xu+ B(t, x)u = f (t, x) in Ω+T ,
u|t=0 = uin(x) on R− ∪R+,
Nr
p(t)u|x=+0 −N l

p(t)u|x=−0 = g(t) on (0, T ),

where u, uin, f , and f̃ are R2-valued functions, g is a Rp-valued function, while
A, Ã, B, and B̃ take their values in the space of 2 × 2 real-valued matrices. The
matrices N l

p and Nr
p that appear in the transmission condition are of size p × 2,

where p (the number of scalar transmission conditions) depends on the sign of
the eigenvalues of Ã and A.

Notation 3.1. We consider three possibilities corresponding to the following

cases, where λ̃±,j(t,−x) and λ±,j(t, x), j = 1,2,∅, are assumed to be strictly
positive for all (t, x) ∈ ΩT .

Case p = 1. There is one outgoing characteristic, that is, one of the following two
situations holds:

• The matrices Ã(t,−x) and A(t,x) have eigenvalues ±λ̃±(t,−x) and
−λ−,j(t, x), j = 1,2, respectively.

• The matrices Ã(t,−x) and A(t,x) have eigenvalues λ̃+,j(t,−x), j =
1,2, and ±λ±(t, x), respectively.

Case p = 2. There are two outgoing characteristics; that is, the matrices Ã(t,−x)
and A(t,x) have eigenvalues ±λ̃±(t,−x) and ±λ±(t, x), respectively.

Case p = 3. There are three outgoing characteristics; that is, one of the following
two situations holds:

• The matrices Ã(t,−x) and A(t,x) have eigenvalues ±λ̃±(t,−x) and
λ+,j(t, x), j = 1,2, respectively.

• The matrices Ã(t,−x) and A(t,x) have eigenvalues −λ̃−,j(t,−x), j =
1,2, and ±λ±(t, x), respectively.

Denoting by ẽ±,j(t,−x) and e±,j(t, x) unit eigenvectors associated with the eigen-

values λ̃±,j(t,−x) and λ±,j(t, x) (j = 1,2,∅), we define a 4 × p matrix Ep(t)
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by

Ep(t) =
(
Ẽ−(t) 02×pr

02×pl E+(t)

)
,

where 0 ≤ pl ≤ 2 (respectively, 0 ≤ pr ≤ 2) denotes the number of negative
eigenvalues of Ã(t,0) (respectively, positive eigenvalues of A(t,0)), and Ẽ−(t)
and E+(t) the matrix formed by the corresponding eigenvectors.

Remark 3.2. Here and throughout this article, the terminology incoming and
outgoing denotes taking the boundary (and not the domain) as reference. This
seems to be the convention when dealing with free boundary problems, which is
our main concern here.

Remark 3.3. Here, we did not list all the possible cases; that is, the cases p =
0,4 are omitted. Moreover, even in the case p = 2 there are two other possibilities.
The results presented in Appendix C can be used to treat these missing cases.

It is convenient to recast (3.1) as a 4 × 4 initial boundary value problem by
setting





Ar(t, x) = A(t,x), Br(t, x) = B(t, x),
Al(t, x) = Ã(t,−x), Bl(t, x) = B̃(t,−x),
f r(t, x) = f (t, x), f l(t, x) = f̃ (t,−x),
ur(t, x) = u(t,x), ul(t, x) = u(t,−x),

(3.2)

and 



A =
(
−Al 02×2

02×2 Ar

)
, B =

(
Bl 02×2

02×2 Br

)
,

u =
(
ul

ur

)
, f =

(
f l

f r

)
.

The transmission problem (3.1) is equivalent to the following initial boundary
value problem:





∂tu+A(t, x) ∂xu+ B(t, x)u = f(t, x) in ΩT ,
u|t=0 = uin(x) on R+,
Np(t)u|x=0 = g(t) on (0, T ),

(3.3)

where uin(x) = (uin(−x),uin(x))T and Np is the p × 4 matrix

(3.4) Np(t) =
(
−N l

p(t) N
r
p(t)

)
.

This initial boundary value problem has a block structure. In order to ensure its
well-posedness, we shall make the following assumption, which ensures that the
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system of equations is strictly hyperbolic. Note that the condition on the invert-
ibility of Np(t)Np(t)T in the first point is here to ensure that Np is uniformly of
rank p.

Assumption 3.4. There exists c0 > 0 such that the following assertions hold:

(i) Al, Ar ∈ W 1,∞(ΩT ) and Bl, Br ∈ L∞(ΩT ). Moreover, Np ∈ C([0, T ]), and
for any t ∈ [0, T ] we have

det
(
Np(t) Np(t)T

)
≥ c0.

(ii) One of the three cases stated in Notation 3.1 holds. Moreover,

λ̃±,j(t,−x), λ±,j(t, x) ≥ c0 (j = 1,2,∅),
|λ̃±,1(t,−x)− λ̃±,2(t,−x)|, |λ±,1(t, x)− λ±,2(t, x)| ≥ c0.

(iii) With Ep(t) in Notation 3.1, the p × p Lopatinskiı̆ matrix

Lp(t) = Np(t)Ep(t)

is invertible, and for any t ∈ [0, T ] we have

‖Lp(t)−1‖Rp→Rp ≤ 1
c0
.

We can then derive sharp estimates similar to those derived in Theorem 2.5
for initial boundary value problems. The compatibility conditions are not made
explicit because they can be obtained as for Definition 2.8.

Theorem 3.5. Letm ≥ 1 be an integer, T > 0, and assume that Assumption 3.4
is satisfied for some c0 > 0. Assume, moreover, there are constants 0 < K0 ≤ K such
that





1
c0
,‖A‖L∞(ΩT ), |Np|L∞(0,T) ≤ K0,

‖A‖W 1,∞(ΩT ), ‖B‖L∞(ΩT ), ‖(∂A, ∂B)‖Wm−1(T), |Np|Wm,∞(0,T) ≤ K.

Then, for any data uin ∈ Hm(R+), g ∈ Hm(0, T ), and f ∈ Hm(ΩT ) satisfying the
compatibility conditions up to orderm−1, there exists a unique solution u ∈ Wm(T)
to the transmission problem (3.3). Moreover, the following estimate holds for any
t ∈ [0, T ] and any γ ≥ C(K):

9u(t)9m,γ +
(
γ

∫ t

0
9u(t′)92

m,γ dt′
)1/2

+ |u|x=0 |m,γ,t
≤ C(K0)(9u(0) 9m +|g|Hmγ (0,t) + |f|x=0 |m−1,γ,t + S∗γ,t(9∂tf(·)9m−1)).
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In particular, we have

9u(t)9m +|u|x=0 |m,t ≤ C(K0)e
C(K)t

(
9 u(0) 9m +|g|Hm(0,t)

+ |f|x=0 |m−1,t +
∫ t

0
9∂tf(t′)9m−1 dt′

)
.

3.1.1. A priori estimates. We prove here an L2 a priori estimate using the
following assumption, which is the natural generalization of Assumption 2.9 to
4× 4 systems.

Assumption 3.6. There exists a symmetric matrix S(t, x) ∈ M4(R) such that
for any (t, x) ∈ ΩT , S(t, x)A(t, x) is symmetric and the following conditions hold:

(i) There exist constants α0, β0 > 0 such that for any (v, t, x) ∈ R4 × ΩT we
have

α0|v|2 ≤ vTS(t, x)v ≤ β0|v|2.

(ii) There exist constants α1, β1 > 0 such that for any (v, t) ∈ R4 × (0, T ) we
have

vTS(t,0)A(t,0)v ≤ −α1|v|2 + β1|Np(t)v|2.

(iii) There exists a constant β2 such that

‖∂tS+ ∂x(SA)− 2SB‖L2→L2 ≤ β2.

Under this assumption, the L2 a priori estimates of Proposition 2.11 can be
straightforwardly generalized.

Proposition 3.7. Under Assumption 3.6, there are constants

c0 = C
(
βin

0

α0
,
βin

0

α1

)
and c1 = C

(
β0

α0
,
β1

α0
,
α0

α1

)

such that for any u ∈ H1(ΩT ) solving (3.3), any t ∈ [0, T ], and any γ ≥ β2/α0,
the following inequality holds:

9u(t) 90,γ +
(
γ

∫ t

0
9u(t′) 92

0,γ dt′
)1/2

+ |u|x=0 |L2
γ(0,t)

≤ c0‖uin‖L2 + c1(|g|L2
γ(0,t) + S∗γ,t(‖f(·)‖L2)).

Similarly, the following generalization of Proposition 2.17 does not raise any
difficulty, and we therefore omit the proof.
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Proposition 3.8. Let m ≥ 1 be an integer, T > 0, and assume Assumption 3.6
is satisfied. Assume, moreover, there are two constants 0 < K0 ≤ K such that





c0, c1, ‖A‖L∞(ΩT ), ‖A−1‖L∞(ΩT ), |Np|L∞(0,T) ≤ K0,

β2

α0
,‖A‖W 1,∞(ΩT ), ‖B‖L∞(ΩT ),
‖(∂A, ∂B)‖Wm−1(T), |Np|Wm,∞(0,T) ≤ K,

where c0 and c1 are as in Proposition 3.7. Then, every solution u ∈ Hm+1(ΩT ) to the
initial boundary value problem (3.3) satisfies, for any t ∈ [0, T ] and any γ ≥ C(K),

9u(t) 9m,γ +
(
γ

∫ t

0
9u(t′) 92

m,γ dt′
)1/2

+ |u|x=0 |m,γ,t
≤ C(K0)(9u(0)9m +|g|Hmγ (0,t) + |f|x=0 |m−1,γ,t + S∗γ,t(9∂tf(t′)9m−1)).

3.1.2. Proof of Theorem 3.5. As for the proof of Theorem 3.5, we just have
to prove that the assumptions made in the statement of Theorem 3.5 imply that
Assumption 3.6 is satisfied. This is what the following lemma claims; its proof
requires the construction of a Kreiss symmetrizer yielding maximal dissipativity
on the boundary. We refer to Lemma C.6 in Appendix C for a proof, since it is a
particular case of the general result for N ×N systems presented there.

Lemma 3.9. Let c0 > 0 be such that Assumption 3.4 is satisfied. There exist a
symmetrizer S ∈ W 1,∞(ΩT ) and constants α0, α1 and β0, β1, β2 such that Assump-
tion 3.6 is satisfied. Moreover, we have

c0 ≤ C
(

1
c0
,‖A|t=0‖L∞(R+)

)
,

c1 ≤ C
(

1
c0
,‖A‖L∞(ΩT ), |Np|L∞(0,T)

)
,

where c0 and c1 are as defined in Proposition 3.7, and we also have

β2

β0
≤ C

(
1
c0
,‖A‖W 1,∞(ΩT ),‖B‖L∞(ΩT )

)
.

3.2. Application to quasilinear 2 × 2 transmission problems. As done in
Section 2.2 in the case of initial boundary value problems, we can use the linear
estimates of Theorem 3.5 to solve quasilinear problems. More precisely, after
reduction to a 4 × 4 initial boundary value problem as indicated in Section 3.1,
let us consider

(3.5)





∂tu+A(u) ∂xu+ B(t, x)u = f(t, x) in ΩT ,
u|t=0 = uin(x) on R+,
Np(t)u|x=0 = g(t) on (0, T ),
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where u = (ul, ur)T, uin, and f are R4-valued functions, and g is a Rp-valued
function, while A(u) = diag(−Ã(ul),A(ur)) and B = diag(Bl, Br) take their
values in the space of 4×4 real-valued matrices and Np is a p×4 matrix, where p
is the number of outgoing characteristics (i.e., the number of positive eigenvalues
of A(u)).

Notation 3.10. Adapting Notation 3.1 in a straightforward way, we consider
three different possibilities (p = 1,2,3) depending on the sign of the eigenvalues
of Ã(ul) and A(ur). Correspondingly, a 4 × p matrix Ep(u|x=0) is formed as
in Notation 3.1 with the eigenvectors associated with the eigenvalues defining
outgoing characteristics, and we define the Lopatinskĭı matrix by Lp(t,u|x=0) =
Np(t)Ep(u|x=0).

We also make the following assumption on the hyperbolicity of the system
and on the boundary condition.

Assumption 3.11. Let Ũ and U be open sets in R2 and p ∈ {1,2,3} such that
the following conditions hold with U = Ũ ×U representing a phase space of u:

(i) A ∈ C∞(U).
(ii) The integer p is such that for any u = (ul, ur)T ∈ U the matrices Ã(ul)

and A(ur) satisfy one of the three conditions of Notation 3.1, and one has

λ̃±,j(ul), λ±,j(ur) > 0 (j = 1,2,∅),
|λ̃±,1(ul)− λ̃±,2(ul)|, |λ±,1(ur)− λ±,2(ur)| > 0.

(iii) For any t ∈ [0, T ] and any u ∈ U , the matrix Np(t)Np(t)T and the
Lopatinskiı̆ matrix Lp(t,u) are invertible.

The main result is the following. The compatibility conditions mentioned
in the statement of the theorem can be obtained as for Definition 2.27. It can
be deduced from Theorem 3.5 in the same way that Theorem 2.25 was deduced
from Theorem 2.5, and we therefore omit the proof.

Theorem 3.12. Letm ≥ 2 be an integer and assume Assumption 3.11 is satisfied
with some p ∈ {1,2,3}. Assume, moreover, B ∈ L∞(ΩT ), ∂B ∈ W

m−1(T), and
Np ∈ Wm,∞(0, T ). If uin ∈ Hm(R+) takes its values in K̃0 ×K0 with K̃0 ⊂ Ũ
and K0 ⊂ U compact and convex sets, and if the data uin, f ∈ Hm(ΩT ), and
g ∈ Hm(0, T ) satisfy the compatibility conditions up to order m− 1, then there exist
T1 ∈ (0, T ] and a unique solution u ∈ Wm(T1) to the transmission problem (3.5).
Moreover, the trace of u at x = 0 belongs to Hm(0, T1), and |u|x=0 |m,T1 is finite.

3.3. Variable coefficients 2×2 transmission problems on moving domains.
As for the initial boundary value problems considered previously, we consider

here the case of variable coefficients transmission problems on a moving domain
as a preliminary step to treat free boundary transmission problems. We consider
therefore a transmission problem with transmission conditions given at a moving
boundary located at x = x(t) with x(·) a given function. As in Section 2.3, we
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consider variable coefficients matrices of the form A(t,x) = A(U(t, x)), and so
on. Let us consider therefore

(3.6)





∂tU + Ã(U) ∂xU + B̃U = F̃ in (−∞, x(t)), for t ∈ (0, T ),
∂tU +A(U)∂xU + BU = F in (x(t),+∞), for t ∈ (0, T ),
U|t=0 = uin(x) on R− ∪R+,
Nr
p(t)U|x=x(t)+0

− N l
p(t)U|x=x(t)−0 = g(t) on (0, T ),

where, without loss of generality, we assumed that x(0) = 0, and with notation
inherited from the previous sections. As in Section 2.3, we use a diffeomorphism
ϕ(t, ·) : R → R such that ϕ(0, ·) = Id and that, for any t ∈ [0, T ], we have

ϕ(t,0) = x(t),
ϕ(t, ·) : R− → (−∞, x(t)),
ϕ(t, ·) : R+ → (x(t),+∞).

Writing as before u = U ◦ϕ, ∂ϕt u = (∂tU) ◦ ϕ, and so on, and with ∂ϕx and
∂
ϕ
t as defined in (2.17), we transform (3.6) into a transmission problem with a

fixed interface located at x = 0. By using the same procedure as in Section 3.1
and with the same notation as in (3.2) (we write also ϕl(t, x) = ϕ(t,−x) and
ϕr(t, x) =ϕ(t,x) for x > 0), this transmission problem can be recast as a 4× 4
initial boundary value problem on (0, T )×R+, namely,

(3.7)





∂tu+A(u, ∂ϕ) ∂xu+ B(t, x)u = f(t, x) in ΩT ,
u|t=0 = uin(x) on R+,
Np(t)u|x=0 = g(t) on (0, T ),

with u = (ul, ur)T, ϕ = (ϕl,ϕr)T, and

A(u, ∂ϕ) =
(
−Al(ul, ∂ϕl) 02×2

02×2 Ar(ur, ∂ϕr)

)

as well as

Al(ul, ∂ϕl) = 1
|∂xϕl|

(
Ã(ul)− (∂tϕl) Id

)
,

Ar(ur, ∂ϕr) = 1
∂xϕr

(
A(ur)− (∂tϕr) Id

)
,

while B and f are as in Section 3.1. The matrix Np is as in (3.4) and still denotes
a p × 4 matrix, but the difference is that the value of p depends not only on the
eigenvalues of Ã(u) and A(u), but also on the speed ẋ of the interface. For the
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sake of simplicity, we consider here the case where Ã(u) and A(u) have both a
positive and a negative eigenvalue, and shall consider two cases depending on the
speed of the interface.

Definition 3.13. Denoting by ±λ̃±(ul) and ±λ±(ur) the eigenvalues of

Ã(ul) and A(ur), respectively (with λ̃±(ul), λ±(ur) > 0), we define two regimes:

Subsonic regime. We say that u = (ul, ur)T and χ ∈ R are in the subsonic regime
if the following condition holds:

λ̃±(ul)∓ χ > 0 and λ±(ur)∓ χ > 0.

Lax regime. We say that u = (ul, ur)T and χ ∈ R are in the Lax regime if the
following condition holds:

λ̃±(ul)∓ χ > 0 and −λ+(ur)+ χ > 0,

or

−λ̃−(ul)− χ > 0 and λ±(ur)∓ χ > 0.

Remark 3.14. This terminology is of course inherited from the study of
shocks [Lax57]. The linearized equations around a shock can indeed be put
under the form (3.6). We refer to Section 6.2 where we prove the stability of
one-dimensional shocks for nonlinear 2× 2 hyperbolic systems.

Since the eigenvalues of the matrix A(u, ∂ϕ) are given by

1
|∂xϕl|(±λ̃∓(u

l)+ ∂tϕl) and
1

∂xϕr
(±λ±(ur)− ∂tϕr),

the number p of outgoing characteristics for (3.7) is equal to 2 in the subsonic
regime, and to 1 in the Lax regime. As in Notation 3.1, we form a 4 × p matrix
Ep(u|x=0

) given by

E2(u|x=0
) =

(
ẽ−(ul|x=0

) 02×1

02×1 e+(ur|x=0
)

)

in the subsonic regime, and

E1(u|x=0
) =

(
ẽ−(ul|x=0

)

02×1

)
or E1(u|x=0

) =
(

02×1

e+(ur|x=0
)

)

(depending on which of the two conditions in Definition 3.13 is satisfied) in the
Lax regime. As in Assumption 3.4, we define a Lopatinskĭı matrix Lp(t,u|x=0

) by

(3.8) Lp(t,u|x=0
) = Np(t)Ep(u|x=0

).
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In order to be able to apply Theorem 3.5 to this initial boundary value problem,
we make the following assumption. It is the natural generalization of Assump-
tion 2.29 to transmission problems.

Assumption 3.15. We have u = (ul, ur)T ∈ W 1,∞(ΩT ), x ∈ C1([0, T ]),
x(0) = 0, and the diffeomorphisms ϕl and ϕr are in C1(ΩT ). Moreover, there exists
c0 > 0 such that the following three conditions hold:

(i) There exist open sets Ũ,U ⊂ R
2 such that, with U = Ũ × U, we have

A ∈ C∞(U), and for any u = (ul, ur)T ∈ U , the matrices Ã(ul) and
A(ur) have eigenvalues λ̃+(ul),−λ̃−(ul) and λ+(ur),−λ−(ur), respec-
tively. Moreover, u takes its values in a compact set K0 ⊂ U , and for any
(t, x) ∈ ΩT we have

λ̃±(ul(t, x)) ≥ c0 and λ±(ur(t, x)) ≥ c0,

and one of the following conditions holds:
(a) λ̃±(ul(t, x))∓∂tϕl(t, x) ≥ c0 and λ±(ur(t, x))∓∂tϕr(t, x) ≥ c0.
(b) λ̃±(ul(t, x)) ∓ ∂tϕl(t, x) ≥ c0 and −λ+(ur(t, x)) + ∂tϕr(t, x) ≥

c0.
(c) −λ̃−(ul(t, x)) − ∂tϕl(t, x) ≥ c0 and λ±(ur(t, x)) ∓ ∂tϕr(t, x) ≥

c0.

(ii) The Lopatinskiı̆ matrix Lp(t,u|x=0
) associated with the condition (a), (b), or

(c) constructed in (3.8), is invertible, and for any t ∈ [0, T ] we have

‖Lp(t,u|x=0
(t))−1‖Rp→Rp ≤ 1

c0
.

(iii) The Jacobian of the diffeomorphism is uniformly bounded from below and
from above; that is, for any (t, x) ∈ ΩT we have

c0 ≤ −∂xϕl(t, x) ≤ 1
c0

and c0 ≤ ∂xϕr(t, x) ≤ 1
c0
.

The equivalent of Theorem 2.31 for transmission problems is the following.
We do not make explicit the compatibility conditions in the statement of the
theorem because they are obtained through a procedure similar to the one used
for Definition 2.8.

Theorem 3.16. Let m ≥ 1 be an integer, T > 0, and assume that Assump-
tion 3.15 is satisfied for some c0 > 0. Assume also there are constants 0 < K0 ≤ K
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such that




1
c0
, 9∂ϕl,r(0)9m−1, ‖∂ϕl,r‖L∞(ΩT ), ‖A‖L∞(K0), |Np|L∞(0,T) ≤ K0,

‖∂ϕ̃l,r‖Wm−1(T), ‖∂tϕl,r‖Hm(ΩT ), |(∂mϕl,r)|x=0 |L∞(0,T) ≤ K,
‖u‖W 1,∞(ΩT )∩Wm(T), ‖B‖W 1,∞(ΩT ),

‖∂B‖Wm−1(T), |Np|W 1,∞∩Wm−1,∞(0,T), |∂mt Np|L2(0,T) ≤ K,

where ϕ̃r(t, x) = ϕr(t, x) − x and ϕ̃l(t, x) = ϕl(t, x) + x. Then, for any data
uin ∈ Hm(R+), g ∈ Hm(0, T ), and f ∈ Hm(ΩT ) satisfying the compatibility
conditions up to order m − 1, there exists a unique solution u ∈ W

m(T) to the
transmission problem (3.3). Moreover, the following estimate holds for any t ∈ [0, T ]
and any γ ≥ C(K):

9u(t) 9m,γ +
(
γ

∫ t

0
9u(t′) 92

m,γ dt′
)1/2

+ |u|x=0 |m,γ,t

≤ C(K0)
(
(1+ |∂mt Np|L2(0,t)) 9u(0)9m

+ |g|Hmγ (0,t) + |f|x=0 |m−1,γ,t + S∗γ,t(9f(·)9m)
)
.

In particular, we also have

9u(t) 9m +|u|x=0 |m,t
≤ C(K0)e

C(K)t
(
(1+ |∂mt Np|L2(0,t)) 9u(0)9m

+ |g|Hm(0,t) + |f|x=0 |m−1,t +
∫ t

0
9f(t′) 9m dt′

)
.

3.3.1. Proof of Theorem 3.16. As for Theorem 3.16, we do not seek a
direct estimate on u = (ul, ur) in Wm(T), but Wm−1(T) estimates of u and

u̇ϕ = (∂ϕl

t u
l, ∂
ϕr

t u
r). TheWm−1(T) estimate of u is obtained exactly as in Step 1

(page 381) of the proof of Proposition 2.32, and requires a variant of Lemma 2.33
which is easily obtained by choosing a symmetrizer S given in the subsonic case
p = 2 (with straightforward adaptation in the Lax regime p = 1) by

S = (−∂xϕl)[(πl
−)

Tπl
− +M(πl

+)
Tπl

+]

+ (∂xϕr)[(πr
+)

Tπr
+ +M(πr

−)
Tπr

−]

and by using Theorem 3.5. To obtain the Wm−1(T) estimates of u̇ϕ, we first
comment that u̇ϕ solves

(3.9)





∂tu̇ϕ +A(u, ∂ϕ) ∂xu̇ϕ + B(1)u̇ϕ = f(1) in ΩT ,
u̇
ϕ
|t=0

= uin
(1) on R+,

N(1)(t)u̇ϕ|x=0
= g(1)(t) on (0, T ),
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where B(1) = diag(Bl
(1), B

r
(1)) and f(1) = (f l

(1), f
r
(1)) are straightforwardly deduced

from (2.24), while g(1) = (gl
(1), g

r
(1)) and

N(1) =
(
−N l

(1)(t) N
r
(1)(t)

)

are obtained by using a procedure similar to the one used to derive (2.26). In
particular,

N l
(1)(t) = N l

p

(
Id−ẋÃ(ul

|x=0
)−1

)
,

Nr
(1)(t) = Nr

p

(
Id−ẋA(ur

|x=0
)−1

)
.

In order to apply Theorem 3.5 to (3.9), it is necessary to show that the third
point in Assumption 3.4 is satisfied. We therefore consider the Lopatinskĭı matrix
L(1)(t,u|x=0

) associated with (3.9), namely,

L(1)(t,u|x=0
) =

(
−N l

(1)(t) N
r
(1)(t)

)
Ep(u|x=0

).

When p = 2 (the case p = 1 is a straightforward adaptation), one has therefore

L(1)(t,u|x=0
) = Lp(t,u|x=0

)




1− ẋ

λ̃−(ul|x=0
)

0

0 1− ẋ

λ+(ur|x=0
)


 ,

and the required bound on L(1)(t,u|x=0
)−1 is therefore a direct consequence of

Assumption 3.15. It is therefore possible to apply Theorem 3.5 and to obtain an
W
m−1(T) bound on u̇ϕ by a close adaptation of the proof of Proposition 2.32.

Thanks to the block structure of the equations, the end of the proof follows the
same lines as the proof of Theorem 2.31, and we therefore omit the details.

3.4. Application to free boundary transmission problems with a trans-
mission condition of “kinematic” type. We consider here a general class of free
boundary quasilinear transmission problem in which two quasilinear hyperbolic
systems at the left and at the right of a moving interface located at x = x(t) on
which transmission conditions are provided:

(3.10)





∂tU + Ã(U) ∂xU = 0 in (−∞, x(t)), for t ∈ (0, T ),
∂tU +A(U)∂xU = 0 in (x(t),+∞), for t ∈ (0, T ),
U|t=0 = uin(x) on R− ∪R+,
Nr
pU|x=x(t)+0

− N l
pU|x=x(t)−0 = g(t) on (0, T ),
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where we have assumed that x(0) = 0 without loss of generality. Moreover, we
assume that the position of the interface is given through a nonlinear equation of
the form

(3.11) ẋ = χ(U|x=x(t)−0 , U|x=x(t)+0)

for some smooth function χ defined on a domain of R2×R2. The same reduction
as in Section 3.3, and using the same notation, leads us to consider the 4×4 initial
boundary value problem

(3.12)





∂tu+A(u, ∂ϕ) ∂xu = 0 in ΩT ,
u|t=0 = uin(x) on R+,
Npu|x=0 = g(t) on (0, T ),

where Np = (−N l
p N

r
p) is here, for the sake of simplicity, a constant p × 4 matrix

(the value of p is discussed below). These equations are complemented by the
evolution equation

ẋ = χ(u|x=0).

This boundary condition, of “kinematic” type, leads us to work with the following
generalization of the “Lagrangian” diffeomorphism (2.34),

(3.13) ϕ(t,x) = x +ψ
(
x

ε

)∫ t

0
χ(u(t′, |x|))dt′,

where ψ ∈ C∞0 (R) is an even cut-off function such that ψ(x) = 1 for |x| ≤ 1
and = 0 for |x| ≥ 2, while ε is chosen small enough to have u close enough
to its initial boundary value when x is in the support of ψ and t small enough.
Contrary to (2.34), this cut-off is necessary here because χ might not be defined
at the origin (e.g., this is the case in Section 6.2 for the evolution of shocks). In
particular, we have

ϕl(t, x) = −x +ψ
(
x

ε

)∫ t

0
χ(u(t′, x))dt′,

ϕr(t, x) = x +ψ
(
x

ε

)∫ t

0
χ(u(t′, x))dt′,

and ϕl,r satisfy the same kind of bounds as those given in Lemma 2.37 (with
ϕ̃r(t, x) = ϕr(t, x) − x and ϕ̃l(t, x) = ϕl(t, x) + x). The well-posedness of
(3.12)–(3.13) also requires the following assumption.

Assumption 3.17. Let Ũ and U be two open sets in R2, and let U = Ũ × U
represent a phase space of u. Let ŨI ⊂ Ũ and UI ⊂ U be also open sets and let
U I = ŨI ×UI represent a phase space of u|x=0 . The following conditions hold:
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(i) A ∈ C∞(U) and χ ∈ C∞(U I).
(ii) For all u = (ul, ur)T ∈ U , the matrices Ã(ul) and A(ur) have eigenvalues

λ̃+(ul),−λ̃−(ul) and λ+(ur),−λ−(ur), respectively, satisfying

λ̃±(ul) > 0 and λ±(ur) > 0;

moreover, one of the following situations for any u = (ul, ur)T ∈ U I holds:
(a) λ̃±(ul)∓ χ(u) > 0 and λ±(ur)∓ χ(u) > 0.
(b) λ̃±(ul)∓ χ(u) > 0 and λ+(ur)− χ(u) < 0.
(c) λ̃−(ul)+ χ(u) < 0 and λ±(ur)∓ χ(u) > 0.

(iii) For any u ∈ U I , the Lopatinskiı̆ matrix Lp(u) associated with the condition
(a), (b), or (c) constructed in (3.8) is invertible (note that p = 2 under
condition (a) and p = 1 under conditions (b) and (c)).

Remark 3.18. With the terminology introduced in the previous section, con-
dition (a) corresponds to an interface moving at subsonic speed, while conditions
(b) and (c) correspond to interfaces moving at supersonic speed (to the right for
condition (a) and to the left for condition (b)) and satisfying Lax’s conditions.

We can now state the following theorem, which can be deduced from Theo-
rem 3.16 in exactly the same way as Theorem 2.39 is deduced from Theorem 2.31
for a free boundary initial value problem with an evolution equation of kinematic
type for the location of the boundary.

Theorem 3.19. Let m ≥ 2 be an integer. Suppose that Assumption 3.17 is
satisfied. If uin ∈ Hm(R+) takes its values in K̃0 ×K0 with K̃0 ⊂ Ũ and K0 ⊂ U
compact and convex sets, if uin(0) ∈ U I , and if the data uin and g ∈ Hm(0, T ) satisfy
the compatibility conditions up to order m − 1, then there exist T1 ∈ (0, T ] and a
unique solution (u, x) to (3.10)–(3.11) with u ∈ Wm(T1), x ∈ Hm+1(0, T1), and
ϕ given by (3.13).

4. WAVES INTERACTING WITH A LATERAL PISTON

We analyze here a particular example of wave-structure interaction in which the
fluid occupies a semi-infinite canal over a flat bottom which is delimited by a lat-
eral wall that can move horizontally. When the wall is in forced motion, this
situation corresponds to a wave-maker device often used to generate waves in
wave-flumes [KE02, OBT12]. We are more interested here in the case where
the lateral wall moves under the action of the hydrodynamic force created by the
waves and of a spring force that tends to bring it back to its equilibrium posi-
tion. This configuration corresponds to a wave absorption mechanism and can
also be seen as a simplified model of wave energy convertor, such as the Oyster
system. Such a configuration has been studied numerically in various references
[HKH+09,KSS09,KD18], but there is no mathematical result available yet. Note
also that this problem is related to the piston problem for isentropic gas dynamics
whose linear analysis can be found in [Ger84] and weak solutions constructed in
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[Tak95]. Our goal in this section is to provide a well-posedness result for this
wave-structure interaction under the shallow water approximation, that is, assum-
ing that the evolution of the free surface is governed by the nonlinear shallow
water equations. The configuration under study here is described in Figure 4.1.

x ( t)

z = Z ( t, x )

FIGURE 4.1. Waves interacting with a lateral piston

4.1. Presentation of the problem. In the canal, of mean depth h0 and
delimited on the left by the moving wall located at x = x(t), the waves are
described by the nonlinear shallow water equations. It is convenient to write them
in (H, V̄) variables, where H(t,x) = h0 + Z(t, x) is the water depth, Z(t, x) is
the surface elevation of the water, and V̄ (t, x) is the vertically averaged horizontal
velocity

(4.1)

{
∂tH + ∂x(HV̄) = 0 in (x(t),∞),
∂tV̄ + V̄ ∂xV̄ + g ∂xH = 0 in (x(t),∞),

where g is the gravitational constant; with this formulation, the boundary condi-
tion at the left boundary at the canal will be imposed as the kinematic type: the
velocity V̄ matches the velocity ẋ, that is,

(4.2) V̄ (t, x(t)) = ẋ(t).

Since the wall moves under the action of the hydrodynamic force exerted by the
fluid and of the spring force, its position x(t) satisfies Newton’s equation

mẍ = −k(x − x0)+ Fhyd,

where m is the mass of the moving wall, k the stiffness of the spring force, x0 its
reference position, and Fhyd the hydrodynamic force. This force corresponds to the
horizontal pressure forces integrated on the vertical wall. Assuming, in accordance
with the modeling of the flow by the nonlinear shallow water equations, that the
pressure is hydrostatic, we get

Fhyd =
∫ Z(t,x(t))

−h0

ρg(Z(t, x(t))− z′)dz′
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= 1
2
ρg(h0 + Z(t, x(t)))2.

At rest, we have H = h0, and the equilibrium position xeq is therefore given by

xeq − x0 =
1
2

ρgh2
0

k

so that Newton’s equation can be put under the form

(4.3) mẍ = −k(x − xeq)+
1
2
ρg((h0 + Z|x=x )2 − h2

0).

The free boundary problem we have to solve consists therefore in the equations
(4.1)–(4.3) complemented by the initial conditions

{
(Z, V̄ )|t=0 = (Z in, V̄ in) on R+,
(x, ẋ)|t=0 = (0, xin

1 ),

where we assumed without loss of generality that the wall is initially located at
x = 0.

4.2. Reformulation of the equations. As in Section 2.3, the first step is to
use a diffeomorphism ϕ(t, ·) : R+ → (x(t),∞), and to work with the transform
variables

ζ(t, x) = Z(t,ϕ(t, x)), v̄(t, x) = V̄ (t,ϕ(t, x))

with h = h0 + ζ. The boundary condition (4.2), which can be rewritten as

ẋ(t) = v̄(t,0),

leads us to work with the Lagrangian diffeomorphism

(4.4) ϕ(t,x) = x +
∫ t

0
v̄(t′, x)dt′,

which satisfies the properties stated in Lemma 2.37. After composition with ϕ,
the problem under consideration is reduced to the initial boundary value problem

(4.5)





∂tζ + h∂ϕx v̄ = 0 in ΩT ,
∂tv̄ + g ∂

ϕ
x ζ = 0 in ΩT ,

(ζ, v̄)|t=0 = (ζ in, v̄ in) on R+,
v̄|x=0 = ẋ on (0, T ),
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coupled to the ODE

(4.6)




mẍ = −k(x − xeq)+

1
2
ρg((h0 + ζ|x=0)

2 − h2
0) for t ∈ (0, T ),

(x, ẋ)|t=0 = (0, xin
1 ),

where we used the same notation as in (2.17), that is, ∂ϕx = (1/∂xϕ)∂x . The
initial boundary value problem (4.5) is of course of the form (2.19) with u =
(ζ, v̄)T, ν = (0,1)T, and

(4.7) A(u) =
(
v̄ h
g v̄

)
,

whose eigenvalues ±λ±(u) and the corresponding unit eigenvectors e±(u) are
given by

λ±(u) =
√
gh± v̄, e±(u) = 1√

g+ h

( √
h

±√g

)
.

Therefore, the positivity of |ν · e+(u|x=0)| stated in Assumption 2.29 is automat-
ically satisfied under the positivity of h.

Here, we will show another formulation equivalent to (4.5)–(4.6). The fol-
lowing lemma shows that (4.6) provides an expression for ẋ in terms of ζ|x=0 .

Lemma 4.1. Let m ≥ 1 be an integer, xin
1 ∈ R, and assume that ζb ∈

Hm(0, T ). Then, there exists a unique solution x ∈ Hm+2(0, T ) to




mẍ = −k(x − xeq)+

1
2
ρg(ζ2

b + 2h0ζb),

(x, ẋ)|t=0 = (0, xin
1 ),

so that we can define a mapping G : Hm(0, T ) ∋ ζb ֏ ẋ ∈ Hm+1(0, T ), which
satisfies

|G(ζb)|Hm+1(0,t)

≤ C(
√
t(|xeq| + |xin

1 |)+ (1+ t)(1+ |ζb|W [m/2],∞(0,t))|ζb|Hm(0,t)
)

for any t ∈ [0, T ], where C > 0 is a constant depending only on m, k, ρg, h0, andm.

Proof. The existence and uniqueness of the solution x is obvious, so that we
focus on the derivation of the estimate. Replacing x with x + xeq, it is sufficient
to consider the problem

{
mẍ = −kx + f ,
(x, ẋ)|t=0 = (xeq, x

in
1 ),
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where f = 1
2ρg(ζ

2
b + 2h0ζb). Then, we see that

1
2

d

dt
(mẋ(t)2 + kx(t)2) = f (t)ẋ(t),

from which we deduce that

|ẋ(t)| + |x(t)| ≤ C
(
|xin

1 | + |xeq| +
∫ t

0
|f (t′)|dt′

)

≤ C(|xin
1 | + |xeq| +

√
t|f |L2(0,t)),

so that

|x|H1(0,t) ≤ C(
√
t(|xin

1 | + |xeq|)+ t|f |L2(0,t)).

On the other hand, it follows from the equation directly that

|∂k+2
t x|L2(0,t) ≤ C(|∂kt x|L2(0,t) + |∂kt f |L2(0,t))

for k = 0,1,2, . . . . Using these inductively, we obtain

|x|Hm+2(0,t) ≤ C
(√
t(|xin

1 | + |xeq|)+ t|f |L2(0,t) + |f |Hm(0,t)
)
,

which together with |f |Hm(0,t) ≤ C(1 + |ζb|W [m/2],∞(0,t))|ζb|Hm(0,t) gives the de-
sired estimate. ❐

It follows from the lines above that the problem presented in Section 4.1 can
be recast under the following form:

(4.8)





∂tu+A(u, ∂ϕ)∂xu = 0 in ΩT ,
u|t=0 = uin on R+,
ν ·u|x=0 = G(ν⊥ ·u|x=0) on (0, T ),

where ν = (0,1)T and ϕ is given by (4.4), with a boundary equation given by

(4.9) ẋ = ν ·u|x=0 , x|t=0
= 0.

Here, we emphasize that the notation for the matrix A(u,ϕ) is the same as in
(2.19) with the matrix A(u) defined by (4.7). However, thanks to our choice of
the Lagrangian diffeomorphismϕ, the term ∂tϕ is cancelled and does not appear
in the equation. The problem is therefore a small variant of the free boundary
problem considered in Section 2.4, the difference being that the boundary condi-
tion ν ·u|x=0 = g(t) is replaced by a semi-linear and nonlocal boundary condition
ν ·u|x=0 = G(ν⊥ ·u|x=0). Of course, (4.8)–(4.9) is equivalent to (4.5)–(4.6).
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4.3. Compatibility condition. As usual, compatibility conditions are re-
quired to have regular solutions. However, we can derive the conditions more
easily than for the problem considered in Section 2.4 because the equation does
not contain the term ∂tϕ. Denoting uk = ∂kt u, we get classically by induction
that uk is a polynomial expression of space derivatives of u of order at most k,
and of space and time derivatives of (∂xϕ)−1 of order at most k− 1. Remarking

further that ∂jx ∂ℓ+1
t ϕ = ∂jx ∂ℓt v̄ and ∂j+1

x ϕ|t=0 = δj,0, where δj,0 is the Kronecker
symbol, it follows that at t = 0, we have an expression for uin

k = uk|t=0
as

(4.10) uin
k = c1,k(u

in, ∂xu
in, . . . , ∂kxu

in),

with c1,k a polynomial expression of its arguments such that the total number of
derivatives of uin involved in each monomial is at most k. Using the equation in
(4.6) we can express xin

k for k ≥ 2 in terms of the initial data as

(4.11) xin
k+2 = c2,k(x

in
1 , ζ

in, ζ in
1 , . . . , ζ

in
k )|x=0 ,

with c2,k a polynomial expression of its arguments. The compatibility condition
is obtained by differentiating the boundary condition v̄|x=0 = ẋ with respect to t
and taking its trace at t = 0.

Definition 4.2. Let m ≥ 1 be an integer. We say that the initial data
uin = (ζ in, v̄ in)T ∈ Hm(R+) and xin

1 ∈ R for the initial boundary value problem
(4.5)–(4.6) satisfy the compatibility condition at order k if {uin

j }mj=0 and {xin
j }m+1
j=1

defined by (4.10)–(4.11) satisfy

v̄ in
k |x=0 = xin

k+1.

We also say that the initial data uin and xin
1 satisfy the compatibility conditions up

tom−1 if they satisfy the compatibility conditions at order k for k = 0,1, . . . ,m−
1.

Remark 4.3. The local existence theorem given below requires that the com-
patibility conditions are satisfied at order m − 1 with m ≥ 2. In the case m = 2,
the compatibility conditions are

v̄ in
|x=0

= xin
1 and − g(∂xζ

in)|x=0 = kxeq +
ρg

2m
((ζ in)2 + 2h0ζ

in)|x=0 .

4.4. Local well-posedness. We can now state the main result of this section,
which shows the local well-posedness of the wave-structure interaction problem
presented in Section 4.1.

Theorem 4.4. Let m ≥ 2 be an integer. If the initial data (ζ in, v̄ in)T ∈
Hm(R+) and xin

1 ∈ R satisfy

inf
x∈R+

(
√
g(h0 + ζ in(x))− |v̄ in(x)|) > 0
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and the compatibility conditions up to order m − 1 in the sense of Definition 4.2,
then there exist T > 0 and a unique solution (ζ, v̄, x) to (4.5)–(4.6), with (ζ, v̄) ∈
W
m(T) and x ∈ Hm+2(0, T ), and ϕ given by (4.4).

Proof. The proof is a small variant of the proof of Theorem 2.39. We define
the phase space U of u = (ζ, v̄)T by

U = {u = (ζ, v̄)T ∈ R2 |
√
g(h0 + ζ)− |v̄| > 0}.

Then, we can readily check that all the conditions in Assumption 2.38 are satisfied
with χ(u) = v̄ and ν = (0,1)T. Moreover, once un = (ζn, v̄n)T ∈ Wm(T) is
given so that

{
(∂kt u

n)|t=0 = uin
k for k = 0,1, . . . ,m− 1,

‖un‖Wm(T) + |un|x=0 |m,T ≤ M1,
(4.12)

we can check that the data uin and gn(t) = G(ν⊥ ·un|x=0) for the problem




∂tu+A(u, ∂ϕ)∂xu = 0 in ΩT ,
u|t=0 = uin(x) on R+,
ν ·u|x=0 = gn(t) on (0, T ),

ẋ = ν ·u|x=0 , x|t=0
= 0,

satisfy the compatibility conditions up to order m − 1 in the sense of Defini-
tion 2.40. We can also apply Theorem 2.39 to show the unique existence of the
solution u = (ζ, v̄)T ∈ Wm(T1) and x ∈ Hm+1(0, T1) to this problem for some
T1 ∈ (0, T ] depending on M1. We denote by un+1 this solution u. Furthermore,
we see that un+1 satisfies (∂kt u

n+1)|t=0 = uin
k for k = 0,1, . . . ,m− 1 and

‖un+1‖Wm(T1) + |un+1|x=0 |m,T1 ≤ C1(|G(ν⊥ ·un|x=0)|Hm(0,T1)).

Here, by Lemma 4.1 we have

|G(ν⊥ ·un|x=0)|Hm+1(0,T1) ≤ C(M1, T1).

On the other hand, we have

|G(ν⊥ ·un|x=0)|Hm(0,T1) ≤
√
T1

m+1∑

j=1

|xin
j | + T1|G(ν⊥ ·un|x=0)|Hm+1(0,T1),

where we used (∂kt G(ν⊥ ·un|x=0))|t=0 = xin
k+1 for k = 0,1, . . . ,m. Therefore, for

any fixed M0 > 0 if we define M1 > 0 by M1 = C1(M0) and choose T1 = T1(M0)
sufficiently small, then we have

|G(ν⊥ ·un|x=0)|Hm(0,T1) ≤ M0,
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so that un+1 satisfies (4.12) with T replaced by T1. Now, we can iterate the above
procedure to construct a sequence of approximate solutions {(ζn, v̄n, xn)}n that
satisfy the uniform bounds. As in the proof of Theorem 2.39, we can prove the
convergence of these approximate solutions to the solution (ζ, v̄, x) to (4.8)–
(4.9). This solution satisfies

ẋ = G(ν⊥ ·u|x=0) ∈ Hm+1(0, T1),

so that we have the regularity x ∈ Hm+2(0, T1). ❐

5. SHALLOW WATER MODEL WITH

A FLOATING BODY ON THE WATER SURFACE

We turn to analyze other examples of wave-structure interactions in which the
fluid occupies an infinite canal and a floating rigid body is placed on the water
surface. We follow the approach proposed in [Lan17] where the free surface Euler
equations are reformulated in terms of the free surface elevation and of the hor-
izontal water flux. Under this approach, the pressure exerted by the fluid on the
floating body can be viewed as the Lagrange multiplier associated with the con-
straint that, under the body, the surface of the fluid coincides with the bottom of
the body.

As shown in [Lan17], this approach can be used also in the shallow water
approximation, replacing the free surface Euler equations by the much simpler
nonlinear shallow water equations. This is the framework that we shall consider
here, addressing three cases: the floating body is fixed, the motion of the body is
prescribed, and the body moves freely according to Newton’s laws under the ac-
tion of the gravitational force and the pressure from the air and from the water.
The case of a floating body moving only vertically and with vertical lateral walls
has been considered in [Lan17] in 1D, in [Boc20] for a 2D configuration with
radial symmetry, and with numerical computations proposed in [BEKER]. For
such configurations, the horizontal projection of the portion of the solid in con-
tact with the water is independent of time. We consider here the more complex
situation of nonvertical lateral walls: even in the case of a fixed object, determining
the portion of the solid in contact with the water is then a free boundary problem
that is difficult to handle; in the numerical study [GPSMW], for instance, the
authors use a compressible approximation of the equations in order to remove this
issue. The configuration under study here is described in Figure 5.1.

5.1. Presentation of the equations for the water. We consider the two-
dimensional water waves over a flat bottom with a floating body on the water
surface under the assumption that there are only two contact points where the
water, the air, and the body meet. These contact points at time t are denoted
by x−(t) and x+(t), which satisfy x−(t) < x+(t). Let I(t) and E(t) be the
projections on the horizontal line of the parts where the water surface contacts
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x− ( t) x+ ( t)
I ( t)E− ( t) E+ ( t)

z = Z i ( t, x )

z = Z e( t, x )z = Z e( t, x )

FIGURE 5.1. Waves interacting with a floating body

with the floating structure and the air, respectively, that is,

{
I(t) = (x−(t), x+(t)),
E(t) = E−(t)∪ E+(t), E−(t) = (−∞, x−(t)), E+(t) = (x+(t),∞).

The corresponding water regions to I(t) and E(t) will be called the interior and
the exterior regions, respectively. We consider the case where overhanging waves
do not occur and suppose that the surface elevation of the water in the exterior
region is denoted by Ze(t, x) and that the underside of the floating body is pa-
rameterized by Zi(t, x), where x is the horizontal coordinate. Let h0 be the mean
depth of the water, so that the water depth in the interior and exterior regions are
given by

Hi(t, x) = h0 + Zi(t, x) and He(t, x) = h0 + Ze(t, x),

respectively. We denote by V̄ (t, x) the vertically averaged horizontal velocity and
setQ = HV̄ , which is the horizontal flux of the water. The restrictions ofQ to the
interior and the exterior regions will be denoted by Qi and Qe, respectively. Let
P i(t, x) be the pressure of the water at the underside of the floating body. This
pressure is an important unknown quantity and should be determined together
with the motion of the water. In the case where the floating body moves freely,
the body interacts with the water through the force exerted by this pressure. The
shallow water model was derived from the full water wave equations by using the

assumption that ∂x(
∫ ζ

−h0

V(t, x, z)2 dz) ≈ ∂x(HV̄ 2), where V(t, x, z) denotes

the horizontal component of the velocity field in the fluid, and that the pressure
P(t, x, z) can be approximated by the hydrostatic pressure, that is,

P(t, x, z) =
{
Patm − ρg(z − Ze(t, x)) in E(t),
P i(t, x)− ρg(z − Zi(t, x)) in I(t),
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where ρ is the density of the water, g the gravitational constant, and Patm the
atmospheric pressure (see [Lan17]). Then, the shallow water model for the water
has the form





∂tZe + ∂xQe = 0 in E(t),

∂tQe + ∂x
(
Q2

e

He
+ 1

2
gH2

e

)
= 0 in E(t),(5.1)

in the exterior region, while under the object we have





∂tZi + ∂xQi = 0 in I(t),

∂tQi + ∂x
(
Q2

i

Hi
+ 1

2
gH2

i

)
= − 1

ρ
Hi ∂xP i in I(t),(5.2)

with transmission conditions

(5.3) He = Hi, Qe = Qi, P i = Patm on Γ (t),

where Γ (t) = ∂I(t) = ∂E(t) denotes the contact points. We also need to prescribe
equations of the motion of the floating body. Such equations will be given in the
following sections according to the cases where the floating body is fixed, the
motion of the body is prescribed, or the body moves freely.

5.1.1. Basic structure of the equations. Once the equations of the motion
of the floating body are given, as we will see in the following sections, we can solve
the equations in the interior region (5.2), and the problem will be reduced to the
type considered in Section 2.5 with U = (Ze,Qe)T. We note that (5.1) can be
written in the matrix form

∂tU +A(U)∂xU = 0.

As was explained in Example 2.2, the eigenvalues λ±(U) of the coefficient matrix
A(U) and the corresponding unit eigenvectors e±(U) are given by

λ±(U) =
√
gHe ± Qe

He
, e±(U) = 1√

1+ λ±(U)2

(
1

±λ±(U)

)
.

Moreover, the unit vector µ0 defined in Remark 2.55 is in this case given by
µ0 = (1,0)T, so that the condition µ0 · e+(U) 6= 0 is automatically satisfied.
As was explained in Section 2.5, the discontinuity of ∂xU at the contact points
plays an important role in determining the contact points x±. Concerning this
discontinuity condition, we have the following proposition.

Proposition 5.1. Suppose that Ue = (Ze,Qe)T, Ui = (Zi,Qi)T, P i, and x±
satisfy (5.1)–(5.3). Then, the condition ∂xUe − ∂xUi 6= 0 on Γ (t) is equivalent to
∂xZe − ∂xZi 6= 0 on Γ (t).
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Proof. Differentiating the boundary condition Ze(t, x±(t)) = Zi(t, x±(t))
with respect to t, we obtain

∂tZe + ẋ± ∂xZe = ∂tZi + ẋ± ∂xZi on Γ (t).

By the continuity equations in the interior and the exterior regions, we have
∂tZe = −∂xQe and ∂tZi = −∂xQi, so that

ẋ±(∂xZe − ∂xZi) = ∂xQe − ∂xQi on Γ (t).

This gives the desired result. ❐

5.2. The case of a fixed floating body. In the case where the body is fixed,
we impose the condition

(5.4) Zi = Zlid on I(t),

where Zlid = Zlid(x) is a given function defined on an open interval If .

5.2.1. Reformulation of the equations. We begin to solve the equations
in the interior region (5.2). It follows from (5.4) that Hi(t, x) = h0 + Zlid(x)
does not depend on t, so that the continuity equation in (5.2) yields ∂xQi = 0.
This means that Qi does not depend on x, so that we can write Qi(t, x) = qi(t).
Plugging this into the momentum equation in (5.2), we have

q̇i + ∂x
(
q2

i

Hi
+ 1

2
gH2

i

)
= − 1

ρ
Hi ∂xP i,

which is equivalent to

q̇i

Hi
+ ∂x

(
1
2

q2
i

H2
i

+ gHi

)
= − 1

ρ
∂xP i.

Therefore, P i satisfies a simple boundary value problem

(5.5)





∂xP i = −ρ
(
q̇i

Hi
+ ∂x

(
1
2

q2
i

H2
i

+ gHi

))
in I(t),

P i = Patm on Γ (t).

Notation 5.2. For a function F = F(t, x), we put JFK = F(t, x−(t)) −
F(t, x+(t)).

Integrating the first equation in (5.5) and using the boundary condition, we
obtain

(5.6) q̇i

∫

I(t)
1
Hi
+

s
1
2

q2
i

H2
i

+ gHi

{
= 0,
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which is a solvability condition of the boundary value problem (5.5) for P i. Con-
versely, once qi and x± are given so that (5.6) holds, we can resolve (5.5) for the
pressure P i explicitly as

P i(t, x) = Patm − ρ
{
q̇i(t)

∫ x

x−(t)

dx′

Hi(x′)

+ 1
2
qi(t)

2
(

1
Hi(x)2

− 1
Hi(x−(t))2

)
+ g(Hi(x)−Hi(x−(t)))

}
.

Therefore, the equations in the interior region (5.2) are reduced to a scalar ordi-
nary differential equation (5.6).

We turn to reformulate the equations in the exterior region (5.1). As in Sec-
tion 2.5, we will use a coordinate transformation to reduce the equations on the
unknown region E(t) to those on a fixed region E. Let xin− and xin+ be the ini-
tial contact points at time t = 0 such that xin− < xin+ , and set E− = (−∞, xin−),
E+ = (xin+ ,∞), and E = E− ∪E+. We use a diffeomorphismϕ(t, ·) : E → E(t)
and set ζe = Ze ◦ ϕ, he = He ◦ ϕ, qe = Qe ◦ ϕ, and ζi = Zi ◦ ϕ. Such a
diffeomorphismϕ can be constructed as in (2.48), that is,

ϕ(t,x) =





x +ψ
(
x − xin−
ε

)
(x−(t)− xin

−) for x ∈ E−,

x +ψ
(
x − xin+
ε

)
(x+(t)− xin

+) for x ∈ E+,
(5.7)

with an appropriate choice of ε = ε0 and a cut-off function ψ ∈ C∞0 (R) satisfying
ψ(x) = 1 for |x| ≤ 1. As before, we will use the notation ∂ϕx and ∂ϕt which were
defined by (2.17). Now, the problem under consideration is reduced to





∂
ϕ
t ζe + ∂ϕx qe = 0 in E,

∂
ϕ
t qe + 2

qe

he
∂
ϕ
x qe +

(
ghe −

q2
e

h2
e

)
∂
ϕ
x ζe = 0 in E,

ζe = ζi, qe = qi on ∂E,

(5.8)

with the interior value qi of the horizontal water flux given by

(5.9) q̇i = − 1∫

I(t)
1
Hi

s
1
2

q2
i

H2
i

+ gHi

{
.

We impose the initial conditions of the form

(5.10)

{
(ζe, qe)|t=0 = (ζ in

e , q
in
e ) in E,

x±|t=0
= xin± , qi|t=0

= qin
i .
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5.2.2. Local well-posedness. The equations in (5.8) can be written in the
matrix form

∂
ϕ
t u+A(u)∂ϕx u = 0,

where u = (ζe, qe)T, so that (5.8)–(5.10) is almost the same type as the problem
(2.66)–(2.67) considered in Section 2.5.4. Therefore, the compatibility condi-
tions for (5.8)–(5.10) can be defined in the same way as Definition 2.56 in Section
2.5.5. Here, we calculate xin

±,1 = (∂tx±)|t=0 in terms of the initial data. Differen-
tiating the boundary condition ζe = ζi with respect to t, we have ∂tζe = ∂tζi on
∂E, which is equivalent to ∂ϕt ζe + ẋ± ∂ϕx ζe = ∂ϕt ζi + ẋ± ∂ϕx ζi on ∂E. By using
∂
ϕ
t ζe = −∂ϕx qe and ∂ϕt ζi = 0, we see that (∂ϕx ζe − ∂ϕx ζi)ẋ± = ∂ϕx qe on ∂E.

Therefore, we obtain

(5.11) xin
±,1 =

(
∂xqin

e

∂xζ in
e − ∂xZlid

)

|∂E±
.

In view of this and the consideration in Section 5.1.1, we impose the following
assumption on the data.

Assumption 5.3. The data (ζ in
e , q

in
e ), x

in± , and Zlid satisfy the following condi-
tions:

(i) x− < x+.

(ii) infx∈If (h0 + Zlid(x)) > 0, infx∈E(h0 + ζ in
e (x)) > 0.

(iii) infx∈E(
√
g(h0 + ζ in

e (x))− |qin
e (x)|/(h0 + ζ in

e (x))) > 0.

(iv) (
√
g(h0 + ζ in

e )− |qin
e /(h0 + ζ in

e )− xin
±,1|)|∂E > 0.

(v) (∂xZlid − ∂xζ in
e )|∂E 6= 0.

We can now state one of our main results in this section, which shows the
well-posedness of the shallow water model with a fixed floating structure on the
water surface.

Theorem 5.4. Let m ≥ 2 be an integer and If an open interval. If the ini-
tial data (ζ in

e , q
in
e ) ∈ Hm(E), xin± ∈ If , qin

i ∈ R, and Zlid ∈ Wm,∞(If) satisfy
the conditions in Assumption 5.3, where xin

±,1 is defined by (5.11), and the com-
patibility conditions up to order m − 1, then there exist T > 0 and a unique so-
lution (ζe, qe, x±, qi) to (5.8)–(5.10) with ϕ given by (5.7) in the class ζe, qe ∈⋂m−1
j=0 C

j([0, T ];Hm−j(E)), x± ∈ Hm(0, T ), and qi ∈ Hm+1(0, T ).

Proof. Given qi ∈ Wm,∞(0, T ), (5.8) forms in each of the exterior regions
E− and E+ the same-type problem as that considered in Section 2.5, so that we
can apply Theorem 2.44 to show the existence of the solution (ζe, qe, x±) to
(5.8) under the initial conditions in (5.10) satisfying x± ∈ Hm(0, T1) for some
T1 ∈ (0, T ]. Conversely, given x± ∈ Hm(0, T ), we can easily show the existence
of the solution qi ∈ Hm+1(0, T1) to (5.9) under the initial condition in (5.10) for
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some T1 ∈ (0, T ]. Iterating this procedure as in the proof of Theorem 2.54, we
can construct a sequence of approximate solutions, which converges to the desired
solution. ❐

5.3. The case of a floating body with a prescribed motion. Since the float-
ing body is allowed only to a solid motion, its motion is completely determined
by (xG(t), zG(t)), the coordinates of the center of mass, and θ(t) the rotational
angle of the body. Without loss of generality, we have θ|t=0 = 0. Suppose that
the underside of the floating body is initially parameterized by Zlid(x) on an open
interval If , that is, Zi|t=0

= Zlid. Consider a point of the underside of the body,
and denote the coordinates of the point at t = 0 by (X,Z). Let the coordinates of
the point at time t be (x, z). Then, it holds that

Z = Zlid(X), z = Zi(t, x),

and that
(
x − xG(t)
z − zG(t)

)
=
(

cosθ(t) − sinθ(t)
sinθ(t) cosθ(t)

)(
X − xG(0)
Z − zG(0)

)
.

Therefore, we obtain

(Zi(t, x)− zG(t)) cosθ(t)− (x − xG(t)) sinθ(t)+ zG(0)(5.12)

= Zlid((x − xG(t)) cosθ(t)+ (Zi(t, x)− zG(t)) sinθ(t)+ xG(0)).

This is the equation for the motion of the body and gives an expression of Zi

implicitly in terms of xG, zG, θ, and Zlid.

5.3.1. Reformulation of the equations. Proceeding as in Section 5.2.1, it
is possible to reformulate the equations in compact form. Because of the vari-
ous degrees of freedom of the solid, the computations are a bit technical and are
postponed to Appendix A. It is shown there that the surface elevation and the
horizontal water flux in the interior region are given by





Zi(t, x) = ψlid(x − xG(t), θ(t))+ zG(t),

Qi(t, x) =
(

UG(t)
ω(t)

)
·T(rG(t, x))+ q̄i(t),

for some smooth enough function ψlid and some function q̄i(t) of t solving an
ODE of the form

∂tq̄i = F(q̄i, xG, zG, θ,UG,ω, ∂tUG, ∂tω,x−, x+)

with F in the class Wm,∞ under the assumption Zlid ∈ Wm,∞(If). As in the
previous section, we use the same diffeomorphism ϕ(t, ·) : E → E(t) defined
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by (5.7) to transform the equations in the exterior region (5.1) and set ζe = Ze◦ϕ,
he = He ◦ϕ, qe = Qe ◦ϕ, ζi = Zi ◦ϕ, and qi = Qi ◦ϕ. Now, the problem under
consideration is reduced to

(5.13)





∂
ϕ
t ζe + ∂ϕx qe = 0 in E,

∂
ϕ
t qe + 2

qe

he
∂
ϕ
x qe +

(
ghe −

q2
e

h2
e

)
∂
ϕ
x ζe = 0 in E,

ζe = ζi, qe = qi on ∂E,

and

(5.14) ∂t q̄i = F(q̄i, xG, zG, θ,UG,ω, ∂tUG, ∂tω,x−, x+).

We also impose the initial conditions of the form

(5.15)

{
(ζe, qe)|t=0 = (ζ in

e , q
in
e ) in E,

x±|t=0
= xin± , qi|t=0

= q̄in
i .

5.3.2. Local well-posedness. (5.13)–(5.15) is again almost the same type
as the problem (2.66)–(2.67) considered in Section 2.5.4. Therefore, the com-
patibility conditions for (5.13)–(5.15) can be defined in the same way as Def-
inition 2.56 in Section 2.5.5. Here, we calculate xin

±,1 = (∂tx±)|t=0 in terms
of the initial data. Differentiating with respect to t the boundary condition
Ze(t, x±(t)) = Zi(t, x±(t)), and using the equation ∂tZe + ∂xQe = 0, we ob-
tain

(∂xZe − ∂xZi)|∂E± ∂tx± = (∂xQe + ∂tZi)|∂E± ,

so that

(5.16) xin
±,1 =

(
Z in

i,1 + ∂xqin
e

∂xζ in
e − ∂xZlid

)

x=x±
,

where Z in
i,1 = (∂tZi)|t=0 is given by

Z in
i,1(x) =

(
Uin
G +ωin

(
Zlid(x)− zin

G

−(x − xin
G )

))
·
(
−∂xZlid(x)

1

)

with (xin
G , z

in
G ,U

in
G ,ω

in) = (xG, zG,UG,ω)|t=0 . Here, we used (A.3). We can now
state one of our main results in this section, which shows the well-posedness of
the shallow water model with a floating body on the water surface whose motion
is prescribed.
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Theorem 5.5. Let m ≥ 2 be an integer and If an open interval. If the data
(ζ in

e , q
in
e )∈Hm(E), xin±∈If , q̄in

i ∈R, Zlid∈Wm,∞(If), and xG, zG, θ∈Hm+2(0, T )
satisfy the conditions in Assumption 5.3, where xin

±,1 is defined by (5.16), and the
compatibility conditions up to order m − 1, then there exist T1 ∈ (0, T ] and a
unique solution (ζe, qe, x±, q̄i) to (5.13)–(5.15) with ϕ given by (5.7) in the class
ζe, qe ∈

⋂m−1
j=0 C

j([0, T1];Hm−j(E)), x± ∈ Hm(0, T1), and q̄i ∈ Hm+1(0, T1).

5.4. The case of a freely floating body. Finally, we consider the case where
the floating body moves freely according to Newton’s laws under the action of the
gravitational force and the pressure from the air and from the water. Let m and i0
be the mass and the inertia coefficient of the body. Then, Newton’s laws for the
conservation of linear and angular momentum have the form

(5.17)





m ∂tUG = −mgez +
∫

I(t)
(P i − Patm)Nlid,

i0 ∂tω = −
∫

I(t)
(P i − Patm)r

⊥
G ·Nlid,

which together with (5.12) constitute the equations of motion for the floating
body.

5.4.1. Reformulation of the equations. Proceeding as in Section 5.2.1 and
Section 5.3.1, and with the same notation, the problem under consideration can
be reduced to

(5.18)





∂
ϕ
t ζe + ∂ϕx qe = 0 in E,

∂
ϕ
t qe + 2

qe

he
∂
ϕ
x qe +

(
ghe −

q2
e

h2
e

)
∂
ϕ
x ζe = 0 in E,

ζe = ζi, qe = qi on ∂E,

and with W = (q̄i, xG, zG, θ,UG,ω) solving an ordinary differential equation of
the form

∂tW = F(W,x−, x+)

with F in the class Wm,∞ under the assumption Zlid ∈ Wm,∞(If) (see (B.1)–(B.2)
for more precision). The details of this technical reduction, which takes advantage
of the so-called added mass effect, are postponed to Appendix B. We also impose
the initial conditions of the form

(5.19)





(ζe, qe)|t=0 = (ζ in
e , q

in
e ) in E,

x±|t=0
= xin± , qi|t=0

= q̄in
i ,

(xG, zG, θ,UG,ω)|t=0

= (xin
G , z

in
G ,0,U

in
G ,ω

in).
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5.4.2. Local well-posedness. Therefore, (5.18)–(5.19) is again almost the
same type as the problem (2.66)–(2.67) considered in Section 2.5.4, so that the
compatibility conditions for (5.18)–(5.19) can be defined in the same way as in
Definition 2.56 in Section 2.5.5. Moreover, xin

±,1 = (∂tx±)|t=0 can be given by
(5.16). We can now state one of our main results in this section, which shows the
well-posedness of the shallow water model with a freely floating body on the water
surface.

Theorem 5.6. Let m ≥ 2 be an integer and If an open interval. If the data
(ζ in

e , q
in
e ) ∈ Hm(E), xin± ∈ If , (qin

i , x
in
G , z

in
G ,U

in
G ,ω

in) ∈ R6, and Zlid ∈ Wm,∞(If)
satisfy the conditions in Assumption 5.3, where xin

±,1 is defined by (5.16), and the
compatibility conditions up to order m − 1, then there exist T > 0 and a unique
solution (ζe, qe, x±, q̄i, xG, zG, θ) to (5.18)–(5.19) with ϕ given by (5.7) in the
class ζe, qe ∈

⋂m−1
j=0 C

j([0, T ];Hm−j(E)), x± ∈ Hm(0, T ), q̄i ∈ Hm+1(0, T ),
and xG, zG, θ ∈ Hm+2(0, T ).

6. SEVERAL EXAMPLES OF TRANSMISSION PROBLEMS

We present here several applications of the results proved in Section 3 on transmis-
sion problems. The first one, in Section 6.1, is a transmission problem with a fixed
interface: it corresponds to a conservation law with a flux which is discontinuous
across the interface. A typical example of application is given by the propagation
of shallow water waves over a step-like discontinuous topography. The second
application, in Section 6.2, is a very classical free boundary transmission problem:
we show how the issue of the stability of one-dimensional shocks for 2 × 2 con-
servations laws falls in the general framework of Section 3.4. This provides an
elementary proof of these results, with an improved regularity threshold. The case
of classical (Lax) shock is considered in Section 6.2.1, while nonclassical, under-
compressive, shocks are dealt with in Section 6.2.2.

6.1. Systems of conservation laws with discontinuous flux. Let us consider
here a system of two conservation laws, with a flux depending on the position. For

instance, let us consider a flux f̃ on R−, and f on R+, that is,

(6.1)

{
∂tu+ ∂xf̃ (u) = 0 in (0, T )×R−,
∂tu+ ∂xf (u) = 0 in (0, T )×R+,

where f̃ : Ũ → R
2 and f : U → R

2 are smooth mappings defined on open
subsets Ũ and U of R2. In addition, p transmission conditions are given at x = 0
(p = 1,2,3),

Nr
p(t)u|x=+0 −N l

p(t)u|x=−0 = g(t),

where N l
p and Nr

p are p × 2 matrices.
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Remark 6.1. A natural condition is to impose the continuity of the fluxes

at the interface, f̃ (ul|x=0) = f (ur|x=0), which is a nonlinear transmission condi-
tion. One can in general use a nonlinear change of variables as in Section 2.2 or
Section 6.2 to reduce to the case of a linear transmission condition.

Denoting Ã(u) = f̃ ′(u) and A(u) = f ′(u), and using the same notation as
in Section 3.2, the system takes the form (3.5), namely,





∂tu+A(u) ∂xu = 0 in ΩT ,
u|t=0 = uin(x) on R+,
Np(t)u|x=0 = g(t) on (0, T ),

and Theorem 3.12 can therefore be applied.

Example 6.2 (Shallow water equations with a discontinuous topography).

Let us consider the shallow water equations with a depth at rest h̃0 for x < 0 and
h0 for x > 0.

h0
h0

FIGURE 6.1. Shallow water with a discontinuous topography

The configuration under study here is described in Figure 6.1. This is a par-
ticular example of (6.1) with

f̃ (ζ, q) =
(
q,

1

h̃0 + ζ
q2 + 1

2
g(h̃0 + ζ)2

)T

,

f (ζ, q) =
(
q,

1
h0 + ζ

q2 + 1
2
g(h0 + ζ)2

)T

.

If

λ̃±(ul) =
√
g(h̃0 + ζ l)± ql

h̃0 + ζ l
> 0,

λ±(ur) =
√
g(h0 + ζr)± qr

h0 + ζr
> 0.

Then, one has p = 2 in Assumption 3.11, and two transmission conditions are
needed; they are naturally given by the continuity of the surface elevation ζ and
of the horizontal water flux q, that is,

ul|x=0 = ur|x=0 .
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In order to apply Theorem 3.12, we need to check the invertibility of the Lopatin-
skĭı matrix (third point in Assumption 3.11), which is given here by

L(u|x=0) =
(
−ẽ−(ul|x=0) e+(ur|x=0)

)
,

where ẽ−(u) denotes a unit eigenvector associated with the eigenvalue −λ̃−(u)
of Ã(u) and e+(u) a unit eigenvector associated with the eigenvalue λ+(u) of
A(u). By using the expression for the eigenvectors provided in Example 2.2,

the invertibility of the Lopatinskĭı matrix reduces to the condition |λ̃−(ul|x=0) +
λ+(ur|x=0)| > 0, which is always satisfied. One can therefore apply Theorem 3.12.

6.2. Stability of one-dimensional shocks. Let us consider again a system of
two conservation laws

(6.2) ∂tf0(U)+ ∂xf (U) = 0,

where f0, f : U → R
2 are smooth mappings defined on an open set U in R2 and

a 2 × 2 matrix f ′0(U) is assumed to be invertible. The problem of showing the
stability of shocks for (6.2) consists in finding a curve x : [0, T ] → R and U such
that U is C1 and solve (6.2) on

{(t, x) ∈ (0, T )×R | x < x(t)}
and

{(t, x) ∈ (0, T )×R | x > x(t)},

and satisfy the Rankine-Hugoniot condition

ẋ(f0(U|x=x(t)+0)− f0(U|x=x(t)−0)) = f (U|x=x(t)+0)− f (U|x=x(t)−0).

This condition can be split into a nonlinear transmission condition

Φ(U|x=x(t)−0 , U|x=x(t)+0) = 0

with Φ(ul, ur) = [f (ur)− f (ul)] · [f0(u
r)− f0(u

l)]⊥

and the evolution equation ẋ = χ(U|x=x(t)−0 , U|x=x(t)+0) with

(6.3) χ(ul, ur) = [f (ur)− f (ul)] · f0(ur)− f0(ul)

|f0(ur)− f0(ul)|2 .

Denoting A(U) = (f ′0(U))−1f ′(U), we are therefore led to consider the trans-
mission problem





∂tU +A(U)∂xU = 0 in (−∞, x(t)), for t ∈ (0, T ),
∂tU +A(U)∂xU = 0 in (x(t),+∞), for t ∈ (0, T ),
U|t=0 = uin(x) on R,

Φ(U|x=x(t)−0 , U|x=x(t)+0) = 0 on (0, T ).
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As for (3.12), we use the diffeomorphism (3.13) to recast this transmission prob-
lem as an initial boundary value problem

(6.4)





∂tu+A(u, ∂ϕ) ∂xu = 0 in ΩT ,
u|t=0 = uin on R+,
Φ(u|x=0) = 0 on (0, T ),

with x given by the resolution of

(6.5) ẋ = χ(u|x=0), x(0) = 0,

where χ is given by (6.3).
There are several kinds of shock. The most famous ones are the so-called Lax

shocks which move at a supersonic speed; more precisely, the number of positive
eigenvalues for A(u, ∂ϕ) in (6.4) is equal to one, and one boundary condition
is needed; it is provided by the condition Φ(u|x=0) = 0 in (6.4). There are also
undercompressive shocks that travel at a subsonic speed. The number of posi-
tive eigenvalues for A(u, ∂ϕ) in (6.4) is then equal to two, and two boundary
conditions are therefore necessary. One needs therefore an additional boundary
condition to the condition Φ(u|x=0) = 0 that comes from the Rankine-Hugoniot
condition. Also, using the result for N × N systems presented in Appendix C,
systems of more than two conservation laws could be considered.

6.2.1. The stability of Lax shocks. As said above, for Lax shocks, the num-
ber of positive eigenvalues for A(u, ∂ϕ) in (6.4) is equal to one; this corresponds
to p = 1 and condition (b) or (c) in Assumption 3.17. The Kreiss-Lopatinskĭı
condition in the third point of Assumption 3.17 is therefore scalar, so that the
condition can be written explicitly in the assumption below for right-going and
left-going Lax shocks where, for all function g defined on U , we use the notation

JgK = g(ur)− g(ul).

Assumption 6.3. Let Ũ and U be open sets in R2, and set U = Ũ × U rep-
resenting a phase space of u. Let ŨI ⊂ Ũ and UI ⊂ U be also open sets, and set
U I = ŨI ×UI representing a phase space of u|x=0 . The following conditions hold:

(i) A(u) = diag(−A(ul),A(ur)) ∈ C∞(U) and Φ, χ ∈ C∞(U I).
(ii) For any u = (ul, ur)T ∈ U , the matrix A(ul,r) has eigenvalues λ+(ul,r) and

−λ−(ul,r) with λ±(ul,r) > 0. Moreover, one of the following conditions for
all u = (ul, ur)T ∈ U I holds:
(a) Right-going Lax shock

{
λ±(ul)∓ χ(u) > 0 and λ+(ur)− χ(u) < 0,

|(f ′0(ul)e−(ul)) · Jf0K⊥| > 0.
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(b) Left-going Lax shock

{
λ−(ul)+ χ(u) < 0 and λ±(ur)∓ χ(u) > 0,

|(f ′0(ur)e+(ur)) · Jf0J⊥| > 0.

(iii) There exists a C∞-mapping Θ : U → R
4 such that it defines a diffeomorphism

from U onto its image and, for any u = (ul, ur)T ∈ U I , we have

Θ(u) = (Φ(u), χ(u),ur)T.

Remark 6.4. Up to shrinking Ũ and U, the third point is always satisfied.
Indeed, as noted in [Mét01], this follows from the local inversion theorem since
Θ′(u) is invertible at any point u satisfying Φ(u) = 0. To check this point, it
is enough to prove that the partial derivative of the mapping u ֏ (Φ(u), χ(u))
with respect to ul is invertible. Denoting by W(u) a 2× 2 matrix defined by

W(u)F =
(
F · Jf0K⊥,

1
|Jf0K|2

F · Jf0K
)T

,

this partial derivative is given by the linear mapping

u̇l
֏ (dulW(u)[u̇

l])Jf K−W(u)f ′(ul)u̇l

= χ(u)(dulW(u)[u̇
l])Jf0K−W(u)f ′0(ul)A(ul)u̇l;

by observing by differentiating the identity W(u)Jf0K = (0,1)T that

dulW(u)[u̇
l] Jf0K = W(u)f ′0(ul)u̇l,

the partial derivative can be written as

u̇l
֏ W(u)f ′0(u

l)(χ(u) Id−A(ul))u̇l,

which is invertible by the second point of Assumption 3.17.

We can now state the following stability result for Lax shocks.

Theorem 6.5. Letm ≥ 2 be an integer. Suppose that Assumption 6.3 is satisfied.
If uin ∈ Hm(R+) takes its values in K̃0 × K0 with K̃0 ⊂ Ũ0 and K0 ⊂ U0

compact and convex sets, if uin(0) ∈ U I , and if it satisfies the compatibility conditions
at order m − 1, then there exists T > 0 and a unique solution (u, x) to (6.4)–
(6.5) with u ∈ Wm(T) and x ∈ Hm+1(0, T ), and ϕ given by (3.13). Moreover,
u|x=0 ∈ Hm(0, T ).
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Remark 6.6. The stability of multi-dimensional shocks was proved by Ma-
jda in [Maj83a, Maj83b, Maj12], with improvements by Métivier [Mét01], and
independently by Blokhin [Blo81]. In space dimension one, this result shows the
stability in Wm(T) for m ≥ 3 provided that the data is in Hm+1/2(R+). Our
proof, which takes advantage of the specificities of the one-dimensional case, is
much more elementary and provides an improvement of these classical results
since we only need m ≥ 2 (and therefore one compatibility condition less) with
data in Hm(R+) (and therefore no loss of regularity).

Proof. There are two steps in the proof. We first transform the problem (6.4)
into an initial boundary value problem with a linear boundary condition, and
we then prove that Assumption 3.17 is satisfied so that we can conclude with
Theorem 3.19. Using the third point of Assumption 6.3, it is equivalent to solve
the initial boundary value problem satisfied by v = Θ(u), namely,

(6.6)





∂tv +A
♯(v, ∂ϕ) ∂xv = 0 in ΩT ,

v|t=0 = vin on R+,
e♯1 · v|x=0 = 0 on (0, T ),

with x given by the resolution of

ẋ = e♯2 · v|x=0 , x(0) = 0,

where (e♯1 , e
♯
2 , e

♯
3 , e

♯
4) denotes the canonical basis of R4 and

A
♯(v, ∂ϕ) = (dvΘ−1(v))−1

A(Θ−1(v), ∂ϕ)(dvΘ−1(v)).

In particular, the eigenvalues of A♯(v, ∂ϕ) are the same as those of A(u, ∂ϕ),
and if E is an eigenvector of A(u, ∂ϕ), then the corresponding eigenvector of
A
♯(v, ∂ϕ) is E♯ = Θ′(u)E. By the second point of Assumption 6.3, the system

(6.6) therefore satisfies condition (b) or (c) in Assumption 3.17, and the Lopatin-
skĭı matrix reduces to a scalar denoted L♯(v|x=0),

L♯(v|x=0) = e♯1 · E♯out(v|x=0),

where E♯out(v) is the eigenvector of A
♯(v, ∂ϕ) associated with its unique pos-

itive eigenvalue. From the discussion above, one has E♯out(v) = Θ′(u)Eout(u),
where Eout(u) is the eigenvector associated with the unique positive eigenvalue of
A(u, ∂ϕ). We have therefore

L♯(v) = Θ′(u)Te♯1 · Eout(u),

= ∇uΦ(u) · Eout(u).
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Let us assume for instance that the first condition holds in the second point of
Assumption 6.3 (the adaptation if the second condition holds is straightforward).
One then has

Eout(u) =
(

e−(ul)

0

)

(where as usual e−(ul) is the eigenvector associated with the eigenvalue −λ−(ul)

of A(ul)) and, with computations similar to those performed in Remark 6.4, we
obtain

L♯(v) = Jf0K⊥ · f ′0(ul)(χ(u) Id−A(ul))e−(ul)

= (χ(u)+ λ−(ul))Jf0K⊥ · f ′0(ul)e−(ul);

the second point of the assumption implies that this quantity is nonzero, and we
can therefore conclude with Theorem 3.19. ❐

6.2.2. The stability of undercompressive shocks. In some applications, one
can encounter shock waves that violate Lax’s conditions. This is, for instance, the
case for magnetohydrodynamics, or phase transitions in elastodynamics, or van
der Waals fluids. In the particular case of undercompressive shocks, Lax’s conditions
are violated but condition (a) is satisfied in Assumption 3.17. This means that
p = 2 (the number of positive eigenvalues for A(u, ∂ϕ) in (6.4) is equal to two),
and therefore that the system of equations (6.4)–(6.5) is now underdeterminated.
An additional boundary condition is therefore necessary.

This additional condition requires some additional modeling and depends on
the context: it often comes from considerations based on the theory of viscosity-
capillarity (see, e.g., [Sle83, Tru94] for isothermal phase transitions or [AK91] for
elastic rods). If such an additional boundary condition is provided and if it satisfies
an appropriate stability condition as in Section 3.4, then the undercompressive
shocks are stable. This extension of Majda’s work on Lax’s shock was proposed in
[Fre98], and studied in [CC99] in the one-dimensional case. The extension to
several dimensions was performed in [BG98] (derivation of the Kreiss-Lopatinskĭı
condition), [BG99] (linear estimates), and [Cou03] (nonlinear estimates). We
show here that the framework developed in Section 3.4 can be used to improve
these results for the stability of one-dimensional undercompressive shocks.

We shall consider here a general framework where the additional boundary
conditions we use to complement (6.4)–(6.5) is of the form

(6.7) Ψ(u|x=0) = 0,

where Ψ is a smooth function satisfying the assumption below. Note in particular
that for undercompressive shocks, the Lopatinskĭı matrix in the third point of
Assumption 3.17 is a 2 × 2 matrix; its invertibility corresponds to the condition
stated in the second point of the assumption below.
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Assumption 6.7. Let Ũ and U be open sets in R2, and set U = Ũ × U rep-
resenting a phase space of u. Let ŨI ⊂ Ũ and UI ⊂ U be also open sets, and set
U I = ŨI ×UI representing a phase space of u|x=0 . The following conditions hold:

(i) A(u) = diag(−A(ul),A(ur)) ∈ C∞(U) and Φ,Ψ , χ ∈ C∞(U I).
(ii) For any u = (ul, ur)T ∈ U , the matrix A(ul,r) has eigenvalues λ+(ul,r) and

−λ−(ul,r) with λ±(ul,r) > 0. Moreover, for any u = (ul, ur)T ∈ U I the
following conditions hold:

λ±(ul)∓ χ(u) > 0 and λ±(ur)∓ χ(u) > 0

and the Lopatinskiı̆ matrix




(χ(u)+ λ−(ul)) −(χ(u)− λ+(ur))
× (f ′0(ul)e−(ul)) · Jf0K⊥ × (f ′0(ur)e+(ur)) · Jf0K⊥

∇ulΨ · e−(ul) ∇urΨ · e+(ur)




is invertible.

(iii) There exists a C∞-mapping Θ : U → R
4 such that it defines a diffeomorphism

from U onto its image, and for all u = (ul, ur)T ∈ U I , we have

Θ(u) = (Φ(u),Ψ(u), θ(u))T

with a mapping θ : U → R
2.

Remark 6.8. Up to shrinking Ũ and U, the third point is always satisfied.
Indeed, the second point of the assumption shows that du(Φ,Ψ) has rank 2, so
that u֏ (Φ(u),Ψ(u)) can be completed to form a local diffeomorphism.

An easy adaptation of the proof of Theorem 6.5 yields the following sta-
bility result for undercompressive shocks. The same improvements as those de-
scribed in Remark 6.6 hold with respect the result obtained by considering the
one-dimensional case in [Cou03].

Theorem 6.9. Letm ≥ 2 be an integer. Suppose that Assumption 6.7 is satisfied.
If uin ∈ Hm(R+) takes its values in K̃0 × K0 with K̃0 ⊂ Ũ0 and K0 ⊂ U0

compact and convex sets, if uin(0) ∈ U I , and if it satisfies the compatibility conditions
at order m − 1, then there exists T > 0 and a unique solution (u, x) to (6.4)–(6.5)
complemented by (6.7), with u ∈ Wm(T) and x ∈ Hm+1(0, T ), and ϕ given by
(3.13). Moreover, u|x=0 ∈ Hm(0, T ).

APPENDIX A. REFORMULATION OF THE EQUATIONS OF MOTION

IN THE CASE OF AN OBJECT WITH PRESCRIBED MOTION

We will begin to show that (5.12) determines Zi(t, x) under the assumptions
that the center of mass is close to its initial position, that the rotational angle
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is small, and that Zlid ∈ Wm,∞(If). By extending Zlid outside of the interval If
appropriately, we can assume that Zlid ∈ Wm,∞(R). Then, we have the following
lemma.

Lemma A.1. Let m ≥ 1 be an integer and suppose Zlid ∈ C1 ∩ Wm,∞(R).
There exist θ0 ∈ (0, π/2) and ψlid ∈ C1 ∩Wm,∞

loc (R× [−δ0, δ0]) such that as long
as |θ(t)| ≤ θ0, we can solve (5.12) for Zi(t, x) uniquely in the form

(A.1) Zi(t, x) = ψlid(x − xG(t), θ(t))+ zG(t).

Proof. We consider an auxiliary function

Ψ(z,x, θ) = z cosθ − x sinθ + zG(0)
− Zlid(x cosθ + z sinθ + xG(0)),

which belongs to the class C1 ∩Wm,∞
loc (R3). For θ ∈ (−π/2, π/2), we see that

∂zΨ(z,x, θ) = cosθ − (∂xZlid)(x cosθ + z sinθ + xG(0)) sinθ

≥ (1− ‖∂xZlid‖L∞(R) tan |θ|) cosθ.

In view of this, we take θ0 ∈ (0, π/2) such that ‖∂xZlid‖L∞(R) tanθ0 < 1. Then, it
holds that ∂zΨ(z,x, θ) > 0 as long as |θ| ≤ θ0. Therefore, the implicit function
theorem gives the desired result. ❐

We proceed to solve the equations in the interior region (5.2). Let Ni be a
normal vector on the underside of the floating body and rG(t, x) a position vector
of the point on the underside of the body relative to the center of mass, that is,

Ni(t, x) =
(
−∂xZi(t, x)

1

)
, rG(t, x) =

(
x − xG(t)

Zi(t, x)− zG(t)

)
.

Here, we have ∂xr⊥G = Ni. Denoting

T(rG) =


−r⊥G

1
2
|rG|2


 ,

we have

∂xT(rG) =
(
−Ni

r⊥G ·Ni

)
.(A.2)

Let UG(t) = (uG(t),wG(t))T andω(t) be the velocity of the center of mass and
the angular velocity of the body, respectively, that is, uG = ∂txG, wG = ∂tzG, and
ω = −∂tθ. Differentiating (5.12) with respect to t and x, we see that

(A.3) ∂tZi = (UG −ωr⊥G) ·Ni = −∂x
((

UG
ω

)
·T(rG)

)
,



Hyperbolic Free Boundary Problems and Applications 453

which together with the continuity equation in (5.2) yields that there exists a
function q̄i(t) of t such that

(A.4) Qi(t, x) =
(

UG(t)
ω(t)

)
·T(rG(t, x))+ q̄i(t).

Plugging this into the momentum equation in (5.2), we see that P i satisfies a
simple boundary value problem




∂xP i = −

ρ

Hi
(∂tq̄i + F I + F II + F III) in I(t),

P i = Patm on Γ (t),
(A.5)

where 



F I(t, x) = ∂x
(
Qi(t, x)2

Hi(t, x)
+ 1

2
gH2

i

)
,

F II(t, x) =
(
∂tUG(t)
∂tω(t)

)
·T(rG(t, x)),

F III(t, x) =
(

UG(t)
ω(t)

)
· ∂tT(rG(t, x)).

In view of

∂tT(rG(t, x)) = M(rG(t, x),Nlid(t, x))

(
UG(t)
ω(t)

)
,

where

M(rG(t, x),Nlid(t, x)) =




ex ·Nlid 0 −r⊥G ·Nlid

1 0 0
−r⊥G ·Nlid 0 −(ez · rG)(r

⊥
G ·Nlid)




with ex = (1,0)T and ez = (0,1)T, we can rewrite F I and F III as




F I = q̄2
i ∂x

(
1
Hi

)
+ 2q̄i

(
UG
ω

)
· ∂x

(
T(rG)

Hi

)

+
(

UG
ω

)
·
(
∂x

(
T(rG)⊗T(rG)

Hi

))(
UG
ω

)
+ 1

2
g ∂x(H

2
i ),

F II =
(
∂tUG
∂tω

)
·T(rG), F III =

(
UG
ω

)
·M(rG, Nlid)

(
UG
ω

)
.

Notation A.2. For a function F = F(t, x), we set

〈F〉 = 1∫

I(t)
1
Hi

∫

I(t)
F

Hi
and F∗ = F − 〈F〉.
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We see easily that the boundary value problem (A.5) for P i is solvable if and
only if q̄i satisfies

∂tq̄i = −(〈F I〉 + 〈F II〉 + 〈F III〉)

= −q̄2
i

〈
∂x

(
1
Hi

)�
− 2q̄i

(
UG
ω

)
·
〈
∂x

(
T(rG)

Hi

)�

−
(

UG
ω

)
·
〈
∂x

(
T(rG)⊗T(rG)

Hi

)�(
UG
ω

)
− 1

2
g〈∂x(H2

i )〉

−
(
∂tUG
∂tω

)
· 〈T(rG)〉 −

(
UG
ω

)
· 〈M(rG, Nlid)〉

(
UG
ω

)
.

Thanks to Lemma A.1, this can be written in the form

∂tq̄i = F(q̄i, xG, zG, θ,UG,ω, ∂tUG, ∂tω,x−, x+)

with F in the class Wm,∞ under the assumption Zlid ∈ Wm,∞(If). As in the
previous section, we use the same diffeomorphism ϕ(t, ·) : E → E(t) defined
by (5.7) to transform the equations in exterior region (5.1) and set ζe = Ze ◦ϕ,
he = He ◦ϕ, qe = Qe ◦ϕ, ζi = Zi ◦ϕ, and qi = Qi ◦ϕ. We remind the reader
here that Zi and Qi are given by (A.1) and (A.4), respectively. Now, as claimed in
Section 5.3.1, the problem under consideration is reduced to





∂
ϕ
t ζe + ∂ϕx qe = 0 in E,

∂
ϕ
t qe + 2

qe

he
∂
ϕ
x qe +

(
ghe −

q2
e

h2
e

)
∂
ϕ
x ζe = 0 in E,

ζe = ζi, qe = qi on ∂E,

and
∂t q̄i = −(〈F I〉 + 〈F II〉 + 〈F III〉).

APPENDIX B. REFORMULATION OF THE EQUATIONS OF MOTION

IN THE CASE OF A FREELY FLOATING OBJECT

As before, we can solve the equations in the interior region (5.2). Because of
Lemma A.1, we can express Zi in terms of xG, zG, θ, and Zlid as (A.1). By the
continuity equation in (5.2), there exists a function q̄i(t) of t such that Qi is
expressed as (A.4). Then, by the momentum equation in (5.2), the pressure P i

satisfies the boundary value problem (A.5), whose solvability is guaranteed by
(5.14). Then, P i satisfies

∂xP i = −
ρ

Hi
((F I)∗ + (F II)∗ + (F III)∗).
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On the other hand, by using (A.2) and integration by parts we can rewrite (5.17)
as

(
m Id2×2 0

0 i0

)
∂t

(
UG
ω

)
=
(
−mgez

0

)
+
∫

I(t)
(∂xP i)(T(rG))

∗,

where we used the boundary condition P i = Patm on Γ (t). Eliminating the pres-
sure P i from these two equations, we have

(
m Id2×2 0

0 i0

)
∂t

(
UG
ω

)

=
(
−mgez

0

)
− ρ

∫

I(t)
((F I)∗ + (F II)∗ + (F III)∗)

(T(rG))∗

Hi
.

Here, we see that
∫

I(t)
(F II)∗

(T(rG))∗

Hi
=
∫

I(t)
(T(rG))∗ ⊗ (T(rG))∗

Hi
∂t

(
UG
ω

)
,

so that

(M0 +Ma(Hi, rG)) ∂t

(
UG
ω

)
=

=
(
−mgez

0

)
− ρ

∫

I(t)
((F I)∗ + (F III)∗)

(T(rG))∗

Hi
,

where

M0 =
(
mI2×2 0

0 i0

)
, Ma(Hi, rG) = ρ

∫

I(t)
(T(rG))∗ ⊗ (T(rG))∗

Hi
,

and




(F I)∗ = q̄2
i

(
∂x

(
1
Hi

))∗
+ 2q̄i

(
UG
ω

)
·
(
∂x

(
T(rG)

Hi

))∗

+
(

UG
ω

)
·
(
∂x

(
T(rG)⊗ T(rG)

Hi

))∗ (UG
ω

)
+ 1

2
g(∂x(H

2
i ))

∗,

(F III)∗ =
(

UG
ω

)
· (M(rG, Nlid))

∗
(

UG
ω

)
.

Remark B.1. We note that the matrixMa(Hi, rG) is symmetric and nonneg-
ative, so that M0 +Ma(Hi, rG) is positive definite and invertible. Expressing the
contribution of the force F II under the form

Ma(Hi, rG) ∂t

(
UG
ω

)
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plays therefore a stabilizing effect which corresponds to the added-mass effect
of paramount importance for the study of fluid-structure interactions (see, e.g.,
[CGN05, GMS14]).

As before, we use the diffeomorphism ϕ(t, ·) : E → E(t) defined by (5.7) to
transform the equations in exterior region (5.1), and set ζe = Ze ◦ϕ, he = He ◦ϕ,
qe = Qe ◦ ϕ, ζi = Zi ◦ ϕ, and qi = Qi ◦ ϕ. We remind the reader here that
Zi and Qi are given by (A.3) and (A.4), respectively. Now, the problem under
consideration is reduced to





∂
ϕ
t ζe + ∂ϕx qe = 0 in E,

∂
ϕ
t qe + 2

qe

he
∂
ϕ
x qe +

(
ghe −

q2
e

h2
e

)
∂
ϕ
x ζe = 0 in E,

ζe = ζi, qe = qi on ∂E,

∂t q̄i = −(〈F I〉 + 〈F II〉 + 〈F III〉),(B.1)

∂t

(
UG
ω

)
= (M0 +Ma(Hi, rG))

−1
{(−mgez

0

)
(B.2)

− ρ
∫

I(t)
((F I)∗ + (F III)∗)

(T(rG))∗

Hi

}
.

APPENDIX C. THE INITIAL BOUNDARY VALUE PROBLEM FOR

N ×N SYSTEMS

3.1. Variable coefficients linear N ×N initial boundary value problems.
We consider here an initial boundary value problem for N ×N linear hyperbolic
systems with arbitrary N ≥ 2,

(C.1)





∂tu+A(t,x) ∂xu+ B(t, x)u = f (t, x) in ΩT ,
u|t=0 = uin(x) on R+,
Np(t)u|x=0 = g(t) on (0, T ),

where u, uin, and f are RN-valued functions, g is a Rp-valued function, while A
and B take their values in the space of N × N real-valued matrices. The matrix
Np(t) that appears in the transmission condition is of size p × N, where p (the
number of scalar transmission conditions) depends on the sign and multiplicity of
the eigenvalues of A (see Notation C.2 below). We assume A is diagonalizable and
noncharacteristic with eigenvalues of constant multiplicity in the following sense.

Assumption C.1. There exists c0 > 0 such that the following assertions hold:

(i) A ∈ W 1,∞(ΩT ), B ∈ L∞(ΩT ), Np ∈ C([0, T ]).
(ii) For any (t, x) ∈ ΩT , the matrix A(t,x) is diagonalizable with p̃ positive

and q̃ negative eigenvalues (possibly of multiplicity greater than one),

−λ−,q̃(t, x) < · · · < −λ−,1(t, x) < λ+,1(t, x) < · · · < λ+,p̃(t, x),
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and satisfying the separation property

λ±,1(t, x) ≥ c0 and λ±,k(t, x)− λ±j(t, x) ≥ c0 if k > j.

(iii) The multiplicitym±,j of the eigenvalues ±λ±,j(t, x) is independent of t and
x.

We shall also need the following notation.

Notation C.2. Assume that Assumption C.1 holds. We make the following
denotations:

(i) We denote by (e(1)±,j(t, x), . . . , e
(m±,j)
±,j (t, x)) an orthonormal basis of the

eigenspace corresponding to ±λ±,j(t, x).
(ii) We denote by Ep(t) the p ×N matrix, with p = ∑p̃

j=1m+,j , formed by

all the eigenvectors e(k)+,j(t,0) corresponding to the positive eigenvalues of
A(t,0),

Ep(t) =
(
e(1)+,1(t,0) · · · e

(m+,1)
+,1 (t,0) e(1)+,2(t,0) · · · e

(m+,p̃)
+,p̃ (t,0)

)
.

We can now formulate the Kreiss-Lopatinskĭı condition associated with the
initial boundary value problem (C.1).

Assumption C.3. Assume that Assumption C.1 holds and, moreover, that
(i) For any t ∈ [0, T ] we have

det(Np(t)Np(t)
T) ≥ c0.

(ii) The p × p Lopatinskiı̆ matrix Lp(t) = Np(t)Ep(t)—where Ep(t) is as in
Notation C.2—is invertible and for any t ∈ [0, T ] we have

‖Lp(t)−1‖Rp→Rp ≤ 1
c0
.

We can now state the following generalization of Theorem 2.5 to the case of
N × N systems. Here again, the compatibility conditions are not made explicit
because they can be obtained as for Definition 2.8.

Theorem C.4. Let m ≥ 1 be an integer, T > 0, and assume Assumptions C.1
and C.3 are satisfied for some c0 > 0. Assume, moreover, there are constants 0 < K0 ≤
K such that





1
c0
, ‖A‖L∞(ΩT ), |Np|L∞(0,T) ≤ K0,

‖A‖W 1,∞(ΩT ), ‖B‖L∞(ΩT ), ‖(∂A, ∂B)‖Wm−1(T), |Np|Wm,∞(0,T) ≤ K.

Then, for any data uin ∈ Hm(R+), g ∈ Hm(0, T ) and f ∈ Hm(ΩT ) satisfying the
compatibility conditions up to orderm−1, there exists a unique solution u ∈ Wm(T)
to the initial boundary value problem (C.1). Moreover, the estimates provided in the
statement of Theorem 2.5 remain valid.
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Theorem C.4 is proved exactly as Theorems 2.5 and 3.5 under the following
assumption.

Assumption C.5. There exists a symmetric matrix S(t, x) ∈MN(R) such that,
for any (t, x) ∈ ΩT , the matrix S(t, x)A(t, x) is symmetric and the following con-
ditions hold:

(i) There exist constants α0, β0 > 0 such that for any (v, t, x) ∈ RN ×ΩT , we
have

α0|v|2 ≤ vTS(t, x)v ≤ β0|v|2.

(ii) There exist constants α1, β1 > 0 such that for any (v, t) ∈ RN × (0, T ), we
have

vTS(t,0)A(t,0)v ≤ −α1|v|2 + β1|Np(t)v|2.

(iii) There exists a constant β2 such that

‖∂tS + ∂x(SA)− 2SB‖L2→L2 ≤ β2.

The only thing to prove is therefore that Assumption C.5 is fulfilled under the
assumptions made in the statement of Theorem C.4. This is done in the following
lemma.

Lemma C.6. Let c0 > 0 be such that Assumptions C.1 and C.3 are satisfied.
There exist a symmetrizer S ∈ W 1,∞(ΩT ) and constants α0, α1 and β0, β1, β2 such
that Assumption C.5 is satisfied. Moreover, we have

c0 ≤ C
(

1
c0
,‖A|t=0‖L∞(R+)

)

c1 ≤ C
(

1
c0
,‖A‖L∞(ΩT ), |Np|L∞(0,T)

)
,

where c0 and c1 are as defined in Proposition 3.7, and we also have

β2

β0
≤ C

(
1
c0
,‖A‖W 1,∞(ΩT ),‖B‖L∞(ΩT )

)
.

Proof. Most of the proof is similar to the proof of Lemma 2.19 and Proposi-
tion 2.20, and we therefore omit the details. The only new point is to show that
it is possible to construct a symmetrizer S satisfying (ii) in Assumption C.5. We
show here how to prove this point, namely, that there exist constants α1, β1 > 0
such that for any (v, t) ∈ RN × (0, T ), we have

vTS(t,0)A(t,0)v ≤ −α1|v|2 + β1|Np(t)v|2.
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Under the assumptions made in the statement of the lemma, we can decompose
A as

A =
p̃∑

j=1

λ+,jπ+,j −
q̃∑

j=1

λ−,jπ−,j,

where π±,j denote the eigenprojectors associated with ±λ±,j. We construct the
symmetrizer S in the form

S =
p̃∑

j=1

(π+,j)Tπ+,j +M
q̃∑

j=1

(π−,j)Tπ−,j,

for someM > 0 large enough to be determined below. It follows that

SA =
p̃∑

j=1

λ+,j(π+,j)Tπ+,j −M
q̃∑

j=1

λ−,j(π−,j)Tπ−,j.

We begin to show that for v ∈ kerNp(t) we have

|v|2 ≤ −CvT(SA)(t,0)v.

For any v ∈ RN , we have

−vTSAv = −
p̃∑

j=1

λ+,j|π+,jv|2 +M
q̃∑

j=1

λ−,j|π−,jv|2,

so that if we decompose v as

v =
p̃∑

j=1

m+,j∑

k=1

c(k)+,je
(k)
+,j +

q̃∑

j=1

m−,j∑

k=1

c(k)−,je
(k)
−,j ,(C.2)

and because |π±,jv|2 =
∑m±,j
k=1 |c(k)±,j|2, we have

−vTSAv = −
p̃∑

j=1

λ+,j

m+,j∑

k=1

|c(k)+,j|2 +M
q̃∑

j=1

λ−,j

m−,j∑

k=1

|c(k)−,j|2.

Now, if we suppose that v ∈ kerNp(t) we have, by (C.2),

p̃∑

j=1

m+,j∑

k=1

c(k)+,jNpe(k)+,j = −
q̃∑

j=1

m−,j∑

k=1

c(k)−,jNpe(k)−,j .
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Introducing c+ := (c(1)+,1, . . . , c
(m+,1)
+,1 , c(1)+,2, . . . , c

(m+,p̃)
+,p̃ )T ∈ Rp, we can rewrite this

relation as

Lpc+ = −
q̃∑

j=1

m−,j∑

k=1

c(k)−,jNpe(k)−,j.

By the invertibility assumption of the Lopatinskĭı matrix Lp, this yields that for
some constant C depending only on |Np|L∞(0,T) and 1/c0, one has

p̃∑

j=1

m+,j∑

k=1

|c(k)+,j|2 ≤ C
q̃∑

j=1

m−,j∑

k=1

|c(k)−,j|2,

or equivalently,

p̃∑

j=1

|π+,jv|2 ≤ C
q̃∑

j=1

|π−,jv|2.

Therefore, if we take M sufficiently large, then for any v ∈ kerNp(t) we have

|v|2 ≤ −CvT(SA)(t,0)v.

Next, we will show that for any v ∈ RN we have

vT(SA)(t,0)v ≤ −α1|v|2 + β1|Np(t)v|2.

To this end, we use the assumption that

|det(Np(t)Np(t)T)| ≥ c0.

This condition means that the p×N matrix Np(t) has rank p uniformly in time.
For any v ∈ RN , we decompose it as

v = v1 + v2 with v2 = NT
p (NpN

T
p )
−1Npv.

Then, we have
v1 ∈ kerNp, Npv = Npv2,

so that

|v|2 ≤ C(|v1|2 + |v2|2)
≤ −CvT

1 SAv1 + C|v2|2

= −C(v − v2)
TSA(v − v2)+ C|v2|2

≤ −CvTSAv + 1
2
|v|2 + C|v2|2.

Since |v2| ≤ C|Npv|, we obtain the desired estimate. ❐
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3.2. Application to quasilinear N ×N initial boundary value problems.
As done in Section 2.2 for 2×2 initial boundary value problems and in Section 3.2
for 2 × 2 transmission problems, we can use the linear estimates of Theorem C.4
to solve N ×N quasilinear problems. More specifically, let us consider

(C.3)





∂tu+A(u)∂xu+ B(t, x)u = f (t, x) in ΩT ,
u|t=0 = uin(x) on R+,
Np(t)u|x=0 = g(t) on (0, T ),

where u, uin and f are RN-valued functions, and g is a Rp-valued function, while
A(u) and B take their values in the space ofN×N real-valued matrices and Np is a
p×N matrix, where p is the number of outgoing characteristics (i.e., the number
of positive eigenvalues of A(u) counted with their multiplicity).

Notation C.7. An N × p matrix Ep(u|x=0) is formed as in Notation C.2
with the eigenvectors associated with the positive eigenvalues of A(u|x=0), and we
define the Lopatinskĭı matrix by Lp(t,u|x=0) = Np(t)Ep(u|x=0).

We also make the following assumption on the hyperbolicity of the system
and on the boundary condition.

Assumption C.8. Let U be an open set in RN representing a phase space of u
such that the following conditions hold:

(i) A ∈ C∞(U), B ∈ L∞(ΩT ), Np ∈ C([0, T ]).
(ii) For any u ∈ U, the matrix A(u) is diagonalizable with p̃ positive and q̃

negative eigenvalues (possibly of multiplicity greater than one),

−λ−,q̃(u) < · · · < −λ−,1(u) < λ+,1(u) < · · · < λ+,p̃(u),

and satisfying the separation property

λ±,1(u) ≥ c0 and λ±,k(u)− λ±j(u) ≥ c0 if k > j.

Moroever, the multiplitym±,j of the eigenvalues ±λ±,j(u) is independent of
u.

(iii) For any t ∈ [0, T ] and any u ∈ U, the boundary matrix Np(t)Np(t)T and
the Lopatinskiı̆ matrix Lp(t,u) are invertible.

The main result is the following. The compatibility conditions mentioned in
the statement of the theorem can be obtained as for Definition 2.27. The result
can be deduced from Theorem C.4 in the same way that Theorems 2.25 and 3.12
were deduced from Theorems 2.5 and 3.5, respectively, and we therefore omit the
proof.

Theorem C.9. Let m ≥ 2 be an integer, T > 0, and assume Assumption C.8
is satisfied. Assume, moreover, that ∂B ∈ W

m−1(T), and Np ∈ Wm,∞(0, T ). If
uin ∈ Hm(R+) takes its values in a compact and convex set K0 ⊂ U, and if the
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data uin, f ∈ Hm(ΩT ), and g ∈ Hm(0, T ) satisfy the compatibility conditions up
to order m − 1, then there exist T1 ∈ (0, T ] and a unique solution u ∈ Wm(T1) to
the initial boundary value problem (C.3). Moreover, the trace of u at x = 0 belongs
to Hm(0, T1), and |u|x=0 |m,T1 is finite.

Remark C.10.

(i) Generalizations to nonlinear boundary conditions can be derived in the
spirit of Theorem 2.25.

(ii) Generalizations to the case of a moving or free boundary can straightfor-
wardly be adapted from what we have done in the previous sections for
2× 2 initial boundary value and transmission problems. The only reason
for this restriction to 2 × 2 configurations is that they are adapted to our
physical motivations in waves-structure interactions, and because the no-
tation in the general N × N configurations would have been quite heavy
to handle.
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[Fre98] HEINRICH FREISTÜHLER, Some results on the stability of non-classical shock waves, J. Partial
Differential Equations 11 (1998), no. 1, 25–38. MR1618406.
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Keio University 351 Cours de la Libération
3-14-1 Hiyoshi, Kohoku-ku 33405 Talence Cedex, France
Yokohama 223-8522, Japan E-MAIL: David.Lannes@math.u-bordeaux.fr

E-MAIL: iguchi@math.keio.ac.jp

Received: June 17th, 2018.

http://dx.doi.org/10.1090/memo/0275
http://www.ams.org/mathscinet-getitem?mr=683422
http://dx.doi.org/10.1007/978-1-4612-1116-7
http://dx.doi.org/10.1007/978-1-4612-1116-7
http://www.ams.org/mathscinet-getitem?mr=748308
http://www.ams.org/mathscinet-getitem?mr=1842775
http://dx.doi.org/10.1007/978-0-8176-8214-9
http://www.ams.org/mathscinet-getitem?mr=2151414
http://dx.doi.org/10.1016/j.jcp.2011.08.028
http://dx.doi.org/10.1016/j.jcp.2011.08.028
http://www.ams.org/mathscinet-getitem?mr=2872078
http://dx.doi.org/10.1002/mma.1482
http://www.ams.org/mathscinet-getitem?mr=3108820
http://www.ams.org/mathscinet-getitem?mr=0797053
http://dx.doi.org/10.2307/1996861
http://dx.doi.org/10.2307/1996861
http://www.ams.org/mathscinet-getitem?mr=340832
http://www.ams.org/mathscinet-getitem?mr=834481
http://dx.doi.org/10.1007/BF00250857
http://dx.doi.org/10.1007/BF00250857
http://www.ams.org/mathscinet-getitem?mr=683192
http://dx.doi.org/10.1007/BF03167287
http://www.ams.org/mathscinet-getitem?mr=1337204
http://dx.doi.org/10.1007/BF01135253
http://dx.doi.org/10.1007/BF01135253
http://www.ams.org/mathscinet-getitem?mr=1285921

	1. Introduction
	1.1. General setting.
	1.2. Organization of the paper.
	1.3. General notation.

	2. Hyperbolic Initial Boundary Value Problems witha Free Boundary
	2.1. Variable coefficients linear 22 initial boundary value problems.
	2.2. Application to quasilinear 22 initial boundary value problems.
	2.3. Variable coefficients 22 initial boundary value problems on moving domains.
	2.4. Application to free boundary problems with a boundary equation of ``kinematic'' type.
	2.5. Application to free boundary problems with a fully nonlinear boundary equation.

	3. Transmission Problems
	3.1. Variable coefficients linear 22 transmission problems.
	3.2. Application to quasilinear 22 transmission problems.
	3.3. Variable coefficients 22 transmission problems on moving domains.
	3.4. Application to free boundary transmission problems with a transmission condition of ``kinematic'' type.

	4. Waves Interacting with a Lateral Piston
	4.1. Presentation of the problem.
	4.2. Reformulation of the equations.
	4.3. Compatibility condition.
	4.4. Local well-posedness.

	5. Shallow Water Model witha Floating Body on the Water Surface
	5.1. Presentation of the equations for the water.
	5.2. The case of a fixed floating body.
	5.3. The case of a floating body with a prescribed motion.
	5.4. The case of a freely floating body.

	6. Several Examples of Transmission Problems
	6.1. Systems of conservation laws with discontinuous flux.
	6.2. Stability of one-dimensional shocks.

	Appendix A. Reformulation of the Equations of Motionin the Case of an Object with Prescribed Motion
	Appendix B. Reformulation of the Equations of Motionin the Case of a Freely Floating Object
	Appendix C. The Initial Boundary Value Problem forNN Systems
	3.1. Variable coefficients linear NN initial boundary value problems.
	3.2. Application to quasilinear NN initial boundary value problems.
	Acknowledgements.

	References

