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Abstract
We present a new method for the numerical implementation of generating
boundary conditions for a one dimensional Boussinesq system. This method
is based on a reformulation of the equations and a resolution of the dispersive
boundary layer that is created at the boundary when the boundary conditions are
non homogeneous. This method is implemented for a simple first order finite
volume scheme and validated by several numerical simulations. Contrary to
the other techniques that can be found in the literature, our approach does not
cause any increase in computational time with respect to periodic boundary
conditions.

Keywords: Boussinesq system, generating boundary condition, dispersive
boundary layer, initial boundary value problem, finite volume method

Mathematics Subject Classification numbers: 35, 65.

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. General setting

Among the many reduced models used to describe the evolution of waves at the surface of a
fluid in shallow water, the nonlinear shallow water equations are certainly one of the most used
for applications. They can be written in conservative form as
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⎧⎪⎨
⎪⎩
∂tζ + ∂xq = 0,

∂tq + ∂x

(
1
2

gh2 +
1
h

q2

)
= 0,

(1)

where ζ is the surface elevation above the rest state and q the horizontal discharge (equivalently,
the vertical integral of the horizontal velocity), and where h = H0 + ζ is the total water depth
(H0 being the depth at rest) and g the acceleration of gravity.

For many applications, the surface elevation is known at the entrance of the domain (through
buoy measurements for instance, or it can be provided by offshore swell models) and is imposed
as a boundary condition for the model

ζ(t, x = 0) = f (t), for all t � 0, (2)

as well as the initial values for q and ζ in the domain,

(ζ, q)(t = 0, x) = (ζ0, q0)(x), for all x � 0; (3)

this type of boundary condition is often referred to as generating boundary condition (see for
instance [13]). It is used a lot in coastal oceanography, where the offshore swell is imposed at
the entrance of the domain of interest (see for instance the classical benchmark [12]).

The problem consisting in solving (1) together with (2) and (3) is a mixed initial-boundary
value problem (IBVP); due to its hyperbolic nature, it can be solved theoretically (see for
instance [23, 25], and more recently [16] for sharp well-posedness results). From the numerical
viewpoint, solving this IBVP is also possible, using the decomposition of the solution into
Riemann invariants (see for instance [24]).

The nonlinear shallow water equations provide a robust model used in many applications;
it is known [2, 15, 18, 19] to provide an approximation of the full free surface Euler equations
with a precision O(μ), where μ = H2

0/L2 is the shallowness parameter (L denotes here the typi-
cal horizontal scale of the waves). It omits however the dispersive effects that play an important
role in coastal areas, in particular in the shoaling zone; in order to take them into account, one
has to keep the O(μ2) terms that are neglected in the derivation of the nonlinear shallow water
equations. The most simple models that reach such a precision and therefore take into account
the dispersive effects while retaining nonlinear terms are the so-called Boussinesq models.
There are actually many asymptotically equivalent Boussinesq models [8–10]; their simplicity
is due to the fact that they are derived under the assumption that the waves are of small ampli-
tude compared to the depth, which allows to neglect some of the nonlinear terms (without this
assumption, one has to work with the much more complicated Serre–Green–Naghdi equations,
see [18] for instance). We choose here to work with the so-called Boussinesq–Abbott model
[1, 14] since its structure is obviously a dispersive perturbation of the nonlinear shallow water
equations, ⎧⎪⎨

⎪⎩
∂tζ + ∂xq = 0,(

1 − H2
0

3
∂2

x

)
∂tq + ∂x

(
1
2

gh2 +
1
h

q2

)
= 0, (h = H0 + ζ)

(4)

(removing the dispersive term −H2
0

3 ∂2
x∂tq, this model reduces to (1)). As above, we are inter-

ested in the IBVP for this system, we therefore complement it with the boundary condition
(2) and initial condition (3). Contrary to (1), this system is no longer hyperbolic, and there
is no general theory to address the IBVP. Only some particular cases have been considered,
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such as in [28] with homogeneous boundary conditions, [3, 7] for a particular class of Boussi-
nesq systems (the Bona-Smith family) where a regularizing dispersion is also present in the
first equation, [22] for a higher order Boussinesq system or [21] for the shoreline problem
(vanishing depth).

Due to its importance for numerical simulations in coastal oceanography, there has been a
significant amount of work devoted to finding numerical answers to this issue in recent years.
For the related problem of transparent boundary conditions in particular (i.e. which boundary
conditions should be put at the boundary of the computational domain so that waves can pass
through this artificial boundary without being affected by it), the linear problem has been con-
sidered for scalar equations (such as KdV or BBM) in [4, 5] as well as for the linearization of
(4) around the rest state. For the nonlinear case, a different approach has been used recently,
which consists in implementing a perfectly matched layer (PML) approach for a hyperbolic
relaxation of the Green–Naghdi equations [17]. This approach can be used to deal with gen-
erating boundary conditions such as (2) but the size of the layer in which the PML approach
is implemented is typically of two wavelength, which for applications to coastal oceanogra-
phy can typically represent an increase of 100% of the computational domain. Other methods
such as the source function method [27] also require a significant increase of computational
time.

Our goal in this note is to propose a new approach to the nonlinear Boussinesq system (4)
with generating boundary condition (2) and initial condition (3), and which does not require any
extension of the computational domain. It is based in a reformulation of the problem (2)–(4)
into a non-homogeneous system of conservation laws for ζ and q with a nonlocal flux, and
with a source term accounting for the dispersive boundary layer,⎧⎪⎨

⎪⎩
∂tζ + ∂xq = 0,

∂tq + ∂xR1

(
1
2

g(h2 − H2
0) +

1
h

q2

)
= Q(q, f, f̈, ζ, q) exp

(
−
√

3
x

H0

)
,

(5)

where q = q|x=0 and

Q(q, f, f̈, ζ, q) =

√
3

H0

q2

H0 + f
+

H0√
3

f̈ +
g
√

3
H0

(H0 +
1
2

f ) f

−
√

3
H0

R1

(
1
2

g(h2 − H2
0) +

1
h

q2

)
, (6)

with the initial condition

(ζ, q)(t = 0, x) = (ζ0, q0)(x), q(t = 0) = q0(x = 0), (7)

and the boundary condition

ζ(t, x = 0) = f (t); (8)

here, we denoted by R1 the inverse of the operator (1 − H2
0

3 ∂2
x ) on R+ with homogeneous Neu-

mann boundary condition, and R1 f = (R1 f )|x=0 (see definition 1 below). The source term in
the equation for q is a dispersive boundary layer that appears because the time derivative of the
trace q of q at x = 0 does not necessarily vanish.

We propose here a simple numerical scheme based on this new formulation of the problem
(which we prove to be well-posed), very easy to implement and that does not require to work on
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an extended computational domain. The ability of this method to handle generating boundary
conditions with a very good precision is illustrated by several computations where nonlinear
and dispersive terms both play an important role.

1.2. Organization of the paper

We describe in this paper how to handle a generating boundary condition on the left border
of the computational domain. For the sake of clarity, we consider the problem on the half line
(0,∞) so that we do not have to deal with boundary conditions at the right boundary; for our
numerical simulations, we either consider a domain that is large enough so that the influence of
the right boundary condition is negligible, or take a wall boundary condition q = 0 on the right
boundary (of course, a generating boundary condition on the right-boundary can be handled
by a straightforward adaptation of what is done at the left boundary).

In section 2 we briefly recall the theory and numerical simulation of generating boundary
conditions for the nonlinear shallow water equations in order to make clear that different mech-
anisms are at stake in the hyperbolic (shallow water) and dispersive (Boussinesq) cases. Note
in particular that for the hyperbolic case considered in this section, the missing data at the
boundary (i.e. the trace of the discharge q at x = 0) is deduced from the value at the boundary
of the outgoing Riemann invariant which can itself be determined in terms of interior values
by solving the characteristic equation.

In section 3 we consider generating boundary conditions for the Boussinesq system (4). In
order to make more apparent the structure of the dispersive boundary layer we shall construct,
we first non-dimensionalize the equations in section 3.1. The main step of the analysis is per-
formed in section 3.2 where the dispersive boundary layer is constructed and the reformulation
(5) of the problem is derived. This reformulation is used in section 3.3 to prove the local well-
posedness of the IBVP for the Boussinesq system (4) with generating boundary condition (2)
which, to our knowledge, was not known so far. A discretization of the reformulation (5) is
then proposed in section 3.4; for the sake of clarity, it is based on the standard Lax–Friedrichs
scheme. It is not possible to recover the missing boundary data using Riemann invariants as
in the hyperbolic case, but the nonlocality of the operator R1 allows us to express this missing
information in terms of interior values. We insist on the fact that our numerical treatment of the
generating boundary condition does not increase the computational time compared to simple
boundary conditions (periodic, physical well, etc), contrary to the previously used approaches
mentioned in the introduction.

Finally, we provide in section 4 several numerical computations showing the accuracy of
our numerical scheme. Our validation method is first presented in section 4.1; it consists in
computing a reference solution in a large domain [−L, L] with a very refined mesh, and to use
the values of the water elevation at x = 0 provided by this solution as a generating boundary
condition for computations on the small domain [0, L]. The accuracy of this new solution is
measured by comparing it with the reference solution. A first example is provided in section 4.2
in a situation where both incoming and outgoing waves are present. In section 4.3 we show
that the Boussinesq system (4) admits solitary waves, and that we are able to generate them
with good accuracy using the corresponding generating boundary condition. We then provide
in section 4.4 another example, relevant for applications to coastal oceanography [6, 20, 26],
which consists in the generation of a sinusoidal wave train.

1.3. Notations

For the numerical computations, the computational domain [0, L] is discretized using a uniform
grid:
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x0 = 0, x1 = δx , . . . , xi = iδx , . . . , xnx−1 = (nx − 1)δx, xnx = L,

with δx =
L
nx

. The time step is denoted δt. The variables ζn
i and qn

i denote the values of the
numerical solution for ζ and q at the time n δt and at the location xi. Generally speaking, the
subscript i and the superscript n indicate respectively a discretization at the location xi and at
the time n δt.

2. The nonlinear shallow water equations

We recall that the nonlinear shallow water (or Saint-Venant) equations are a system of equations
coupling the surface elevation ζ above the rest state to the horizontal discharge q,

⎧⎪⎨
⎪⎩
∂tζ + ∂xq = 0,

∂tq + ∂x

(
1
2

gh2 +
1
h

q2

)
= 0,

(h = H0 + ζ). (9)

This system of equations is complemented by the initial and boundary conditions

(ζ, q)(t = 0, x) = (ζ0, q0)(x), ζ(t, x = 0) = f (t). (10)

For the sake of completeness and as a basis for comparisons with the dispersive (Boussinesq)
case, we briefly recall here how this problem can be handled numerically.

2.1. The Riemann invariants

The nonlinear shallow water equation (9) can be written under an equivalent quasilinear form
by introducing the vertically averaged horizontal velocity u,

u =
q
h

with h = H0 + ζ.

The resulting system of equations on (ζ, u) is given by

{
∂tζ + ∂x(hu) = 0,

∂tu + g∂xζ + u∂xu = 0
(11)

or, in more condensed form,

∂tU + A(U)∂xU = 0 with U = (ζ, u)T and A(U) =

(
u h
g u

)
. (12)

The matrix A(U) is diagonalizable with eigenvalues λ+(U) and −λ−(U) and associated left-
eigenvectors e±(U) given by

λ±(U) = ±u +
√

gh and e±(U) =

(√
g
h

,±1

)T

.
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Taking the scalar product of (12) and e±(U), we obtain

(√
g
h
∂th ± ∂tu

)
± (±u +

√
gh)

(√
g
h
∂xh ± ∂xu

)
= 0.

This leads us to introduce the Riemann invariants R± as

R±(U) := 2
(√

gh −
√

gH0

)
± u, (13)

which satisfy the transport equations

∂tR+ + λ+(U)∂xR+ = 0, ∂tR− − λ−(U)∂xR− = 0. (14)

These Riemann invariants play a central role in the numerical resolution of the IBVP (9) and
(10) presented below.

2.2. The discrete equations

Writing U = (ζ, q)T, we first write (9) in the condensed form,

∂tU + ∂x (F(U)) = 0 with F =

(
q,

1
2

g(h2 − H2
0) +

1
h

q2

)T

, (15)

for which a finite volume type discretization gives

Un+1
i − Un

i

δt
+

1
δx

(Fn
i+1/2 − Fn

i−1/2) = 0, i � 1, (16)

the choice of Fn
i+1/2 depending on the numerical scheme. Our focus here being on explaining

how to handle the boundary condition (10), we consider here the most simple case of the
Lax–Friedrichs scheme where the discrete flux is given by

Fn
i−1/2 =

1
2

(Fn
i + Fn

i−1) − δx

2δt
(Un

i − Un
i−1), i � 1, (17)

with Fn
i = F(Un

i ). For i = 1, this equation involves Un
0 that we need to express in terms of

Un = (Un
i )1�i and the initial-boundary condition (10), which, in discrete form, reads

(ζ0
i , q0

i ) = (ζ0, q0)(xi) (i � 1), ζn
0 = f n := f (tn), (18)

with tn := nδt; this is done in the following section.

2.3. Data on the water depth on the left boundary

For i = 1, the flux F1/2 requires the knowledge of Un
0 = (ζn

0 , qn
0). From the initial-boundary

condition (18), one takes

ζn
0 = f n,
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but we need to determine qn
0, which can be deduced from the knowledge of Rn

±,0 :=R±(tn, 0).
From (13) one gets indeed

q =
h
2

(R+ − R−) and R+ + R− = 4
(√

gh −
√

gH0

)
and therefore

q = h
(

2(
√

gh −
√

gH0) − R−

)
.

Evaluating this relation at x = 0 provides an expression for the trace q = q|x=0 in terms of the
boundary data f = ζ|x=0 and of the trace of the outgoing Riemann invariant R−,

q = (H0 + f )
(

2
(√

g(H0 + f ) −
√

gH0

)
− R−|x=0

)
(19)

and at the discrete level, we get at t = tn

qn
0 = (H0 + f n)

(
2(
√

g(H0 + f n) −
√

gH0) − Rn
−,0

)
. (20)

Therefore, we just need to determine Rn
−,0 in order to determine qn

0. We use the characteristic
equation (14) satisfied by R−; after discretization, this gives

Rn
−,0 − Rn−1

−,0

δt
− λn−1

−
Rn−1
−,1 − Rn−1

−,0

δx
= 0;

as in [24], λn−1
− is computed as a linear interpolation between λ−(Un−1

0 ) and λ−(Un−1
1 ),

λn−1
− = (1 − αn−1)λ−(Un−1

0 ) + αn−1λ−(Un−1
1 )

and 0 � αn−1 � 1 computed such that λn−1
− δt = αn−1 δx . Therefore

Rn
−,0 = (1 − λn−1

−
δt

δx
)Rn−1

−,0 + λn−1
−

δt

δx
Rn−1
−,1 , (21)

which gives Rn
−,0 in terms of its values at the previous time step and in terms of interior points.

3. The Boussinesq equations

We consider here the following Boussinesq–Abbott system [1, 14], which includes the
dispersive effects neglected by the nonlinear shallow water equation (1)⎧⎪⎨

⎪⎩
∂tζ + ∂xq = 0,

(1 − H2
0

3
∂2

x )∂tq + ∂x

(
1
2

gh2 +
1
h

q2

)
= 0, (h = H0 + ζ),

(22)

complemented with the initial and boundary conditions

(ζ, q)(t = 0, x) = (ζ0, q0)(x), ζ(t, x = 0) = f (t). (23)
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The key step in our analysis is the reformulation of this IBVP into a system of two
conservation laws with nonlocal flux and a source term accounting for the presence of a
dispersive boundary layer, and whose coefficient is found through the resolution of a nonlinear
ODE.

In order to make clearer the structure of the dispersive boundary layer, we work with a
dimensionless version of (4). The non-dimensionalization is performed in section 3.1. The
reformulation of the equations is then derived in section 3.2 and a numerical scheme based on
this newly exhibited structure is proposed in section 3.4.

3.1. Dimensionless equations

Denoting by a the typical amplitude of the waves, by L its typical horizontal scale, we introduce
the following dimensionless quantities, denoted with a prime,

x′ =
x
L

, t′ =
t

L/
√

gH0
, ζ ′ =

ζ

a
, u′ =

u
a

H0

√
gH0

, h′ = 1 + εζ ′.

Replacing in (22) (and omitting the primes for the sake of clarity), we obtain the dimensionless
version of the Boussinesq equation

⎧⎪⎨
⎪⎩
∂tζ + ∂xq = 0,

(1 − μ

3
∂2

x )∂tq + ∂x

(
1
2ε

h2 + ε
1
h

q2

)
= 0,

(24)

where ε and μ are respectively called nonlinearity and shallowness parameters and defined as

ε =
a

H0
, μ =

H2
0

L2
;

the Boussinesq equations are derived in the shallow water, weakly nonlinear regime character-
ized by the assumptions

μ � 1 and ε = O(μ). (25)

Under these smallness assumptions, the Boussinesq model (24) provides an approximation
consistent with the full free surface Euler equations up to O(μ2) and the convergence error is
of order O(μ2t) for times of order O(1/ε) [2, 18, 19].

3.2. Reformulation of the equations

Solving the equation (24) on the full line requires the inversion of the operator (1 − μ
3 ∂

2
x ),

which does not raise any difficulty. The situation is different here since we need to invert this
operator on the half-line (0,∞), and we therefore need a boundary condition on ∂tq which is
not directly at our disposal. Our strategy is, as in [11] for the description of the interaction of a
floating objects with waves governed by a Boussinesq model, to use the inverse of the operator
(1 − μ

3∂
2
x ) with homogeneous Dirichlet boundary condition, and to construct the dispersive
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boundary layer due to the fact that the boundary value q of q is not equal to zero in general;
we shall denote

q(t) = q(t, x = 0),

and we also need to define the Dirichlet and Neumann inverses of the operator (1 − μ
3∂

2
x ).

Definition 1. We denote by R0 and R1 the inverse of the operator (1 − μ
3∂

2
x ) with homoge-

neous Dirichlet and Neumann boundary conditions respectively,

R0 :
L2(R+) → H2(R+)

g �→ u,
where

⎧⎨
⎩(1 − μ

3
∂2

x )u = g,

u(0) = 0,

and

R1 :
L2(R+) → H2(R+)

g �→ v,
where

⎧⎨
⎩(1 − μ

3
∂2

x )v = g,

∂xv(0) = 0.

We also introduce the boundary operator R1 as

R1 :
L2(R+) → R

g �→ (R1g)|x=0.

Recalling that the ODE

Y − μ

3
Y ′′ = g, Y(0) = Y0

admits a unique solution in H2(R+) given by

Y(x) = (R0g)(x) + Y0 exp
(
− x
δ

)
with δ =

√
μ

3
,

the second equation in (24) can be written equivalently under the form

∂tq = −R0∂x

(
1
2ε

h2 + ε
1
h

q2

)
+ q̇ exp

(
− x
δ

)
. (26)

The last step is therefore to express q̇ in terms of the data f = ζ|x=0 of the problem. This is
done in the following proposition.

Proposition 1. If (ζ , q) are a smooth enough solution of (24), then the boundary value q of
q are related to the boundary value f = ζ|x=0 and to the interior value of ζ and q by solving
the ODE

q̇ − ε

δ

q2

1 + ε f
= δ f̈ +

1
δ

(1 +
ε

2
f ) f − 1

δ
R1

(
1
2ε

(h2 − 1) + ε
1
h

q2

)
,

where R1 is the boundary operator introduced in definition 1.
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Proof. Differentiating (26) with respect to x, one obtains

∂t∂xq = −∂xR0∂x

(
1
2ε

(h2 − 1) + ε
1
h

q2

)
− 1

δ
q̇ exp

(
− x
δ

)
. (27)

Lemma 1. For all g ∈ L2(R+), the following identity holds,

R0∂xg = ∂xR1g.

Proof of the lemma. Just remark that if v = R1g, then one easily gets from the definition
of R1 that ⎧⎨

⎩(1 − μ

3
∂2

x )(∂xv) = ∂xg,

(∂xv)(0) = 0,

so that, by definition of R0, one has ∂xv = R0∂xg (note that by classical variational arguments,
R0 is well defined as a mapping ∂xL2(R+) → H1(R+)). �

Using the first equation of (24) to substitute ∂t∂xq = −∂2
t ζ and the lemma, one then deduces

from (27) that

−∂2
t ζ = −∂2

x R1

(
1
2ε

(h2 − 1) + ε
1
h

q2

)
− 1

δ
q̇ exp

(
− x
δ

)
.

Remarking further that −∂2
x = 1

δ2 (1 − μ
3∂

2
x ) − 1

δ2 and recalling that (1 − μ
3 ∂

2
x )R1 = Id, we

obtain that

∂2
t ζ =

1
δ2

(R1 − Id)

(
1
2ε

(h2 − 1) + ε
1
h

q2

)
+

1
δ

q̇ exp
(
− x
δ

)
.

Taking the trace of this expression at x = 0 then yields

f̈ +
1
δ2

(1 +
ε

2
f ) f =

1
δ2

[
R1

(
1
2ε

(h2 − 1) + ε
1
h

q2

)]
|x=0

+
1
δ

q̇ − ε

δ2

q2

1 + ε f
,

from which the result follows. �
Using once again the lemma to replace R0∂x by ∂xR1 in (26), it follows from the above that

the dimensionless Boussinesq equation (24) with initial and boundary conditions (23) can be
equivalently written under the form⎧⎨

⎩
∂tζ + ∂xq = 0,

∂tq + ∂xR1f(ζ, q) = Q(q, f, f̈, ζ, q) exp
(
− x
δ

)
,

(28)

where q = q|x=0 and f(ζ, q) is the flux in the momentum equation for the nonlinear shallow
water equation (1) in dimensionless variables,

f(ζ, q) :=
1
2ε

(h2 − 1) + ε
1
h

q2,
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and

Q(q, f, f̈, ζ, q) =
ε

δ

q2

1 + ε f
+ δ f̈ +

1
δ

(1 +
ε

2
f ) f − 1

δ
R1f(ζ, q), (29)

with the initial condition

(ζ, q)(t = 0, x) = (ζ0, q0)(x) (30)

and the boundary condition

ζ(t, x = 0) = f (t). (31)

Remark 1. Recalling that by definition of R1, the trace of ∂xR1f vanishes at x = 0, one can
take the trace at x = 0 in the second equation in (28) to obtain the following evolution equation
on q = q|x=0 ,

q̇ = Q(q, f, f̈, ζ, q). (32)

This relation has to be compared to (19) in the hyperbolic case, where q is given in terms of
f = ζ|x=0 and the trace of the outgoing Riemann invariant R−. The mechanisms that allow
to express q in terms of f and interior values of ζ and q are therefore completely different
in the hyperbolic and in the dispersive cases: in the former, the decomposition into Riemann
invariants is used to propagate information from the interior domain, while in the latter, this is
done by using the non local nature of the operator R1.

3.3. Well-posedness of the initial boundary value problem

As said in the introduction, very few results exist regarding the local well-posedness result for
Boussinesq systems, except in some special cases such as [3, 28]. To our knowledge, no result
exist so far for the Boussinesq–Abbott system considered here. Our reformulation (28)–(30)
of this IBVP allows an easy proof of local well-posedness since it forms a simple ODE on (ζ, q)
(here again, this is in strong contrast with the hyperbolic case where, of course, the equations
cannot be recast as an ODE).

Theorem 1. Let f ∈ C2(R+), n ∈ N\{0} and (ζ0, q0) ∈ Hn(R+) × Hn+1(R+) be such that
inf(1 + εζ0) > 0. Then there exist T > 0 and a unique solution (ζ, q) ∈ C1([0, T]; Hn(R+) ×
Hn+1(R+)) to (28)–(30).

If moreover ζ0
|x=0

= f (0) and −∂xq0
|x=0

= ḟ (0), then the boundary condition (31) is also
satisfied for all times.

Remark 2. The existence time furnished by the theorem depends on ε and μ. The relevant
time scale for the existence of the solution is O(1/ε) in the case of the full line [2, 18]. Proving
that such a time scale is also achieved in our case would require much more effort and an in
depth analysis of the dispersive boundary layer together with additional compatibility condi-
tions. Such a study is performed in [11] in the related problem of waves interaction with a
floating object in the Boussinesq regime.

Proof. To prove the first part of the theorem, it is enough to prove that (28)–(30) is actually
an ODE on Hn(R+) × Hn+1(R+) meeting the requirements of the Cauchy–Lipschitz theorem.

6878



Nonlinearity 33 (2020) 6868 D Lannes and L Weynans

With U = (ζ, q)T we can write the equations under the form

∂tU = F (t, U) with F (t, U) =

(
−∂xq

−∂xR1f(ζ, q) +Q(q, f, f̈, ζ, q) exp(− x
δ

)

)
.

By standard product estimates, (ζ, q) ∈ Hn × Hn+1 �→ f(ζ, q) ∈ Hn is regular in a neighbor-
hood of (ζ0, q0); moreover, ∂xR1 maps Hn into Hn+1 by definition of R1. It follows easily that
F (t, U) is continuous and locally Lipschitz with respect to the second variable, so that we can
apply Cauchy–Lipschitz theorem.

We now need to check that ζ(t, 0) = f(t) for all time. In order to do so, one computes from
the first equation in (28) that ∂2

t ζ = −∂t∂xq. Using the second equation to compute ∂t∂xq and
taking the trace at x = 0 one gets (proceeding as in the proof of proposition 1) that

d2

dt2
(ζ|x=0) = f̈ +

1
δ2

(
f( f , q) − f(ζ|x=0 , q)

)
.

This can be seen as a second order non-autonomous ODE on ζ|x=0 with a right-hand side that
is locally Lipschitz with respect to ζ|x=0 . There is therefore a unique solution to this ODE satis-
fying the initial conditions ζ|x=0 (0) = f (0) and d

dt (ζ|x=0)(0) = −∂xq0(0) = ḟ (0). This solution
is obviously given by ζ|x=0 = f , so that the proof is complete. �

3.4. Discretization of the equations

The goal of this section is to derive a numerical scheme to solve the initial boundary value
problem (28)–(31).

3.4.1. A discrete version of the operators R1 and R1. We still denote by R1 the discrete inverse
of the operator (1 − μ

3∂
2
x ) with homogeneous Neumann condition at the boundary. We use here

a standard centered second order finite difference approximation for the discretization of ∂2
x .

More precisely, if F = ( f i)i�1, we denote by R1F the vector R1F = V where V = (vi)i�1 is
given by the resolution of the equations

vi −
μ

3
vi+1 − 2vi + vi−1

δ2
x

= f i, i � 2

while, for i = 1 the Neumann boundary condition is taken into account as follows,

v1 −
μ

3
v2 − v1

δ2
x

= f1.

Similarly, we still denote by R1 the discrete version of the boundary operator R1, naturally
defined by the second order approximation

R1F = v1.

3.4.2. A finite volume scheme with nonlocal flux. We first rewrite (28) in the condensed form

∂tU + ∂x

(
Fμ(U)

)
= S (33)

with U = (ζ , q)T and

Fμ(U) =
(
q, fμ(U)

)T
, (34)
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and where

fμ(U) = R1f(U) and f(U) :=
1
2ε

(h2 − 1) + ε
1
h

q2,

(f(U) is the flux in the momentum equation for the nonlinear shallow water equation (1) in
dimensionless variables). The flux in (33) is therefore a nonlocal operator with respect to U.
The source term S in (33) is given by

S =

(
0

Q(q, f, f̈, ζ, q) exp(− x
δ

)

)
, (35)

where we recall that Q(q, f, f̈, ζ, q) is defined in (29).
Using a finite volume type discretization for the (33) and a standard Euler scheme for the

ODE on q, we obtain the following general discretization of the Boussinesq system (28),

Un+1
i − Un

i

δt
+

1
δx

(Fn
μ,i+1/2 − F

n
μ,i−1/2) = Sn

i , i � 1, n � 0, (36)

where Un = (ζn, qn)T = (ζn
i , qn

i )T
i�1 and the source term Sn

i is being given by

Sn
i =

(
0

Q(qn
0, f n, f̈ n, ζn, qn) exp(− xi

δ
)

)
(37)

(note that the definition for the discretized version of Q can straightforwardly be deduced from
(29) along the lines of section 3.4.1; see also remark 3 below). The source term involves the
quantity qn

0 which cannot be computed by induction through (36) since in (36), one assumes
that i � 1. However, a direct discretization of (32) yields

qn+1
0 − qn

0

δt
= Q(qn

0, f n, f̈ n, ζn, qn), n � 0. (38)

It remains of course to explain how to compute the discrete fluxes Fμ,i+1/2. As above for the
nonlinear shallow water equations, we consider here the simplest case of the Lax–Friedrichs
scheme where the discrete flux is given by

Fn
μ,i−1/2 =

1
2

(Fn
μ,i + Fn

μ,i−1) − δt

2δx
(Un

i − Un
i−1), (39)

where we write, when i � 1,

Fn
μ,i =

(
qn

i , fnμ,i

)T
with fnμ :=R1

(
f(Un

i )
)

i�1
, (40)

the discrete operator R1 being constructed as in section 3.4.1.
When i = 0, this definition is naturally adapted as follows,

Fn
μ,0 =

(
qn

0, fnμ,0

)T
with fnμ,0 :=R1

(
f(Un

i )
)

i�1
, (41)

the discrete boundary operator R1 being constructed as in section 3.4.1 while qn
0 is provided by

(38).

Remark 3. The quantity Q(qn
0, f n, f̈ n, ζn, qn) that appears in the right-hand side of the

momentum equation in (36) and in the discrete ODE (38) for qn
0 can be written using the
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notation (41) as

Q(qn
0, f n, f̈ n, ζn, qn) =

ε

δ

(qn
0)2

1 + ε f n
+ δ f̈ n +

1
δ

(1 +
ε

2
f n) f n − 1

δ
fnμ,0.

All these quantities are already known so that handling generating boundary condition can be
done with no extra computational cost compared to, say, periodic boundary conditions.

4. Numerical validations

4.1. The validation method

Since the implementation of reflecting or periodic boundary conditions does not raise any
problem for the Boussinesq equation (24) we compute first a solution UL = (ζL, qL)T of the
equations under consideration in a larger domain [−L, L] until a final time T f , with reflective
or periodic boundary conditions at both extremities, and with a non trivial initial condition. We
then define a reference solution as the restriction of UL on [0, L], and boundary data f as

Uref = (ζref, qref)T :=UL
|[0,L]

and f (t) := ζL(t, x = 0).

We then use the scheme presented in section 3.4 to compute the solution U of the Boussinesq
system (24) with initial data U0(x) = Uref (t = 0, x) and boundary data f, and compare it with
the reference solution Uref . We define in particular the errors eζδx

(t) and eq
δx

(t) as

eζδx
(t) = ‖ζ(t, ·) − ζref(t, ·)‖L∞(0,L), eq

δx
(t) = ‖q(t, ·) − qref(t, ·)‖L∞(0,L), (42)

and we compute the overall errors eζδx
and eq

δx
on [0, Tf] as

eζδx
= ‖eζδx

(·)‖L∞(0,Tf), eq
δx
= ‖eq

δx
(·)‖L∞(0,Tf).

The convergence order p is computed with a least-squares linear regression, whose coefficient
is plotted on the error curves.

4.2. Propagation of Gaussian initial conditions

We recall that the Boussinesq equation (24) are derived under the smallness assumption (25)
on ε and μ. We consider here the approximation error in different cases,

(I) ε = μ = 0.3, (II) ε = μ = 0.1, (III) ε = μ = 0.01,

the nonlinear and dispersive effect become more important when ε and μ respectively become
larger; in particular, the configuration (I) is quite stiff and in the limit of the range of validity
of the Boussinesq equations (for strong nonlinearities, one should rather work with the more
complicated Serre–Green–Naghdi equations [18, 19]).

The initial datum for UL in the larger domain is

ζL(t = 0, x) = e−6(x+0.1L)2
+ e−6(x−0.3L)2

; (43)

qL(t = 0, x) = e−6(x+0.1L)2 − e−6(x−0.3L)2
. (44)

The reference solution is computed with the Lax–Friedrichs scheme with non local flux
introduced above, on the domain [−L, L], with a very refined mesh: nx = 3600, and a time
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Figure 1. Numerical results on large domain with δx = L/400, with L = 5, μ = ε =
0.3, at times T = 0.1, 1., 1.5.

Figure 2. Convergence results for Boussinesq equations, μ = ε = 0.3.

step δt = 0.9 δx in agreement with the CFL condition computed from the approximated
velocities of the Riemann invariants. We take L = 5. We compute the numerical solution
with the nonlocal Lax–Friedrichs scheme in the domain [0, L], on coarser meshes: nx =
90, 120, 150, 180, 200, 300, 360, 450. The meshes are defined so that the points of the coarse
meshes always coincide with the points of the finer mesh. The boundary conditions at x = 0
are taken into account by imposing the reference solution and its second-order time derivative
approximated with the classical centered second-order scheme.

As the initial data is zero near the boundaries of the large domain, no special effort is nec-
essary for the computation with the coarse mesh at the right boundary x = L if the final time
of the simulation is not too large. We shall compare the solution over a time interval t ∈ [0, 2].
The qualitative behavior of the solution is the following: each of the two gaussians decomposes
into two waves roughly traveling at speed 1 and −1 respectively. The gaussian located on the
left being closer to the boundary x = 0 of the small domain, this configuration is rich enough
to contain the three main relevant cases,

(a) the forcing f corresponds to an essentially incoming wave. This is the situation that occurs
for t ∼ 0.1 (see figure 1 left)

(b) the forcing f corresponds to the superposition of an outgoing and an incoming wave. This
is the situation that occurs for t ∼ 1 (see figure 1 middle)

(c) the forcing f corresponds to an essentially outgoing wave. This is the situation that occurs
for t ∼ 1.5 (see figure 1 right).
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Figure 3. Convergence results for Boussinesq equations, μ = ε = 0.1.

Figure 4. Convergence results for Boussinesq equations, μ = ε = 0.01.

Numerical results for the initial condition (43) and (44) are presented on figures 2–4, in
logarithmic scale with the slope obtained from a linear regression. On figure 2, corresponding
to the case μ = ε = 0.3, the slope of the linear regression obtained with all error points is
completed with the slope of the linear regression obtained with the four more refined error
points. Globally, a first-order convergence in space is observed for both variables.

4.3. Soliton propagation

We test here our scheme on the propagation of a solitary wave, which involves both nonlinear
and dispersive effects. The soliton for the nonlinear Boussinesq system (24) is not explicit,
but we compute it by solving numerically a second-order differential equation that we obtain
as follows. We look for a solution of the nonlinear Boussinesq equations such that ζ(x, t) =
ζ̃(x − ct) and q(x, t) = q̃(x − ct). We inject this form in the first equation of (24) and find,
omitting the tilde symbol for the sake of brevity

q′ = c ζ ′.

Then we inject this relationship in the second equation of (24), integrate in space, and we can
write (imposing that ζ vanishes at infinity),
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Figure 5. Validation of convergence of soliton propagation in the large domain, L∞

error, μ = ε = 0.3.

Figure 6. Validation of convergence of soliton propagation in the large domain, L∞

error, μ = ε = 0.1.

−c2 ζ

1 + εζ
+

c2 μ

3
ζ ′′ +

ε2 ζ2 + 2 ε ζ
2ε

= 0. (45)

Multiplying this equation by ζ ′ and using again that ζ tends to zero when x tends to ±∞, we
obtain

−c2

ε

(
ζ − ln(1 + εζ)

ε

)
+

c2μ

6
(ζ ′)2 +

ε

2
ζ3

3
+

ζ2

2
= 0.

Denoting ζmax the maximum value of ζ we can compute c as a function of ζmax and ε.

c2 = ε
εζ3

max
6 + ζ2

max
2

ζmax − ln(1+εζmax)
ε

.

Once c is computed, we solve the differential equation (45) with a high order numerical method
in order to obtain our reference solution. We choose ζmax = 1 and μ = ε = 0.3 or 0.1. We have
checked that if we solve the Boussinesq system with this reference solution as an initial datum,
with the nonlocal Lax–Friedrichs scheme and periodic boundary conditions, the numerical
results show a first order convergence: see figures 5 and 6. The space steps δx were computed
as δx = L/nx , with nx = 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000.
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Figure 7. Soliton: comparison between reference solution and numerical result for ζ
on the small domain at final time, δx = L/200 with L = 10, left: μ = ε = 0.3, right:
μ = ε = 0.1.

Figure 8. Convergence study for the soliton case, L∞ error, μ = ε = 0.3.

To test the imposition of the generating boundary condition we compute the numerical solu-
tion of the soliton on the small domain [0, L] with L = 10. We use the nonlocal Lax–Friedrichs
scheme and a constant time step δt = 0.8 δx for μ = ε = 0.3, and δt = 0.9 δx for μ = ε = 0.1,
taking into account the values of the approximated eigenvalues. The space step is computed
as δx = L/nx , with nx = 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000. The maximum of
the soliton is initially located on the left of the computational domain, at x = −L/2, so that
the initial datum in the small domain is almost zero, and then the soliton propagates inside it.
The boundary conditions on the left boundary of the small domain are taken into account by
imposing the reference solution and its second-order time derivative approximated with the
classical centered second-order scheme. As the initial datum is zero near the right boundary
x = L, no special effort is necessary for the computation at this boundary if the final time of
the simulation is not too large. The values of ζ in the small domain at the final time for the
reference solution and the numerical solution are plotted on figure 7. The numerical results are
presented on figures 8 and 9. On figure 9, the slope of the linear regression obtained with all
error points is completed with the slope of the linear regression obtained with the four more
refined error points. Globally a first-order convergence is observed when the grid is sufficiently
refined.
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Figure 9. Convergence study for the soliton case, L∞ error, μ = ε = 0.1.

Figure 10. Sinusoidal boundary condition: comparison between reference solution and
numerical result for ζ on the small domain at final time T f = 15, δx = 2L/150, 2L/400
with L = 10, left: μ = ε = 0.3, right: μ = ε = 0.1. (The numerical solution with δx =
2L/3600 coincide with the reference solution)

4.4. Sinusoidal boundary condition

We consider the cases

(I) ε = μ = 0.3, (II) ε = 0.1, μ = 0.3

(III) ε = μ = 0.1, (IV) ε = μ = 0.01.

Note that case (II) with different values of ε and μ has been added here for its relevance
for applications in coastal oceanography where a sinusoidal swell is imposed at the entrance
of the domain in a region not so shallow (so that μ is not very small) but the waves are of
small amplitude (they become bigger in the shoaling phase, nearer to the shore), so that ε is
small.

We first compute a numerical solution UL with a very refined mesh (nx = 3600) on a larger
domain [−L, L], with L = 10, with the Lax–Friedrichs scheme and a time step δt = 0.9 δx .
The initial condition for UL in the larger domain is

ζL(t = 0, x) = 0; (46)

qL(t = 0, x) = 0, (47)
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Figure 11. Convergence study for the sinusoidal boundary condition, L∞ error, μ = ε =
0.3.

Figure 12. Convergence study for the sinusoidal boundary condition, L∞ error, μ =
0.3, ε = 0.1.

and we impose until the final time T f = 15 the generating boundary condition

ζ(t, x = −L) = sin(2πt/5).

We define the reference solution on the slightly smaller domain [−0.8 L, L]

Uref = (ζref, qref)T :=UL
|[−0.8 L,L]

and f (t) := ζL(t, x = −0.8 L).

Then we compute a solution with coarse meshes on this smaller domain [−0.8 L, L]. The
boundary conditions at x = −0.8 L are taken into account by imposing the reference solution
and its second-order time derivative approximated with the classical centered second-order
scheme. No special effort is necessary for the computation with the coarse mesh at the right
boundary x = L until the final time T f = 15. The values of ζ in the small domain at the final
time for the reference solution and the numerical solution are plotted on figure 10. Because
there is numerical dissipation, the numerical solution has a smaller amplitude than the ref-
erence solution after some time of propagation inside the small domain, but both solutions
coincide well near the left boundary. The error between the reference solution and the solu-
tion on the coarse mesh is computed near the left boundary on the interval [−0.8 L,−0.6 L]
in order to measure the error due to the generating boundary condition rather than the dis-
sipation error inherent to the Lax–Friedrichs scheme (which is stronger in this numerical

6887



Nonlinearity 33 (2020) 6868 D Lannes and L Weynans

Figure 13. Convergence study for the sinusoidal boundary condition, L∞ error, μ = ε =
0.1.

Figure 14. Convergence study for the sinusoidal boundary condition, L∞ error at final
time, μ = ε = 0.01.

test than in the previous ones due to the fact the the reference solution involves higher
frequencies).

The numerical results for the cases (I) and (II) are presented on figures 11 and 12. The
space steps δx were chosen as δx = 2L/nx , with nx = 100, 120, 150, 200, 240, 300, 360,
400, 600, 720, 900. On both figures the slope of the linear regression obtained with all error
points is completed with the slope of the linear regression obtained with the three more refined
error points. The numerical results for the cases (III) and (IV) are presented on figures 13 and
14. The space steps δx were chosen as δx = 2L/nx , with nx = 90, 100, 120, 150, 200, 240,
300, 360, 400. Globally, a first-order convergence is observed when the grid is sufficiently
refined.
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