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Abstract. The frequency and the direction of propagation of an oscil-
latory wave train may be read on its oscillatory spectrum. Many works
in geometrical optics allow the study of at most countable oscillatory
spectra. In these works, the number of directions of propagation is
therefore at most countable, while many physical effects would require a
continuous infinity of directions of propagation. The goal of this paper
is to make the nonlinear geometrical optics for wave trains with such a
continuous oscillatory spectrum. This requires the introduction of new
spaces, which are Wiener algebras associated to spaces of vector-valued
measures with bounded total variation. We also make qualitative studies
on the properties of wave trains with continuous oscillatory spectrum,
and on the incidence of the nonlinearity on such oscillations. We finally
suggest an application of the results of this paper to the study of both
the spontaneous and the stimulated Raman scatterings.

1. Introduction

1.1. Need for continuous oscillating spectra. Geometrical optics are
used in the study of the propagation of oscillations by semilinear hyperbolic
systems. Until now, the general frame in the modeling of the oscillations
was furnished by periodic or almost-periodic functions (see [11, 12]), whose
oscillating spectrum plays an important role in such a study.

Let u be an almost-periodic function of RD with values in C,

a(x) =
∑
β∈RD

aβe
iβ·x,

satisfying
∑

β∈RD |aβ | < ∞. Its oscillating spectrum is given by σ(a) :=
{β ∈ RD, aβ 6= 0}, and is therefore at most countable. That is why the
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almost-periodic frame allows us only to study oscillations whose oscillat-
ing spectrum is at most countable, when various physical phenomena would
require “oscillations” whose spectrum is a continuous subset of the char-
acteristic variety associated to the problem. This is the case for instance
of many scattering effects due to parametric instabilities of electromagnetic
waves in plasmas (see [7]): Brillouin and Raman scattering, Compton scat-
tering, etc. In fact, light scattering is likely to furnish many examples which
require such “oscillations.”

In this paper, we describe two examples of conical emission, the sponta-
neous and the stimulated Raman scattering.

1.2. Spontaneous and stimulated Raman scattering. When an inci-
dent laser beam of given frequency ωL meets a Raman-scattering medium,
one assists to the creation of scattered light (see [4, 17]); the emission is then
nearly isotropic.

The scattered light may have two frequencies, denoted by ωS and ωa,
which correspond to Raman-Stokes and Raman-anti-Stokes scattering. One
has ωS < ωL < ωa. Normally, Stokes lines are more intense than anti-Stokes
lines, but remain quite weak. However, when the laser beam becomes very
intense, the scattering may grow very efficient and is then called stimulated
Raman-scattering. The light is then emitted in a narrow cone in the forward
and in the backward directions.

In order to explain both effects, we use the three-level Maxwell-Bloch
model. Then any beam of frequency ω and wave number k must satisfy
(ω, k) ∈ C, where C is the characteristic variety associated to this model.

Take now a scattered Stokes light beam for instance; its frequency is
ωS , and it can be emitted in any direction k such that (ωS , k) ∈ C. The
set {(ωS , k), (ωS , k) ∈ C} should therefore be the oscillating spectrum of
the scattered beam, and is usually a continuous (and hence not countable)
subset of C. Using almost-periodic functions to describe this phenomenon
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would give priority to a countable (though possibly dense; see [15]) number of
directions of propagation, without any physical reason. We will also see how
the amplification in the stimulated Raman effect may be seen as a nonlinear
instability. We will detail these examples at the end of this paper.

1.3. Modeling. We briefly introduce here the framework we use in our
study. This framework should allow us to take into account both discrete
and continuous spectra. Take again an almost-periodic function u of RD
with values in C,

a(x) =
∑
β∈RD

aβe
iβ·x with

∑
β∈RD

|aβ | <∞.

Its Fourier transform λ := Fxa is a measure of bounded variation,

λ = Fxa =
∑
β∈RD

aβδβ ,

where δβ is the Dirac delta function with mass at β. Its oscillating spectrum
is given by σ(u) = Supp λ; this fact will be used to introduce continuous
oscillating spectra.

Almost-periodic functions are inverse Fourier transforms of bounded vari-
ation measures, and their oscillating spectrum is the support of this Fourier
transform. That is why we will consider the Wiener algebra of functions
whose Fourier transform is a measure of bounded variation. The support
of such measures can be either countable or continuous, thus providing a
general frame for the study of oscillations.

2. Preliminaries in vector-measure theory

2.1. Total variation. In this section and in the following, B will denote a
Banach space. A B-valued Borel measure on RD is a countably additive set
function λ defined on B(RD) (the Borel sets of RD), with values in B. To
any B-valued Borel measure λ, we can associate a positive Borel measure
v(λ), called the total variation of λ, and defined for all Borel sets E as

v(λ)(E) = sup
n∑
i=1

‖λ(Ei)‖B,

where the supremum is taken over all finite sequences {Ei} of disjoint sets
in B(RD) with Ei ⊂ E.

The set function λ is of bounded variation if v(λ)(RD) < ∞. We denote
by BV(RD, B) the set of all B-valued Borel measures of bounded variation



734 david lannes

on RD. The total variation induces a norm on the space BV(RD, B), defined
as |λ|BV := v(λ)(RD), for all λ ∈ BV(RD, B).

The normed vector space (BV(RD, B), | · |BV) is then a Banach space.

2.2. Integration in Banach spaces. The Bochner integral (see [8]) is usu-
ally used when integrating vector functions with respect to scalar measures.
When integrating scalar functions with respect to vector measures, a Dun-
ford integral ([3, 9]) is generally used. In this paper we have to deal with
those two cases. We even need to integrate vector functions with respect to
vector measures, and that is why we will use the general Bartle integral (see
[1]), which generalizes the Bochner and Dunford integrals. Unless otherwise
specified, the results stated in this section may be found in [1]. In this sec-
tion, B1, B2 and B3 will denote three Banach spaces, and we assume that
there is a bilinear mapping (x, y) 7→ x · y, defined on B1 × B2 with values
in B3, such that ‖x · y‖B3 ≤ k‖x‖B1‖y‖B2 for some fixed, positive number
k. The Bartle integral provides an integration of B1-valued functions with
respect to B2-valued measures.

Let λ be an element of BV(RD, B2). We first define the integration of
λ-simple functions. Let f : RD → B1 be a λ-simple function

f =
n∑
i=1

xiχEi ,

where the xi are elements of B1 and the Ei are disjoint Borel sets of RD.
For any Borel set E of RD, we define the integral of f over E by∫

E
f(z)λ(dz) :=

n∑
i=1

xi · λ(Ei ∩ E).

This is an element of B3 which does not depend on the representation we
have chosen for f . This integral is extended to a broader class of functions
than the λ-simple functions.

Proposition 1. f is said to be λ-integrable if and only if there exists a
sequence {fn} of λ-simple functions such that

- fn converges to f λ-almost-everywhere,
- the sequences λn(E) :=

∫
E fn(z)λ(dz) converges in B3 for all E ∈

B(RD).
The integral of f over E is then defined as∫

E
f(z)λ(dz) := lim

n→∞

∫
E
fn(z)λ(dz).
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Remark. i) If B2 is scalar and B1 = B3, then the Bartle integral is a
generalization of the usual Bochner integral, since if f is Bochner integrable,
it is also Bartle integrable to the same value.

ii) If B1 is scalar and B2 = B3, then the Bartle integral also generalizes
the results of the integral defined in this framework in [3].

We now give a few results we will use in further sections. The first propo-
sition (see [8] for the proof) gives a commutativity property between the
integral and bounded linear operators, and a convenient way to compute the
total variation of vector measures defined by integrals.

Proposition 2. Suppose B2 is scalar and B1 = B3. Let f be a λ-integrable
function. Then
i) if T is a bounded linear operator on B1 to another Banach space B, then
Tf is λ-integrable, and∫

E
Tf(z)λ(dz) = T

∫
E
f(z)λ(dz), ∀E ∈ B(RD);

ii) if in addition the scalar measure λ is positive, then the vector measure F
defined for all Borel sets E as F (E) :=

∫
E f(z)λ(dz) is in BV(RD, B2) and

one has

v(F )(E) =
∫
‖f(z)‖B1λ(dz), ∀E ∈ B(RD).

Thanks to the general Bartle integral (integration of vector functions with
respect to vector measures), we can easily define the product Tλ of an op-
erator T and a vector measure.

Proposition 3. Let λ belong to BV(RD, B2), and T be a λ-integrable func-
tion defined on RD with values in B1 := LC(B2, B3) (continuous linear op-
erators from B2 to B3). Then the product Tλ defined as

Tλ(E) =
∫
E
T (z)λ(dz), ∀E ∈ B(RD),

is an element of BV(RD, B3).

One cannot generalize the Lebesgue dominated convergence theorem for
the integration of vector-valued functions with respect to vector-valued mea-
sures (it is false for instance that the integrability of ‖f‖ implies the inte-
grability of f), but we have the following generalization of Vitali theorem.

Theorem 1 (Vitali). Let λ ∈ BV(RD, B). Let {fn} be a sequence of inte-
grable functions which are such that
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i) the sequence {fn} converges v(λ)-almost-everywhere to f ;
ii) given ε > 0 there is a δ > 0 such that E ∈ B(RD) and v(λ)(E) < δ

imply ∣∣∣ ∫
E
fn(z)λ(dz)

∣∣∣ < ε, n = 1, 2, . . . .

Then we may conclude that f is λ-integrable and∫
E
f(z)λ(dz) = lim

n→∞

∫
E
fn(z)λ(dz),

uniformly for E ∈ B(RD).

However, when either B1 or B2 is scalar, the Lebesgue dominated conver-
gence theorem and its consequences remain true.

Theorem 2 (Lebesgue). If either B1 or B2 is scalar, then
i) Lebesgue’s dominated convergence theorem is valid;
ii) Lebesgue’s theorem on the continuity of functions defined by integrals

is true.

2.3. Convolutions of vector-valued measures. Before studying con-
volutions of vector-valued measures, we have to define the product of such
measures. In this section, we still denote by B1, B2 and B3 three Banach
spaces and by · a bilinear mapping with the properties stated in the above
section. Let λ be in BV(RD, B1) and µ be in BV(RD, B2). There exists an
unique measure ν ∈ BV(R2D, B3) such that for any measurable rectangle
E × F ∈ B(RD)× B(RD), one has ν(E × F ) := λ(E) · µ(F ).

Definition 1. This measure ν is called the product measure of λ and µ, and
satisfies the following inequality:

|ν|BV ≤ k|λ|BV |µ|BV .
We denote the product measure ν by λ · µ.

We now define the convolution of a B1-valued measure and a B2-valued
measure, as done in [10].

Definition 2. Let λ ∈ BV(RD, B1) and µ ∈ BV(RD, B2). For all E ∈
B(RD), let us define λ

·∗ µ(E) as λ
·∗ µ(E) := (λ · µ)(E2), where E2 =

{(x, y) : x+ y ∈ E}.
Remark. The convolution so defined depends on the bilinear mapping
(x, y) 7→ x·y, and in particular, if this mapping is not symmetric (respectively
associative), convolution is not a commutative (respectively associative) law.
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The following property (see [10]) is a Hölder inequality with respect to
the norm | · |BV , and will be used when studying Wiener algebras.

Proposition 4. For all λ ∈ BV(RD, B1) and µ ∈ BV(RD, B2), one has
λ
·∗ µ ∈ BV(RD, B3) and v(λ

·∗ µ) ≤ kv(λ) ∗ v(µ), and therefore

|λ ·∗ µ|BV ≤ k|λ|BV |µ|BV .
We now introduce the Fourier transform of bounded-variation measures.

Definition 3. Let λ ∈ BV(RD, B1). Its Fourier transform Fλ is the element
of C(RD, B1) defined as

Fλ(X) :=
∫
eiX·ξλ(dξ), for all X ∈ RD.

Fourier transforms satisfy the following property, which is characteristic
of Wiener algebras.

Proposition 5. Let λ and µ be in BV(RD, B1). One has

F(λ
·∗ µ) = Fλ · Fµ,

2.4. The Radon-Nikodym property. The Radon-Nikodym property
plays an important role in this paper; this is not surprising since it is closely
linked to representation problems (it is in a sense equivalent to the Riesz
representation theorem) which naturally occur in the present study.

This property is used for instance to provide a representation of a vector
measure under the form of the integral of a vector function with respect to
a scalar measure. Such a representation proves easier to handle, especially
when estimating the total variation of vector-valued measures.

The Radon-Nikodym property is stated like this:

Definition 4 (Radon-Nikodym property). A Banach space B satisfies the
Radon-Nikodym property if for all finite positive Borel measures µ on RD
and all λ ∈ BV(RD, B) which are µ-continuous, i.e., such that

lim
µ(E)→0

λ(E) = 0 in B,

there exists a B-valued integrable function rλ such that

λ(E) =
∫
E
rλ(z)µ(dz), for all E ∈ B(RD).

This property is not true in general: it fails, for instance, for c0-valued
measures. However, we need it only for Sobolev spaces Hs, in which case it
is satisfied thanks to the following theorem (see [8] for instance).
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Theorem 3 (Phillips). Reflexive Banach spaces satisfy the Radon-
Nikodym property.

As a consequence of the Radon-Nikodym property, we give the following
properties.

Proposition 6. Let B be a reflexive Banach space and λ ∈ BV(RD, B); then
i) there exists a B-valued function rλ, which is v(λ)-integrable and satisfies

‖rλ‖ = 1 v(λ)-almost-everywhere, such that

λ(E) =
∫
E
rλ(z)v(λ)(dz), ∀E ∈ B(RD);

ii) when B = Hs(Rdy), then the Fourier transform λ̂(E) with respect to the
variable y is in B1 := L2

s(Rd), the L2-space with weight w(η) := (1 + |η|2)s.
The set function λ̂ defined as λ̂(E) := λ̂(E) is in BV(RD, B1) and is written

λ̂(E) =
∫
E
r̂λ(z)v(λ)(dz).

Moreover, one has v(λ̂) = v(λ).

Proof. i) We just have to notice that v(λ) is a finite, positive Borel measure
and that λ is v(λ)-continuous. The Radon-Nikodym property then gives the
desired representation of λ(E) since B is a reflexive Banach space.
The total variation of λ is given by

v(λ)(E) =
∫
E
‖rλ(z)‖v(λ)(dz), ∀E ∈ B(RD),

and therefore ‖rλ‖ = 1, v(λ)-almost-everywhere.
ii) Since the Fourier transform defines a bounded operator on B to B1,

we deduce from Proposition 2 that

λ̂(E) =
∫
E
r̂λ(z)v(λ)(dz).

One then has

v(λ̂)(E) =
∫
E
‖r̂λ(z)‖L2

s
v(λ)(dz) =

∫
E
‖rλ(z)‖Hsv(λ̂)(dz) = v(λ)(E).
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3. Semilinear hyperbolic systems for oscillations with

continuous oscillating spectrum

We consider semilinear hyperbolic systems of the type

Lεuε + F (uε, uε) = 0, uε|t=0 = uε0(y), (1)

where Lε(∂x) := ∂t+
∑d

i=1Ai∂yi+L0/ε, and the N×N matrices Ai are sym-
metric, while L0 is skew-symmetric. F denotes a bilinear mapping defined
on CN × CN with values in CN .

We consider the case of initial data oscillating with a possibly continuous
oscillating spectrum.

3.1. The spaces. From now on, we write x = (t, y), where t ∈ R and
y ∈ Rd, and similarly, X = (T, Y ) ∈ R1+d. We consider Fourier transforms
with respect to y and to X. We will always denote by η the dual variable of
y, and by ξ the dual variable of X. The letter s will always denote a positive
real number such that s > d/2.

We introduce some spaces.

Definition 5. i) The space As0 denotes the set of functions defined on Rdy ×
R1+d
X with values in CN whose Fourier transform with respect to the X

variable is in BV(R1+d
ξ , Hs(Rdy)N ).

ii) The space Ast denotes the set of functions defined on R1+d
x ×R1+d

X with
values in CN whose Fourier transform with respect to the X variable is in
C([0, t],BV(R1+d

ξ , Hs(Rdy)N )), where t > 0.
The spaces As0 and Ast are equipped with the norms

‖f‖As0 := |FXf |BV , f ∈ As0,
‖f‖Ast := sup

0≤t≤t
|FXf(t, ·)|BV , f ∈ Ast .

Proposition 7. i) The bilinear mapping F defined on CN × CN extends
to a continuous bilinear mapping on Hs(Rd)N × Hs(Rd)N with values in
Hs(Rd)N .

ii) The normed spaces (As0, ‖·‖As0) and (Ast , ‖·‖Ast ) are complete, and there
exists a constant k > 0 (independent of t) such that

‖F (f, g)‖As0 ≤ k‖f‖As0‖g‖As0 , ∀f, g ∈ As0, (2)

‖F (f, g)‖Ast ≤ k‖f‖Ast ‖g‖Ast , ∀f, g ∈ Ast . (3)
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Proof. i) Since we have chosen s > d/2, Hs(Rd) is an algebra and there
exists a constant k′ > 0 such that for all u, v ∈ Hs(Rd), one has ‖uv‖s ≤
k′‖u‖s‖v‖s. It is then straightforward to see that F is indeed continuous on
Hs(Rd)N × Hs(Rd)N with values in Hs(Rd)N ; i.e., there exists k > 0 such
that for all u, v ∈ Hs(Rd)N , one has

‖F (u, v)‖Hs ≤ k‖u‖Hs‖v‖Hs .

ii) We can therefore use the results of Section 2.3 on product vector measures
and convolution. We will takeB1 = B2 = B3 = Hs(Rd)N and x·y := F (x, y).

For all f, g ∈ Ast , one then has FXF (f, g)(t) = FXf(t)
F∗ FXg(t), and thanks

to Proposition 4,

|FXF (f, g)(t)|BV ≤ k|FXf(t)|BV |FXg(t)|BV .

The desired inequality (3) is then straightforward.
We now prove that (Ast , ‖·‖T ) is complete. Let {fn} be a Cauchy sequence

in Ast . Then {FXfn} is a Cauchy sequence in C([0, t],BV(R1+d, Hs(Rd)N )),
which is complete. Therefore, there exists λ ∈ C([0, t],BV(R1+d, Hs(Rd)N ))
such that FXfn → λ uniformly in t for the norm of the total variation. If
we define f(t, y,X) :=

∫
R1+d e

iX·ξλ(t, dξ), then fn → f in Ast , which proves
that Ast is complete. ¤

3.2. Almost-periodic functions and density functions. In this section,
we give two important classes of functions which are in the spaces introduced
above. The first of them has already been discussed in the Introduction and
is the space of almost-eriodic functions; the framework defined in this paper
thus generalizes the usual frame of [11] and [12].

Definition 6. (Almost-periodic functions) A Wiener almost-periodic func-
tion with coefficients in B (where B denotes Hs(Rd)N or C([0, t], Hs(Rd)N )),
is a function defined by an absolutely convergent series

a(X) :=
∑

β∈R1+d

aβe
iβ·X ,

∑
β∈R1+d

‖aβ‖B <∞.

While almost-periodic functions have necessarily a countable oscillating
spectrum, this is not the case of the density functions we introduce now.

Definition 7. (Density functions) Let M be a submanifold of R1+d of di-
mension n and α in L1(M, B), where B denotes either Hs(Rd)N or C([0, t],
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Hs(Rd)N ). A density function of support M and density α is a function f
defined as

f(X) =
∫
M
eiXξα(ξ)σ(dξ),

where σ denotes the Lebesgue measure of M.

We can now formulate the following proposition.

Proposition 8. i) Almost periodic functions with coefficients in Hs(Rd)N
(respectively in C([0, t], Hs(Rd)N )) belong to As0 (respectively to Ast ).

ii) Density functions with support a submanifold M and with density α ∈
L1(M, B), where B = Hs(Rd)N (respectively C([0, t], Hs(Rd)N )), belong to
As0 (respectively to Ast ).

Proof. Let a be an almost-periodic function with coefficients in Hs(Rd)N
(resp. in C([0, t], Hs(Rd)N )).

a =
∑

β∈R1+d

aβe
iβ·X with

∑
β∈R1+d

‖aβ‖ <∞,

where the norm is taken in Hs(Rd)N (respectively in C([0, t], Hs(Rd)N )).
The Fourier transform of a is thus given by FXa =

∑
β aβδβ , which is in

BV(R1+d, Hs(Rd)N ) (respectively in C([0, t],BV(R1+d, Hs(Rd)N ))) and a is
therefore in As0 (respectively Ast ).

Let us now consider a density function f of support M and density α ∈
L1(M, B), where B = Hs(Rd)N (respectively C([0, t], Hs(Rd)N )).

We have to prove that the set function λ = FXf defined in B(R1+d) as

λ(E) :=
∫
M
χE(ξ)α(ξ)σ(dξ),

where χE is the characteristic function of the Borel set E, is in the space
BV(R1+d, Hs(Rd)N ) (resp. in C([0, t],BV(R1+d, Hs(Rd)N )) ). This is the
case thanks to the results of Section 2. ¤
Remark. i) Let f be a density function with support M and density α ∈
L1(M, (C([0, T ], Hs(Rd)N ))); then one has

‖f‖Ast =
∫
M
‖α(ξ)‖C([0,t],Hs)σ(dξ).

ii) An almost-periodic function can also be seen as a density function whose
support is a submanifold of dimension 0.
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Example. i) Fourier expansions of the form
∑

n∈Z ane
inX where the Fourier

coefficients an belong to Hs(Rd)N and satisfy
∑

n ‖an‖Hs < ∞, are in As0
since they are (almost-) periodic functions.

ii) The space As0 contains Bessel expansions. We assume here that d = 2.
Let the coefficients an be as above, and consider now the density function f
whose support is the circle C((1, 0, 0); 1) ⊂ R1+d, defined as

f(y,X) =
1

2π

∫ 2π

0
eiX·(1,cos θ,sin θ)

∑
n∈Z

ane
inθdθ.

Denoting X = (T, Y ) = (T, Y1, Y2), one then has

f(y,X) = eiT
∑
n∈Z

anJn(|Y |)einφ(Y ),

where Jn denotes the nth Bessel function, and tanφ(Y ) = Y1/Y2.
iii) When d ≥ 3 we find spherical harmonics.

3.3. Regularity properties. We now give two regularity properties satis-
fied by elements of As0 and Ast .

Proposition 9. Let f be in As0 (respectively Ast ). Then
i) the function f belongs to C(Rd × Rd+1) (respectively C([0, t] × Rd ×

Rd+1)). Moreover, f is bounded and there exists a positive number k′ such
that

‖f‖∞ ≤ k′‖f‖As0 , (respectively ‖f‖∞ ≤ k′‖f‖Ast );
ii) the function f ε defined on Rd (respectively Rd+1) as f ε(y) := f(y, 0, y/ε)
(respectively fε(x) := f(x, x/ε)) belongs to L2(Rd)N (respectively C([0, t],
L2(Rd)N )). Moreover, one has

‖f ε‖L2 ≤ ‖f‖As0 (respectively ‖f ε‖C([0,t];L2(Rd))N ≤ ‖f‖Ast ).

Proof. i) We will prove the result for f ∈ Ast ; the Fourier transform λ :=
FXf then belongs to C([0, t],BV(Rd+1, Hs(Rd)N )). Let (x0, X0) ∈ R2d+2;
we want to prove that

‖f(x,X)− f(x0, X0)‖CN → 0, when (x,X)→ (x0, X0).

One has

‖f(x,X)− f(x0, X0)‖CN ≤ ‖f(x,X)− f(t0, y,X)‖CN
+ ‖f(t0, y,X)− f(t0, y0, X0)‖CN + ‖f(t0, y0, X)− f(x0, X0)‖CN
= A+B + C.
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Let us prove that each of these terms converges to 0 when (x,X)→ (x0, X0).
Term A: One can bound

A ≤ |λ(t)− λ(t0)|BV .

Since λ ∈ C([0, t],BV(Rd+1, Hs(Rd)N )), one has |λ(t) − λ(t0)|BV → 0 when
t→ t0, and therefore A→ 0 when (x,X)→ (x0, X0).

Term B: Thanks to Proposition 6, λ(t0) reads

λ(t0)(E) =
∫
E
r0(ξ)v(λ(t0))(dξ), ∀E ∈ B(Rd+1),

where r0 is an Hs(Rd)N -valued v(λ(t0))-integrable function such that
‖r0(ξ)‖Hs(Rd)N = 1 almost everywhere.

We can then write f(t0, y,X) in the form

f(t0, y,X) =
∫
eiX·ξr0(ξ)(y)v(λ(t0))(dξ),

and therefore

‖f(t0, y,X)− f(t0, y0, X)‖CN =
∫
eiX·ξ(r0(ξ)(y)− r0(ξ)(y0))v(λ(t0))(dξ).

It is a consequence of Lebesgue’s dominated convergence theorem that this
expression converges to 0 when (x,X) → (x0, X0). We just have to check
that we can use this theorem.
· For all ξ ∈ R1+d, the mapping y 7→ eiX·ξr0(ξ)(y) is continuous at y0 since

Hs(Rd) ⊂ C(Rd) (we recall that s > d/2).
· For all ξ ∈ R1+d, one has ‖eiX·ξr0(ξ)(y)‖CN ≤‖r0(ξ)(·)‖∞≤ k′‖r0(ξ)‖Hs

≤ k′. Since v(λ(t0)) ∈ BV(Rd+1,R), the constants are v(λ(t0))-integrable,
and the domination hypothesis is thus fulfilled.

We may then conclude that B → 0.
Term C: One has C → 0 with the same proof as for the B term.
We have then the convergence to 0 of A,B and C, and the continuity of

f follows.
In order to prove the boundedness property, we use Proposition 6 to write

f in the form

f(t, y,X) =
∫
eiX·ξrt(ξ)v(λ(t))(dξ),
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which yields

‖f(t, y,X)‖CN ≤
∫
‖rt(ξ)‖∞v(λ(t))(dξ) ≤ k′

∫
‖rt(ξ)‖Hsv(λ(t))(dξ)

= k′|λ(t)|BV ,

and the desired inequality follows.
ii) Here again, we will prove the result for f ∈ Ast . Thanks to Proposition

6, we can write

f(t, y,X) =
∫
eiX·ξrt(ξ)(y)v(λ(t))(dξ),

where for all ξ ∈ Rd+1, one has rt(ξ) ∈ Hs(Rd)N . In particular, one has

f(t, y, x/ε) =
∫
ei
x·ξ
ε rt(ξ)(y)v(λ(t))(dξ),

and thus

‖f(t,·, t/ε, ·/ε)‖L2 = ‖
∫
ei

(t,·)·ξ
ε rt(ξ)(·)v(λ(t))(dξ)‖L2

≤
∫
‖rt(ξ)‖L2v(λ(t))(dξ) ≤

∫
‖rt(ξ)‖Hsv(λ(t))(dξ) = |λ(t)|BV .

Point ii) of the lemma then follows. ¤

3.4. Solving the Cauchy problem (1). As in [13], we look for solutions
to (1) of the form

uε(x) := uε(x, x/ε), (4)

with uε ∈ Ast . Plugging uε defined by (4) into equation (1) formally yields

[L1(∂x)uε(x,X) + ε−1L(∂X)uε(x,X) + F (uε, uε)]X=x/ε = 0, (5)

where L1(∂x) := ∂t +
∑

iAi∂xi and L(∂X) := ∂T +
∑

iAi∂Xi + L0. We will
therefore look for uε ∈ Ast such that

L1(∂x)uε(x,X) + ε−1L(∂X)uε(x,X) + F (uε, uε) = 0. (6)

If uε were differentiable with respect to the X variable, then the derivation
of (5) obtained by plugging (4) into equation (1) would be rigorous. But the
only thing we know about uε is that it is continuous, thanks to Proposition
9. The fact that equation (6) implies that (4) defines a solution to problem
(1) is stated by the following lemma.
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Lemma 1. Suppose that uε is in Ast and satisfies

L1(∂x)uε(x,X) + ε−1L(∂X)uε(x,X) + F (uε, uε) = 0.

Then uε := uε(x, x/ε) is a solution in D′([0, t]× R1+d+dN ) of

Lε(∂x)uε + F (uε, uε) = 0.

Proof. Let {ρn} defined on R1+d
x × R1+d

X be a regularizing sequence. We
have

([L1(∂x) + ε−1L(∂X)]uε) ∗ ρn(x,X) = −F (uε, uε) ∗ ρn(x,X).

Thanks to Propositions 7 and 9, F (uε, uε) is continuous, and therefore,
F (uε, uε)∗ρn(x,X) converges uniformly in (x,X) to F (uε, uε)(x,X). There-
fore, F (uε, uε)∗ρn(x, x/ε) converges uniformly in x to F (uε, uε)(x, x/ε). On
the other hand, we have

([L1(∂x) + ε−1L(∂X)]uε) ∗ ρn(x,X) = [L1(∂x) + ε−1L(∂X)](uε ∗ ρn)(x,X),

and therefore

([L1(∂x) + ε−1L(∂X)]uε) ∗ ρn(x, x/ε)

= [L1(∂x) + ε−1L(∂X)](uε ∗ ρn)(x, x/ε) = Lε(∂x)(uε ∗ ρn(x, x/ε)).

We then have the convergence of L(∂x)(uε∗ρn(x, x/ε)) to −F (uε, uε)(x, x/ε),
uniformly in x. Since uε ∗ ρn(x, x/ε) converges uniformly in x to uε(x) =
uε(x, x/ε), we can deduce that Lε(∂x)uε = −F (uε, uε) in D′, and the lemma
is thus proved. ¤

We can now formulate the following theorem.

Theorem 4. Let u0 be in As0. There exists a positive real number t > 0
such that for all ε > 0, the Cauchy problem

Lεuε + F (uε, uε) = 0, uε|t=0 = u0(y, 0, y/ε),

has a solution uε in C([0, t]×Rd)∩C([0, t], L2(Rd)N ) which is unique. More-
over, uε can be written in the form uε = uε(x, x/ε) where uε ∈ Ast is uniquely
determined by

L1(∂x)uε + ε−1L(∂X)uε + F (uε, uε) = 0, uε|t=0 = u0, (7)

and its norm in Ast is bounded uniformly in ε.

Proof. Let us prove first that there exist a t > 0 and a unique uε ∈ Ast such
that (7) is satisfied. The proof will be by Picard iteration. The first iterate
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uε1 solves the linear problem, which one gets by setting F ≡ 0 in (6). The
other iterates are determined solving

L1(∂x)uεν+1 + ε−1L(∂X)uεν+1 = −F (uεν , u
ε
ν), u|t=0 = u0, (8)

for ν ≥ 1.
In order to solve these equations, we will need the following lemma:

Lemma 2. Let g ∈ Ast and f0 ∈ As0. The linear problem

L1(∂x)f + ε−1L(∂X)f = g, f |t=0 = f0, (9)

has a unique solution in Ast . Moreover, one has

‖f‖Ast ≤ ‖f
0‖As0 + t‖g‖Ast . (10)

Proof. Let us denote by λ and µ the elements of C([0, t],BV(R1+d, Hs(Rd)N ))
defined as λ := FXf and µ := FXg, and λ0 := FXf0 ∈ BV(R1+d, Hs(Rd)N ).
We also introduce A(η) :=

∑d
j=1Ajηj and L(ξ) := ξ0I +

∑d
j=1 ajξj + 1

iL0.
Taking the Fourier transform of equation (9) with respect to X and y yields

(∂t + iA(η) + ε−1iL(ξ))λ̂ = µ̂,

where the notation λ̂(E) := λ̂(E) has been introduced in Proposition 6. In
the space C([0, t],S ′(R1+d+dN )), we know that we have existence and unique-
ness of a solution to this equation with initial conditions in S ′(R1+d+dN ).
This solution is given by the formula

λ̂ = e−it(A(η)+ε−1L(ξ))λ̂0 +
∫ t

0
e−i(t−u)(A(η)+ε−1L(ξ))µ̂(u) du. (11)

We thus have to prove that the element of C([0, t],S ′(R1+d+dN )) given by
(11) is in fact in C([0, t],BV(R1+d, Hs(Rd)N )). Let Tt,u be a function on
Rd+1
ξ with values in LC(L2

s(Rd), L2
s(Rd)) defined as

Tt,u(ξ)h(η) := e−i(t−u)(A(η)+ε−1L(ξ))h(η), ∀h ∈ L2
s(Rd).

Since ‖Tt,u(ξ)‖ = 1 for all ξ, Tt,u is integrable. Moreover, we know that
for all t ∈ R, λ̂(t) ∈ BV(R1+d, L2

s(Rd)N ); Proposition 3 then allows us to
conclude that Tt,uµ̂(u) defined as

Tt,uµ̂(u)(E) :=
∫
E
e−i(t−u)(A(η)+ε−1L(ξ))µ̂(u)(dξ), ∀E ∈ B(R1+d),
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is in BV(R1+d, L2
s(Rd)N ); moreover, one has |Tt,uµ̂(u)|BV ≤ |µ̂(u)|BV , and

the set function λ̂1 defined for all E ∈ B(R1+d) as

λ̂1(t)(E) :=
∫ t

0
Tt,uµ̂(u)(E) du

is in BV(R1+d, L2
s(Rd)N ) and satisfies

|λ̂1(t)|BV ≤
∫ t

0
|Tt,uµ̂(u)|BV du ≤

∫ t

0
|µ̂(u)|BV du.

We also define the set function λ̂2(t) := Tt,0λ̂0; one then has

|λ̂2(t)|BV ≤ |λ̂0|BV .

Since the solution λ̂ given by (11) is written λ̂ = λ̂1 + λ̂2, we have thus
proved that it is in C([0, t],BV(R1+d, L2

s(Rd)N )). We also have the estimate

|λ̂(t)|BV ≤ |λ̂0|BV +
∫ t

0
|µ̂(u)|BV du. (12)

We have seen in Proposition 6 that one has v(α̂) = v(α) for any α belonging
to BV(R1+d, Hs(Rd)N ). Therefore, |α̂|BV = |α|BV , and it is thus easy to
deduce from the above inequality that

‖f‖Ast ≤ ‖f
0‖As0 + t‖g‖Ast .

The proof of the lemma is then complete. ¤
We now return to the Picard iteration. Thanks to Proposition 7, we know

that there exists a constant k > 0 such that

‖F (f, f)‖Ast ≤ k‖f‖
2
Ast
, ∀f ∈ Ast .

Applying Lemma 2 to (8) and using the above inequality yields

‖uεν+1‖Ast ≤ ‖u
0‖As0 + kt‖uεν‖2Ast .

Taking t small enough, we can assume that for all ν we have

‖uν‖Ast ≤ 2‖u0‖As0 . (13)

Let us now bound the difference wεν := uεν+1 − uεν . The function wεν solves

L(∂x)wεν+1 + ε−1L(∂X)wεν+1 = F (wεν , u
ε
ν−1)− F (uεν , w

ε
ν−1), wεν |t=0 = 0.

Applying Lemma 2 to this system and using inequality (13) yields

‖wεν‖Ast ≤ 4kt‖u0‖As0‖w
ε
ν−1‖Ast ,
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and thus
‖uν+1 − uν‖Ast ≤ 2‖u0‖As0(4kt)ν .

If t is small enough so that 4kt < 1, then (uεν) is a Cauchy sequence in Ast
which, thanks to Proposition 7, converges to an element uε of Ast . This func-
tion uε solves system (7). Thanks to Lemma 1, the corresponding function
uε solves the Cauchy problem (1). Thanks to Proposition 9, we know that
uε ∈ C([0, t]×Rd)∩C([0, t], L2(Rd)N ) and the existence part of the theorem
is thus proved. Uniqueness of the solution uε is proved using the classical L2

uniqueness argument. ¤

4. Geometrical optics for problem (1)

4.1. Ansatz for the approximate solution. Our goal is to determine an
approximate solution vε to (1) in the form

vε(x) := v0(x, x/ε) + εv1(x, x/ε), (14)

where v0 and v1 belong to Ast . This means that we want to find an ap-
proximate solution which preserves the structure of the initial condition,
i.e., which is an oscillation with possibly continuous oscillating spectrum.
Plugging (14) into (1) yields the following formal expansion in powers of ε:

Lεvε + F (vε, vε) =
1
ε

[L(∂X)v0(x,X)]X=x/ε

+[L(∂X)v1(x,X) + L1(∂x)v0(x,X) + F (v0, v0)]X=x/ε

+ε[L1(∂x)v1(x,X) + F (v0, v1) + F (v1, v0)]X=x/ε, (15)

where L(∂X) := ∂T +
∑d

i=1 ∂Yi + L0, and L1(∂x) := ∂t +
∑

iAi∂yi . The
strategy consists in searching for v0 and v1 in Ast such that the first two
terms of the above expansion vanish. We will then prove that the associated
function vε of (14) is an approximate solution to Problem (1) and that it
satisfies a stability property.

4.2. A few tools. As always in geometrical optics, the characteristic variety
associated to problem (1) and polarization conditions play an important role.
We now introduce these objects.

Definition 8. i) We denote by L(ξ) the symbol

L(ξ) := ξ0I +
d∑
i=1

ξiAi + L0/i = ξ0I +A(ξI) + L0/i,

where ξI := (ξ1, . . . , ξd) and ξ := (ξ0, ξI).
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ii) The characteristic variety associated to problem (1) is the set C defined
as C := {ξ ∈ Rd+1 : detL(ξ) = 0}. We will also denote by Sing C the set of
the singular points of C.

iii) Since L(ξ) is a symmetric matrix for all ξ, denote by π(ξ) the orthog-
onal projector on its kernel and by Q(ξ) the partial inverse of L(ξ), defined
as Q(ξ)π(ξ) = 0, and Q(ξ)L(ξ) = I − π(ξ).

If v is a monochromatic wave v := vβe
iβ·X , then annihilating the first

term in expansion (15) reads L(β)vβ = 0; that is, π(β)vβ = vβ . If v is an
almost-periodic function, v :=

∑
vβe

iβ·X , then this condition reads Πv = v,
where the operator Π is defined on almost-periodic functions as

Π(
∑

aβe
iβ·X) :=

∑
π(β)aβeiβ·X .

This operator Π defined on almost-periodic functions is in fact equal to the
Fourier multiplier π(DX), since for any almost-periodic function a, one has

λ := FXa =
∑

β∈Rd+1

aβδβ ,

and therefore,

πλ =
∑

β∈Rd+1

π(β)aβδβ ,

whose inverse Fourier transform is
∑
π(β)aβeiβ·X . This yields π(DX)a =

Πa. This relation is used to define the operator Π on every function of Ast .
The only thing we need is to prove that the Fourier multiplier π(DX) is well
defined on Ast .

We similarly want to define the Fourier multiplier Q(DX) on Ast . In order
to do this, we first introduce the notion of π- and Q-regularity.

Definition 9. We will say that f ∈ Ast is π-regular (respectively Q-regular)
if π (respectively Q) is λ-integrable, where λ := FXf .

We can now formulate the following proposition, which says when the
Fourier multiplier π(DX) and Q(DX) are well defined.

Proposition 10. i) Every element of Ast is π-regular and the Fourier multi-
plier π(DX) is well defined on Ast . ii) The Fourier multiplier Q(DX) is well
defined on Q-regular elements of Ast .

Proof. Let f belong to Ast and λ := FXf .
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i) Since ‖π(ξ)‖ ≤ 1 for all ξ ∈ R1+d, the function π is λ-integrable thanks
to Proposition 3; i.e., f is π-regular. The product πλ is therefore well de-
fined in C([0, t],BV(R1+d, Hs(Rd)N )), and the Fourier multiplier is thus well
defined on Ast .

ii) The partial inverse Q(ξ) is not bounded in norm, and thus not neces-
sarily λ-integrable. That is why we have to assume that f is Q-regular. The
proof is then similar to the proof of point i). ¤
Remark. A measure λ such that πλ = λ has its support in C, since π(ξ) = 0
for all ξ /∈ C.

The following proposition gives a class of Q-regular functions.

Proposition 11. Let f ∈ Ast and λ := FXf . Let us assume that Supp λ is
such that d(Supp λ, Sing C) > 0. Then f is Q-regular.

Proof. For any ξI ∈ Rd, there exist m(ξI) functions τj such that

A(ξI) + L0/i = −
m(ξI)∑
j=1

τj(ξI)π(τj(ξI), ξI).

Therefore one has

L(ξ) = L(ξ0, ξI) =
m(ξI)∑
j=1

(ξ0 − τj(ξI))π(τj(ξI), ξI)

and

Q(ξ) =
∑

τj(ξs)6=ξ0

1
ξ0 − τj(ξI)

π(τj(ξI), ξI).

Since m(ξI) is constant and the functions τj are smooth on each connected
component of {ξI ∈ Rd : (τj(ξI), ξI) is not singular, j = 1, . . . ,m(ξI)}, one
has ξ0 − τj(ξI)→ 0 if and only if d(ξ = (ξ0, ξI), Sing C)→ 0. Thanks to the
assumptions made in the proposition, we thus know that Q is bounded on
Supp λ, and thus integrable. ¤
Remark. This proposition proves very useful to ensure that an almost-
periodic function or a density function is Q-regular.

4.3. Annihilating L(∂X)v0. The equation L(∂X)v0 = 0 is the equation we
obtain when annihilating the ε−1 term in expansion (15).

The following lemma says that π(DX) is a good generalization of operator
Π in the sense that the equivalence L(∂X)a = 0 ⇐⇒ π(DX)a = a, which is
true for almost-periodic functions, remains true for every function in Ast .
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Lemma 3. Let f be in Ast . Then one has

L(∂X)f = 0 if and only if π(DX)f = f.

Proof. Since f ∈ Ast , one has λ ∈ C([0, t],BV(R1+d, Hs(Rd)N )). We will
prove the desired result for all t ∈ [0, t] and will use throughout this proof
the notation λ instead of λ(t). We recall that thanks to Proposition 6, λ can
read

λ(E) =
∫
E
rλ(ξ)v(λ)(dξ), ∀E ∈ B(R1+d).

Since the condition π(DX)f = f can also read πλ = λ, it is therefore
equivalent to∫

E
rλ(ξ)v(λ)(dξ) =

∫
E
πrλ(ξ)v(λ)(dξ), ∀E ∈ B(R1+d),

which means that π(ξ)rλ(ξ) = rλ(ξ), v(λ)-almost everywhere, i.e., that one
has L(ξ)rλ(ξ) = 0, v(λ)-almost everywhere. This last condition also reads∫

E
L(ξ)rλ(ξ)v(λ)(dξ) = 0, ∀E ∈ B(R1+d).

It is then a consequence of Theorem 1 that this is also equivalent to

L is λ-integrable, and
∫
E
L(ξ)λ(dξ) = 0, ∀E ∈ B(R1+d),

which, thanks to Proposition 3, means that the product Lλ is well defined
and is equal to 0, i.e., that L(∂X)f is well defined and equal to 0. ¤

The first term v0 of our ansatz must therefore satisfy

π(DX)v0 = v0 (16)

in order to annihilate the ε−1 term in expansion (15). This condition is
usually called the polarization condition.
Remark. From now on, we will assume that the initial condition u0 satisfies
the polarization condition

π(DX)u0 = u0.

This condition is necessary for two reasons. The first one is because we
want to have v0|t=0 = u0 together with (16). The second one is more sub-
tle. We take in this paper initial conditions for problem (1) of the form
uε|t=0(y) = u0(y, 0, y/ε), with u0 ∈ As0. For instance, we can take u0(y,X) =
g(y)ei(w,k)·(T,Y ), with g ∈ Hs(Rd)N . One then has uε|t=0(y) = g(y)eik·y/ε. In
the usual frame, such an initial condition gives birth to more than one oscil-
lation (as many as the number of sheets of the characteristic variety C above
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k), while in this paper we have implicitly chosen the oscillation associated
to (ω, k). Such a choice corresponds to the above polarization condition of
the initial condition.

4.4. Annihilating the ε0 term in expansion (15). Annihilating the ε0

term in expansion (15) yields the following equation:

L(∂X)v1 + L1(∂x)v0 + F (v0, v0) = 0. (17)

In order to study this equation, we use the following lemma, which general-
izes Lemma 3.

Lemma 4. Let f and g be in Ast . Then one has

L(∂X)f = g if and only if
{
π(DX)g = 0, and g is Q-regular,
(I − π(DX))f = Q(DX)g.

Proof. Let us prove first the direct implication. Assuming that L(∂X)f = g,
denote by λ and µ the Fourier transforms λ := FXf and µ := FXg. Since
the function ξ 7→ iL(ξ) is λ-integrable, one has iLλ = µ. It is easy to see
that π(DX)g = 0; we prove that Q is µ-integrable and that (I − π)λ =
Qµ. In order to do this, we will construct a sequence {Qn} of integrable
functions which converges to Q, and use Theorem 1. We can decompose the
characteristic variety C (see [2]) as follows: C = C1 ∪ · · · ∪ Cm, where Cj is
the set of roots of multiplicity j of detL. We define C0 as R1+d\C. We also
define the sets Ani as Ani := {x ∈ Ci : d(x, Ci+1) ≥ 1/n}, for i = 1, . . . ,m− 1,
and Anm := Cm.

We now introduce the sets An := An1 ∪ · · · ∪Anm and χn, the characteristic
function of An ∩B(0, n). Then χn has compact support and χn → 1 every-
where when n → ∞. The same arguments as in the proof of Proposition
11 yield that the functions Qn := χnQ are µ-integrable. They also converge
everywhere to Q and satisfy∫

E
Qn(ξ)µ(dξ) =

∫
E

(I − π(ξ))λ(dξ), ∀E ∈ B(R1+d).

Thanks to Theorem 1 we therefore conclude that Q is µ integrable and that
for all E ∈ B(R1+d),∫

E
Q(ξ)µ(dξ) = lim

n→∞

∫
E
Qn(ξ)µ(dξ) =

∫
E

(I − π(ξ))λ(dξ).

We have thus shown that Qµ = (1− π)λ, and the proof of the direct impli-
cation is then complete.



nonlinear geometrical optics 753

We omit the proof of the reverse implication, since it is very similar to
the proof of Lemma 3. ¤

Equation (17) is therefore equivalent to

π(DX)L1(∂x)π(DX)v0 + π(DX)F (v0, v0) = 0, (18)

and {
L1(∂x)v0 + F (v0, v0) is Q-regular
(I − π(DX))v1 = −Q(DX)[L1(∂x)v0 + F (v0, v0)]. (19)

The following proposition says that equation (18) is well-posed in As+2
T with

initial data As+2
0 ; the first term v0 = π(DX)v0 of our ansatz will then be

fully determined.

Proposition 12. Let σ > d/2 and u0 = π(DX)u0 be in Aσ0 . Then there
exists a positive real number t > 0 such that the system

π(DX)L1(∂x)π(DX)f + π(DX)F (f, f) = 0, f |t=0 = u0,

has a unique solution f ∈ Aσt such that f = π(DX)f .

Proof. The proof of this proposition is by Picard iteration, just as was done
to solve equation (6) in the proof of Theorem 4. We will not detail it and will
just give the proof of the following lemma, which is the key step in Picard
iteration. ¤

Lemma 5. Let g ∈ Aσt and f0 = π(DX)f0 ∈ Aσ0 . The linear problem

π(DX)L1(∂x)π(DX)f = g, f |t=0 = f0,

has a unique solution f ∈ Aσt such that f = π(DX)f . Moreover, one has

‖f‖Aσt ≤ ‖f
0‖Aσ0 + t‖g‖Aσt .

Proof. The proof of this lemma is very similar to that of Lemma 2; one just
has to replace the functions Tt,u by

St,u(ξ)h(η) := e−i(t−u)π(ξ)A(η)π(ξ)h(η), ∀h ∈ L2
σ(Rd).

Remark. We will apply this proposition with σ = s+ 2 since the computa-
tions of v1 and of the residual have a regularity cost. For instance, the term
L1(∂x)v0 + F (v0, v0) which appears in the right hand side of equation (19)
is only in As+1

t .
Thanks to this proposition, we can solve equation (18). We recall that

the goal of the present section is to solve equation (17). This will be done if
we can solve (19). In order to do this, we make the following assumption.
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Assumption 1. The profile v0 solution to (18) is such that L1(∂x)v0 +
F (v0, v0) is Q-regular.

Remark. We will comment on this assumption in the last section, and
we will see in an example that it is easily checked. Under this assumption,
solving (19) is the same as taking (I − π(DX))v1 = −Q(DX)[L1(∂x)v0 +
F (v0, v0)], which is possible, since v1 does not need to satisfy any other
condition. We have therefore solved Equations (18) and (19), and thus
annihilated the ε0 term (17).

In order to do so, we have at this stage determined v0 and (I−π(DX))v1.
We now choose to take π(DX)v1 = 0, so that the ansatz vε = v0 + εv1 we
are looking for is now fully determined.

4.5. Smallness of the residual. We have seen in Section 3.2 that the
profile uε of the exact solution uε to problem (1) satisfies

L1(∂x)uε + ε−1L(∂X)uε + F (uε, uε) = 0.

Thanks to the above sections, we know that the profile vε := v0 + εv1 of the
approximate solution vε is almost a solution of this equation in the sense
that

L1(∂x)vε + ε−1L(∂X)vε + F (vε, vε) = εrε,

where rε := L1(∂x)v1 +F (v0, v1) +F (v1, v0) + εF (v1, v1) is in Ast . One then
has

L1(∂x)vε + ε−1L(∂X)vε + F (vε, vε) = O(ε) in Ast .

A straightforward adaptation of the proof of Lemma 1 then yields

Lε(∂x)vε = εrε, in D′,
where rε(x) := rε(x, x/ε). Since rε is inAst , Proposition 9 yields the following
result:

Proposition 13. Under Assumption 1, the approximate solution of geomet-
rical optics vε(x) = vε(x, x/ε) almost solves Problem (1) in the sense that
Lε(∂x)vε = O(ε), both in C([0, t]× Rd) and in C([0, t], L2(Rd)N ).

4.6. Stability of geometrical optics. We have proved in the above section
that vε almost solves (1), but we have not yet proved that the difference
uε − vε remains small, i.e., that vε is a good approximation of uε. This is
what the following theorem says.

Theorem 5 (Stability). Suppose that the initial condition u0 ∈ As+2
0 is

polarized so that π(DX)u0 = u0, and assume that Assumption 1 is fulfilled.
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Then the exact solution uε is in As+2
T ⊂ Ast and the approximate solution

vε(x) = vε(x, x/ε) is stable in the sense that uε = v0 + O(ε) in Ast , and
uε = v0 +O(ε), both in C([0, t]× Rd) and in C([0, t], L2(Rd)N ).

Proof. One has

L1(∂x)uε + ε−1L(∂X)uε = −F (uε, uε),

L1(∂x)vε + ε−1L(∂X)vε = −F (vε, vε) + εrε.

Taking the difference of these two equalities yields

L1(∂x)wε + ε−1L(∂X)wε = −F (uε, wε) + F (wε, vε) + εrε := Rε,

where wε := uε − vε also satisfies wε|t=0 = 0.
The result stated in Lemma 9 is not sharp enough to give an interesting

bound for ‖wε‖Ast , but in the proof of this lemma, we proved the sharper
estimation (12), which now yields

|FXwε(t)|BV ≤
∫ t

0
|FXRε(u)|BV du.

Moreover, |FXRε|BV is bounded by

|FXRε|BV ≤ C1|FXwε|BV + εC2,

where C1 depends on F and on an ε-independent upper bound of ‖uε‖Ast
and ‖vε‖Ast , while C2 is an ε-independent upper bound of ‖rε‖Ast . We then
have

|FXwε(t)|BV ≤ εtC2 +
∫ t

0
C1|FXvε(w)|BV du,

which yields, thanks to Gronwall’s inequality,

|FXwε(t)|BV ≤ εtC2e
C1t.

One then has

uε = vε +O(ε) in Ast .

Since we also have vε = v0 + O(ε) in Ast , we can deduce that uε = v0 +
O(ε) in Ast . The last two asymptotic relations stated in the theorem are a
consequence of Proposition 9. ¤
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5. Qualitative properties and resonances

5.1. Qualitative properties of the linear problem. In this section we
consider again the linear system

π(DX)L1(∂x)π(DX)f = g, f |t=0 = f0, (20)

where π(DX)g = g ∈ Ast and π(DX)f0 = f0 ∈ As0.
We have proved in Section 4.4 that there is a unique solution f = π(DX)f

to this problem. The following proposition gives a property satisfied by the
oscillating spectrum of f .

Proposition 14. Denote S0 := Supp FXf0, and assume that there exists a
subset S of C such that for all t ∈ [0, t] one has Supp FXg(t, ·) ⊂ S. Then
one has Supp FXf(t, ·) ⊂ S0 ∪ S, ∀t ∈ [0, t].

Proof. As usual, denote λ := FXf , µ := FXg and λ0 := FXf0. We have
seen in Section 4.4 that λ̂ is given by

λ̂(t) = e−itπ(ξ)A(η)π(ξ)λ̂0 +
∫ t

0
e−i(t−u)π(ξ)A(η)π(ξ)µ̂(u) du,

which yields the desired result. ¤
We will now prove that the operator π(DX)L1(∂x)π(DX) may often be

seen as a scalar operator, which simplifies the computations a lot. If ξ is in
the characteristic variety C, we can write ξ = (ξ0, ξI) := (τ(ξI), ξI), where
the function τ is a local parametrization of C in a neighborhood of ξ. If ξ is
a smooth point of C, then one has (see [6])

π(ξ)L1(∂x)π(ξ) = π(ξ)(∂t − τ ′(ξI) · ∂y), (21)

and π(ξ)L1(∂x)π(ξ) is thus a transport vector field at the group velocity
τ ′(ξI) on the range of π(ξ).

For any ξI ∈ Rd, there is normally more than one point of C with Rd
coordinate ξI ; they are written ξ1 := (τ1(ξI), ξI), . . . , ξr := (τr(ξI), ξI), where
r may depend on ξI . Therefore, any ξ ∈ C\Sing C may read ξ = (τi(ξI), ξI)
for a unique i. We will use the notation τ ′(ξ) instead of τ ′i(ξI). Equation
(21) thus reads

π(ξ)L1(∂x)π(ξ) = π(ξ)(∂t − τ ′(ξ) · ∂y);
we can now formulate a proposition which generalizes this property.

Proposition 15. Suppose that S0 and S are as in the above proposition.
If in addition, (S0 ∪ S)∩Sing C = ∅, then f solves the scalar system

(∂t − τ ′(DX) · ∂y)π(DX)f = g, f |t=0 = f0.
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The following corollary gives the explicit solution of the linear problem
without source term and for initial conditions being almost-periodic func-
tions or density functions.

Corollary 1. Let us consider the linear problem (20) in the case where g=0.
i) If f0 = π(DX)f0 is an almost-periodic function given by

f0(y,X) :=
∑
β∈S0

aβ(y)eiβ·X ,

where S0 contains no singular point of C, then the solution f = π(DX)f to
(20) is given by

f(x,X) :=
∑
β∈S0

aβ(y + τ ′(β)t)eiβ·X .

ii) If f0 = π(DX)f0 is a density function of support M and density α,

f0(y,X) =
∫
M
eiX·ξα(ξ)(y)σ(dξ),

and if M contains no singular point of C, then the solution f = π(DX)f to
(20) is given by

f(x,X) =
∫
M
eiX·ξα(ξ)(y + tτ ′(ξ))σ(dξ).

Proof. The case of almost-periodic functions is well known (see [12] for in-
stance); let us prove part ii) of the corollary. It is easy to see using the above
proposition, the assumptions made onM, and the fact that π(ξ)L1(∂x)π(ξ)
is scalar when ξ is a nonsingular point of C, that the Fourier transform
λ := FXf is given by

λ̂ = eitτ
′(ξ)·ηλ̂0.

The Fourier transform λ0 := FXf0 is given for all E ∈ B(R1+d) by

λ0(E) =
∫
M
χE(ξ)α(ξ)σ(dξ),

where χE is the characteristic function of E. Thanks to Proposition 2, λ̂0 is
given by

λ̂0(E) =
∫
M
χE(ξ)α̂(ξ)σ(dξ),

and thus λ̂ takes the form

λ̂(E)(t, η) =
∫
M
χE(ξ)eitτ

′(ξ)·ηα̂(ξ)(η)σ(dξ),



758 david lannes

and Proposition 2 yields this time

λ(E)(t, y) =
∫
M
χE(ξ)α(ξ)(y + tτ ′(ξ))σ(dξ).

Taking the inverse Fourier transform of λ with respect to ξ yields the desired
result. ¤

5.2. Resonances. We have seen that the profile v0 = π(DX)v0 given by
geometrical optics for Problem (1) is determined by

π(DX)L1(∂x)π(DX)v0 + π(DX)F (v0, v0) = 0, v0|t=0 = u0.

We will see that in many cases, we can omit the nonlinearity π(DX)F (v0, v0);
the only cases where it will be of importance will be when resonances occur.

Definition 10. Let λ = πλ and µ = πµ be in BV(R1+d, Hs(Rd)N ). We
will say that λ and µ resonate if and only if one has v(µ) ∗ v(λ)(C) 6= 0. We
will say that two functions of As0 or Ast resonate if their Fourier transforms
resonate.

Remark. If λ and µ are written λ = aβ1δβ1 and µ = aβ2δβ2 with π(β1)aβ1 =
aβ1 and π(β2)aβ2 = aβ2 , then λ and µ resonate if and only if β1 + β2 ∈ C,
which is the usual resonance condition.

Generally, C admits 0 as a center of symmetry, and 0 is also in C, so that
if β ∈ C, one has −β ∈ C and β + (−β) = 0 ∈ C; i.e., aβδβ and a−βδ−β
resonate. Therefore, any measure whose support is a point usually resonates
with another measure; but for general measures, this is no longer true, and
that is why we give the following definition.

Definition 11. Let λ = πλ ∈ BV(R1+d, Hs(Rd)N ). λ is absolutely nonres-
onant if for all µ = πµ ∈ BV(R1+d, Hs(Rd)N ) such that µ({0}) = 0, λ and µ
do not resonate. In the opposite case, we say that λ is potentially resonant.
We also say that an element of As0 or Ast is absolutely nonresonant if its
Fourier transform is absolutely nonresonant.

Example. i) Consider the wave equation with d = 2. The associated
characteristic variety C is the cone {(ξ0, ξ1, ξ2) : ξ0 = ±

√
ξ2

1 + ξ2
2}. Let M

be a circular section of C given byM = {(ω, ξ1, ξ2) ∈ C}, where ω > 0. Then
any density function f of support M and density α ∈ C(M, Hs(Rd)N ) is
absolutely nonresonant. Indeed, its Fourier transform λ is given by

λ(E) =
∫
M
χE(ξ)α(ξ)σ(dξ), ∀E ∈ B(R1+d),
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so that

v(λ)(E) =
∫
M
χE(ξ)‖α(ξ)‖Hsσ(dξ), ∀E ∈ B(R1+d).

Let µ = πµ ∈ BV(R1+d, Hs(Rd)N ) such that µ({0}) = 0. One then has

v(λ) ∗ v(µ)(C) =
∫
C

∫
M
χ(ξ1 + ξ2)‖α(ξ1)‖Hsσ(dξ1)v(µ)(dξ2)

≤M
∫
C

∫
M
χ(ξ1 + ξ2)σ(dξ1)v(µ)(dξ2),

where for all ξ, one has ‖α(ξ)‖Hs ≤ M . For all nonzero ξ2 ∈ C one has
C∩(M+ξ2) = ∅, and therefore v(λ)∗v(µ)(C) ≤Mσ(C)µ({0}) = 0. Therefore,
λ and µ do not resonate, and we have thus proved that f is absolutely
nonresonant.

ii) On the other hand, any almost-periodic function whose spectrum is
on C is potentially resonant, as it is easy to see using the fact that C is
homogeneous.

We will consider initial conditions of the form u0 =
∑m

i=1 u
i, with m ≥ 1

and ui = π(DX)ui ∈ As0, for i = 1, . . . ,m.
One can decompose [1,m] under the form [1,m] = P +N , where P and N
are defined as

i ∈ P ⇐⇒ FXui is potentially resonant
i ∈ N ⇐⇒ FXui is absolutely nonresonant.

The following theorem says that the nonlinearity π(DX)F (v0, v0) does not
see the absolutely nonresonant part of u0.

Theorem 6. Let v0 = π(DX)v0 be the solution given by geometrical optics.
Let vp = π(DX)vp and vn = π(DX)vn be the solutions of{

π(DX)L1(∂x)π(DX)vp + π(DX)F (vp, vp) = 0
vp|t=0 =

∑
i∈P u

i := u0,p,

and {
π(DX)L1(∂x)π(DX)vn = 0
vn|t=0 =

∑
i∈N u

i := u0,n.

Then one has v0 = vp + vn.

Proof. Let us show that π(DX)F (vp + vn, vp + vn) = π(DX)F (vp, vp). It
is sufficient to prove that g := π(DX)F (vn, f) is equal to 0 for all f ∈ Ast .
Denoting λ := FXf and µn := FXvn, one has FXg = πµn ∗ λ. Since
π(ξ) = 0 for all ξ /∈ C, we also have FXg = πχCµn ∗ λ, where χC denotes the
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characterisitic function of C. We also know that |χCµn ∗λ|BV = v(µn ∗λ)(C),
which yields thanks to Proposition 4

|χCµn ∗ λ|BV ≤ k v(µn) ∗ v(λ)(C). (22)

But we also have seen that we can find an explicit expression for µn which
yields v(µn) = v(FXu0,n). Equation (22) thus reads

|χCµn ∗ λ|BV ≤ k v(FXu0,n) ∗ v(λ)(C) = 0,

the last equality being a consequence of the fact that FXu0,n is absolutely
nonresonant. It is then straightforward to conclude that g = 0 and therefore
that we have π(DX)F (vp + vn, vp + vn) = π(DX)F (vp, vp). Thanks to this
property, one has

π(DX)L1(∂x)π(DX)(vp + vn) + π(DX)F (vp + vn, vp + vn) = 0.

Since we also have (vp+vn)|t=0 = u0, vp+vn and v0 satisfy the same Cauchy
problem and are thus equal, thanks to Proposition 12. ¤
Remark: i)We have seen that measures whose support is discrete are usu-
ally potentially resonant, but we will see that many density functions are
absolutely nonresonant. This simplifies the computations since density func-
tions are far more difficult to handle than almost-periodic functions. The
above theorem says that absolutely nonresonant density functions solve a
linear problem, and Corollary 1 gives a simple form of the solution in many
cases. ii) This theorem may easily be sharpened when dealing with concrete
examples, as we will see when studying the stimulated Raman scattering.

The following corollary should be used when checking Assumption 1.

Corollary 2. If u0,n is Q-regular, then so is vn.

Proof. It is a straightforward consequence of Theorem 6, Propositions 11
and Proposition 14. ¤

5.3. Conditions for resonances between almost-periodic functions
and density functions; transparency. In order to study possible reso-
nances between almost-periodic functions or density functions, we will have
to study the convolutions of their Fourier transforms. We will consider this
for elements λ1, λ2, µ1 and µ2 of C([0, t],BV(R1+d, Hs(Rd)N )) given by

λ1 = aβ1δβ1 and λ2 = aβ2δβ2 ,
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µ1(E) =
∫
M1

χE(ξ)α1(ξ)σ1(dξ), ∀E ∈ B(R1+d),

µ2(E) =
∫
M2

χE(ξ)α2(ξ)σ2(dξ), ∀E ∈ B(R1+d),

where M1 and M2 are submanifolds of dimension n1 and n2 respectively.
One then has

i) v(λ1) ∗ v(λ2) = ‖aβ1‖‖aβ2‖δβ1+β2

ii) v(λ1) ∗ v(µ1)(E) = ‖aβ1‖
∫
M1

χE(β1 + ξ)‖α1(ξ)‖σ1(dξ)

iii) v(µ1) ∗ v(µ2)(E) =∫
M1

∫
M2

χE(ξ1 + ξ2)‖α1(ξ1)‖‖α2(ξ2)‖σ1(dξ1)σ2(dξ2).

We have therefore the following necessary conditions for resonances.

Proposition 16. With the notation used above, and assuming that λi = πλi,
and µi = πµi, for i = 1, 2, then
i) λ1 and λ2 resonate if and only if β1 + β2 ∈ C;
ii) λ1 and µ1 resonate if and only if R := {ξ ∈M : β1+ξ ∈ C and α1(ξ) 6= 0}
is a subset of M1 whose Lebesgue measure σ1(R) is nonzero,
iii) µ1 and µ2 resonate if and only if R := {(ξ1, ξ2) ∈ M1 ×M2 : ξ1 + ξ2 ∈
C, α1(ξ1) 6= 0 and α2(ξ2) 6= 0} is a subset of M1 × M2 whose Lebesgue
measure (σ1 × σ2)(R) is nonzero.

The above proposition gives resonance conditions, However, two measures
λ and µ may resonate in the sense of Proposition 10, i.e., v(λ)∗ v(µ)(C) 6= 0,
while π(λ ∗ µ) = 0. In the derivation of geometrical optics, the nonlinear
factor takes the form of this last term. If it is equal to 0, the nonlinearity
then vanishes, as if there were no resonances. Such a phenomenon is called
transparency ; when it occurs, equations that should be nonlinear are in fact
linear. In the case of discrete oscillating spectra, this phenomenon is well
known (see [5, 16] for examples and [14] for a general study). With the above
notation, the transparency conditions read

i) π(β1 + β2)F (aβ1 , aβ2) = 0

ii)
∫
M1

π(β1 + ξ)F (aβ1 , α1(ξ))σ1(dξ) = 0

iii)
∫
M1

∫
M2

π(ξ1 + ξ2)F (α1(ξ1), α2(ξ2))σ1(dξ1)σ2(dξ2) = 0.
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5.4. Spontaneous Raman scattering. The three-level Maxwell-Bloch
model is used to explain this phenomenon (see [4, 17], as well as [14] for
a mathematical point of view). This system consists in the Maxwell equa-
tions 

∂tE − curlB = −∂tP
∂tB + curlE = 0
divE = −divP
divB = 0,

where E and B denote respectively the electric and magnetic fields, while
P is the polarization. The link between E and P is given by the Bloch
equations

iε∂tρ = [Ω, ρ]− [E · Γ, ρ], P = tr(Γρ),

where Ω is the electronic Hamiltonian in absence of external field, and −Γ is
the dipole moment operator. The relevant part of the characteristic variety
in space dimension d = 2 has the following form:

where (Oξ0) is an axis of revolution.
We consider the two-dimensional case d = 2 and suppose in this section

that the incident light is weak enough to neglect the nonlinearities. In our
case, this means that the bilinear mapping F of (1) is taken equal to 0.

As in the introduction, assume that the incident light has frequency ωL.
Energy-level diagrams show that light is emitted at the Stokes frequency
ωS = ωL−ω12 and at the anti-Stokes frequency ωa = ωL+ω12. Boltzmann’s
law explains why Stokes lines are stronger than anti-Stokes lines.
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The intersection of C with the plane ξ0 = ωS is a circle Ω, and as said in
the Introduction, the oscillating spectrum of the emitted oscillation should
be this circle Ω. We assume here that we can describe it with a density
function u0 of support Ω and density α ∈ C(Ω, Hs(Rd)N ),

u0(y,X) =
∫

Ω
eiX·ξα(ξ)(y)σ(dξ).

Since Ω does not contain any singular point of C, we know thanks to Corollary
1 and since the nonlinearity F is equal to 0, that the profile v0 of geometrical
optics reads

v0(t, y,X) =
∫

Ω
eiX·ξα(ξ)(y + tτ ′(ξ))σ(ξ)dξ, (23)

where ξ 7→ τ(ξ) is a parametrization of C in a neighborhood of Ω.
Thanks to Proposition 11 it is straightforward to check that Assumption

1 is satisfied, so that we can conclude thanks to Theorem 5 that (23) gives
a good approximation to the exact solution.

The set of all the directions of propagation of the approximate solution
(23) is {τ ′(ξ) : ξ ∈ Ω}, which is of revolution, so that as observed experimen-
tally, the emission is nearly (because α may depend slightly on ξ) isotropic.

5.5. Stimulated Raman scattering. In this section, we still consider the
two-dimensional case d = 2, and use the three-level Maxwell-Bloch model
whose characteristic variety has been given in the above section.

We assume here that the incident light is a very strong laser beam, so that
nonlinear phenomena occur. We show in this section that the stimulated
Raman scattering may be seen as an instability effect, in the sense that
the nonlinear effects may only amplify the Stokes frequency, among all the
frequencies initially present.

We can assume that the incident light gives a contribution to the initial
condition to Problem (1) of the form u0

L(y) := 2aβL cos(kL · y/ε), where
βL := (ωL, kL) is in C and π(βL)aβL = aβL . The associated profile u0

L ∈ As0
is thus given by u0

L = aβL(δβL + δ−βL).
We will also assume that there are other terms in the initial condition,

whose oscillating spectrum is continuous, since, as said in Section 1, there
is no physical reason to give priority to a countable number of directions of
propagation. We thus consider an initial condition whose profile u0 is given
by

u0 = u0
L +

n∑
i=1

u0
i ,
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where the u0
i = π(DX)u0

i are density functions of one- or two-dimensional
support.

Our goal is to look for the resonant part of this initial condition, i.e., the
part that will be affected by the nonlinearity present in the equations of
geometrical optics.
In order to apply Theorem 6, we give the following lemma.

Lemma 6. i) Density functions with two-dimensional support are absolutely
nonresonant. ii) Density functions with a one-dimensional supportM which
is nowhere horizontal (i.e., such that M ∩ P is discrete for all horizontal
planes P ) are absolutely nonresonant.

Proof. i) Let us consider a density function f of two-dimensional support
M and density α; its Fourier transform λ is given for all Borel sets E by
λ(E) =

∫
M χE(ξ)α(ξ) dξ. Let µ = πµ ∈ BV(R1+d, Hs(Rd)N ) such that

µ({0}) = 0. One has

v(λ) ∗ v(µ)(C) ≤M
∫
C
(
∫
M
χC(ξ1 + ξ2)σ(dξ1))v(µ)(dξ2),

where ‖α(ξ)‖ ≤M , for all ξ ∈M.
In the particular case we are dealing with, it appears clearly on the graph

of C that the set C ∩ (ξ2 + C), and therefore C ∩ (ξ2 +M), has a Lebesgue
measure equal to 0, for all ξ2 ∈ C\{0}; i.e.,

∫
M χC(ξ1 + ξ2)σ(dξ1) = 0, unless

ξ2 = 0. Since v(µ)({0}) = 0, we then have v(λ) ∗ v(µ)(C) = 0, and therefore
λ and µ do not resonate, which yields the first point of the lemma. The
proof of the second point is quite similar, and we omit it. ¤

Thanks to Theorem 6, we know that the terms u0
i of the initial condition

u0 which are as those given in this lemma are not affected by the nonlinearity.
This is not the case of the density function whose one-dimensional supportM
is horizontal (i.e., there exists a horizontal plane P such thatM∩P =M).
The vertical coordinate of such a support will be called the frequency of the
density function.

We introduce the following assumption on the components of the initial
condition u0.

Assumption 2. The density functions u0
i have one-dimensional horizontal

support Mi of frequency ωi 6= ω12, for i = 1, . . . ,m1, and have either a
two-dimensional or nowhere plane support for i = m1 + 1, . . . ,m.

Moreover, for all 1 ≤ i, j ≤ m1, one has ωi + ωj 6= ±ω12.

Up to a change of indices we can suppose that ω1 = ωL − ω12 and ω2 =
−ω1. If these frequencies are not present in the components of the initial
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condition, just assume u0
1 = u0

2 = 0. We can now formulate the following
theorem, which is sharper than Theorem 6, but uses the particular structure
of the characteristic variety of the present example.

Theorem 7. Suppose the initial condition is given by

u0 = aβL(δβL + δ−βL) +
m∑
i=1

u0
i ,

with π(βL)aβL = aβL and the density functions u0
i = π(DX)u0

i are as in
Assumption 2. Let v0 = π(DX)v0 be the profile given by geometrical optics,
and let vlin = π(DX)vlin and vn.lin = π(DX)vn.lin be the solutions of{

π(DX)L1(∂x)π(DX)vn.lin + π(DX)F (vn.lin, vn.lin) = 0,
vn.lin|t=0 = aβL(δβL + δ−βL) + u0

1 + u0
2,

(24)

and {
π(DX)L1(∂x)π(DX)vlin = 0,
vlin|t=0 =

∑
i≥3 u

0
i .

Then one has v0 = vlin + vn.lin. Moreover, the spectrum S := Supp FXvn.lin
of vn.lin satisfies S ⊂ {0,±β} ∪M1 ∪M2 ∪ (M1− βL)∪ (M2 + βL) ⊂ C. In
particular, if all the components of u0 are Q-regular, then so is v0.

Proof. Thanks to Lemma 6 and Theorem 6, we can suppose all the density
functions ui have a horizontal one-dimensional support.

One can see that each iterate vνn.lin of the Picard iterates used to solve
(24) has a spectrum Sν := Supp FXvνn.lin which satisfies Sν ⊂ {0,±β} ⊂
M1∪M2∪(M1−βL)∪(M2 +βL). Therefore, S satisfies the same inclusion.
This fact, together with Assumption 2, yields that

π(DX)F (v0, v0) = π(DX)F (vn.lin, vn.lin),

and we can then conclude as in the proof of Theorem 6 that

v0 = vn.lin + vlin.

Commentary. We have proved that among all the potentially resonant
components of the initial condition, only those which have frequency ±(ωL−
ω12) are effectively resonant. The frequency ωS := ωL − ω12 is the Stokes
frequency we introduced in Section 1. In the graph of C, we have taken
ωa = ωL+ω12 > ω13, so that the anti-Stokes lines do not occur; the analysis
would be of the same kind taking them into account. All the other potentially
resonant components are not affected by the nonlinearity, and therefore are
not amplified.
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The nonlinearity thus chooses only density functions of horizontal one-
dimensional support at the Stokes frequency, among all the density functions
possibly present in the initial condition. Whether this component will be
amplified or not then depends on the coefficients of F , but if something is
effectively amplified it has necessarily the Stokes frequency, and its oscillating
spectrum satisfies the relation given in the theorem.

One could object that since this amplified oscillation has an oscillating
spectrum of the same kind as the one observed with the spontaneous Raman-
scattering, the emission should also be isotropic. However, one observes
experimentally that the light is emitted in a narrow cone in the forward and
in the backward direction. In order to explain this apparent discrepancy,
assume that a component v1

0 of the approximate solution v0 may be read as
a density function of support Ω and density α ∈ C(Ω, (C([0, T ], Hs(Rd)N ))).
That is, one has

v1
0(t, y,X) =

∫
Ω
eiX·ξα(ξ)(t, y)σ(dξ).

In the spontaneous Raman scattering, the time dependence of α(ξ) is found
by solving a transport equation for all ξ. In the stimulated Raman scattering,
this is no longer the case and the time dependence is now nonlinear and
traduces the amplification. Even in simple examples, one can notice that
this amplification is nonisotropic, so that even if the light is emitted in all
the directions, its intensity may strongly depend on the direction. Therefore,
in the case of the stimulated Raman scattering, one can think that the
amplification factor α(ξ) takes its strongest values in the bold part of Ω in
the following graphic.
With such an α, the most intense part of the emitted light is then in a
narrow cone in the forward and in the backward direction, as experimentally
observed.
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