LONG-WAVE SHORT-WAVE RESONANCE FOR
NONLINEAR GEOMETRIC OPTICS

THIERRY COLIN and DAVID LANNES

Abstract

The aim of this paper is to study oscillatory solutions of nonlinear hyperbolic systems
in the framework developed during the last decade by J.-L. Joly, G. Métivier, and
J. Rauch. Here we focus mainly on rectification effects, that is, the interaction of
oscillations with a mean field created by the nonlinearity. A real interaction can
occur only under some geometric conditions described in [JMRI] and [LI1] that
are generally not satisfied by the physical models except in the 1-dimensional case.
We introduce here a new type of ansatz that allows us to obtain rectification effects
under weaker assumptions. We obtain a new class of profile equations and construct
solutions for a subclass. Finally, the stability of the asymptotic expansion is proved
in the context of Maxwell-Bloch-type systems.

1. Introduction

1.1. Motivations
In the study of solutions to nonlinear hyperbolic systems, many nonlinear effects can
be observed. In optics, they are linked to a nonlinear response of the medium and
therefore to the intensity of the incoming light. The more intense it is, the sooner
these nonlinear effects occur.

This physical phenomenon encountered in optics occurs in all nonlinear hyper-
bolic systems; the scale of the appearance of the nonlinear effects is in inverse pro-
portion to the size of the solution. For instance, for a semilinear hyperbolic problem
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nonlinear effects occur at times O(1) if u® is of size O(1) and at times O (1/¢) if its
size is O(¢).

We investigate here phenomena that occur for diffractive times O(1/¢), and we
are interested in one particular nonlinear effect called rectification, which means the
creation of a mean field thanks to the asymptotical nonlinear interaction of oscillating
modes. It is a nonlinear interaction between the zero frequency (long waves) and
nonzero frequencies (short waves).

In the first studies of rectification for times O(1/¢) (in [JMR1] for the nondisper-
sive case and in [L.1] for the dispersive case), it has been shown that it can occur only
if the tangent cone %) to the characteristic variety ¢ at (0, 0) contains a hyperplane
tangent to €. Such a condition is quite strong and seems to exclude all physical ex-
amples, unless we are in space dimension 1, since € is then a union of straight lines.
But even in this case, the nonlinear coupling that should appear between the mean
field and the oscillating modes remains equal to zero, as computations show (see
[L1]). Such a phenomenon belongs to the transparency phenomena first mentioned
by P. Donnat (cf. [D]) and extensively studied in [JMR2].

As said above, nonlinear effects are linked to the amplitude of the solutions
we study. Since rectification does not occur at times O(1/¢) when dealing with
“normal” solutions of size O(g) to transparent problems, it is therefore natural to
seek “abnormal” solutions of size O(1). We said above that in this case nonlinear
effects should occur at times O(1), but because of transparency they occur only at a
diffractive scale. It has been proved in this case (see [C]) that the approximate solution
given by geometric optics must satisfy a Davey-Stewartson-type system that couples
the leading oscillating term of the ansatz with the leading nonoscillating term.

There is therefore a nonlinear interaction between the oscillating and mean
modes, but this Davey-Stewartson-type interaction is due to the algebraic structure
of the system and not to asymptotical effects coming from the long-time interaction
of different modes travelling at the same velocity. Hence, the nonlinear interaction in
Davey-Stewartson systems cannot be called rectification.

In fact, the study made in [C] remains valid while rectification does not occur. It
has been proved indeed that the classical rectification condition (i.e., % contains a
hyperplane tangent to €) is a singular case for the Davey-Stewartson system of [C].
It is not surprising since in this case the system is “more nonlinear’—since we then
have to add the rectification effects to the Davey-Stewartson nonlinear effects—and
the solutions are therefore more likely to explode.

There is also another singular case for this Davey-Stewartson system, which
occurs when there exists a tangent plane to % also tangent to 4. This condition is
close but weaker than the rectification condition. Here again, one can think that the
Davey-Stewartson system becomes singular because of rectification effects.
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Here lies the motivation of this paper. We want to observe rectification effects,
but we are confronted by two opposite situations where their study is not possible.
On the one hand (see [JMRI1], [L1]), the amplitude O (¢) of the solutions is too small
and, because of transparency effects, rectification effects do not occur for observation
times O(1/¢g). On the other hand (in [C]), the amplitude O (1) of the solutions is too
big and when rectification effects occur, solutions explode. It is therefore natural to
consider solutions at an intermediate scale O(4/¢) and to investigate the two cases
which are singular in [C].

(i) There is in #° a tangent hyperplane to %. As said above, the only physically
interesting case is when the space dimension is 1. We then seek approximate solution

u® of the form
Tt + ny)

u(t,y) = Js%* (st, t,y, "
where (T, t, y, 0) is periodic in 6. The scale ¢t is the diffractive scale, while (z, y)
is the scale of geometric optics and (¢ + ny)/e the fast oscillating scale.

(ii) % has a tangent plane .7 also tangent to %°. The 1-dimensional case is the
same as above, so that we consider only space dimension d > 2. The situation is here
a bit different since if we seek approximate solutions u® as above, we know, thanks to
[JMR1] and [L1], that there is no rectification effect (since the rectification condition
is not fulfilled). Denoting y = (yi, ..., y4) and assuming that & is tangent to ¢
along the first coordinate, a first idea is to consider approximate solutions of the form

u (e, y) = Veu (er,1, 31,

Tt +ny
e )’

which brings us back to case (i). This is not satisfactory since we lose the dependence
on yr; := (y,...,Ya), and hence we can only study the rectification effects that
occur along the first coordinate. Our problem is then quite similar to what happens
when choosing the amplitude. We are indeed confronted by two opposite situations.
On the one hand, rectification does not occur fast enough to be described with a
dependence on yr; of the same scale as the dependence on y;. On the other hand,
taking a dependence on y;; slower or of the same scale as the diffractive scale, we
miss part of it. Thus, we introduce a new scale and seek ©#® under the form

Tt +
w1, ) = Vo U (o1, ey 1y, ).
&

Throughout this paper, we investigate case (ii). The associated condition is called
the long-wave short-wave resonant condition. It is easy to see that the situation de-
scribed in case (i) can easily be deduced from it. We show that multidimensional
nontrivial rectification occurs in this case. Since the long-wave short-wave resonance
condition is likely to occur for physical systems, we suspect that this study gives a



354 COLIN AND LANNES

good framework to observe experimentally rectification effects. In [L2], we follow
formally the theory exposed here to study rectification effects for water waves, but,
unfortunately, we cannot apply directly the result of this paper to the Euler equations
with free surface. Note that the system found in [L2] is also derived in the book by
C. and P.-L. Sulem [Su].

1.2. Setting up the problem
We consider here a general class of hyperbolic quadratic systems. More precisely, we
seek approximate solutions of size /& to

d
L
LE@u’ = dru" + ) Aj0u° + —2uf = /(o uf), (D
j=0

where the A; are N x N symmetric real matrices, while Lg is skew-symmetric.

We assume that the mapping (#, v) € C2V +— f(u, v) € CV is bilinear. Through-
out this paper, t € R+ denotes the time variable and y := (y1, ..., yq) € RY denotes
the space variables; we also write x := (¢, y) € RIt4,

For(z, n) € Rt we introduce

d
Lo
L(t, =1l Aini + —,
(T, m) +j§_l ,n,+i

as well as

d
Arr(n) = ZAjﬂj-
j=2

The setofall B8 := (7, n) € R!* such that det(L(B)) = 0is the characteristic variety
of L and is denoted by 7. If 8 is a smooth point of %7, we denote by 1 — (1) a
local parametrization of %, in a neighborhood of S. For 8 = (t, n) € 4, we finally
denote by m(8) the orthogonal projector on ker(z/ + A(n) + Lo/i), and we denote
by L(B)~! the partial inverse of L(8). We also need to consider the characteristic
variety € 0 of the operator 7(0)L?m(0), which is the tangent cone to %47 at (0, 0)
(see [L1]).

As said above, we look for approximate solutions to (1) whose size is O(/€),
that is, intermediate between the normal size O(¢) and the large size O(1) used
when deriving the Davey-Stewartson systems (see [C]). The leading oscillating term
oscillates with a phase B - x/&, where B satisfies the following assumption.

ASSUMPTION 1
B is a smooth point of €1, and 28 is not on €.
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The short-wave long-wave resonance condition we have mentioned above, and which
corresponds to the singular case for the Davey-Stewartson system with which we are
dealing, states the following.

ASSUMPTION 2 (Long-wave short-wave resonance)
We say that we have a long-wave short-wave resonance if the tangent space & to 61,
at B is the tangent space to €° at (0, 0).

Under this assumption, the intersection of & and %" is a straight line passing through
the origin. We denote by B° the point of this line with vertical coordinate equal to 1:
B = (1,1% = 1,7, ....n).

When 47, is of revolution, then 1, n°, and V(1) are necessarily colinear. In the
general case, this is no longer true, but we have the_following proposition.

PROPOSITION 1
If V() - n® # 0, then we can be brought back to the case where Vz(n) and the
contact direction n° are colinear.

The proof of this proposition is postponed to Section 6.1.
In order to be in this framework, we make the following assumption, satisfied by
all the physical examples we have encountered.

ASSUMPTION 3
One has Vt (1) - n® £ 0.

Convention
Under the above assumption, we can assume from now on that n° = (r)(l), 0,...,0
and /() = (d17(n),0,...,0).

1.3. The ansatz
In diffractive optics (see [D], [JMR1], [L1], [C]), ansatzes with three scales are used,
and the approximate solutions are therefore of the form

X
ut(x) = s””]/(a, et, X, _ﬁ—>,
€

where the profile % (e, T, x, 6) is periodic in 6.

The scale O (1/¢) is the fast scale associated to the oscillations, and the intermedi-
ate scale O (1) is the scale of geometric optics, that is, the scale for which propagation
of oscillations along rays furnishes a good approximation. The last scale O(¢) is the
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slow scale we have to introduce in order to take into account the diffractive modifi-
cations one has to make to the non-space-time dispersive propagation along rays.

As said in the introduction, we introduce here a fourth scale O(./¢) in order to
take into account the rectification effects in the transverse directions. Still supposing
that 7° and —7 () are along the first coordinate, we seek approximate solutions of
the form

us(x):\/g%(e,gta«/gyll,l,)’l, éé\_.x)’ (2)

where y; is thus the direction of r;o and r’(ﬁ), and yrr := (y2,---, Vd)-
The profile (e, T, Y, t, y1, ) is chosen of the form

Ue, T. Y, t,y1,0) == (% + Vel + eUs + & Us + &> Us) (e, T, Y. 1, y1,0),
3)

where the %; are smooth functions of their arguments and are periodic in 6.

Since the above expansion is used for times O (1/¢), we have to control the growth
of the profiles in ¢. In order for the correctors %;, i = 2, ..., 5, to remain smaller
than the leading term % for such times, we must have %5 = o(J/1), %; = o(t),
Uy = o(t3%), and % = o(1*). We impose the following stronger conditions.

o The first corrector % remains bounded,

‘)||L°<>([o,1]x]11<‘;_y1 xT) =C. “

iC >0, sup ||%2(-, N
teRt
e The other correctors %;, i = 3,4, 5, satisfy the sublinear growth condition intro-
duced in [JMR1],
1
[1_1520 ;“ag/l( -t )H Loo([o,z]xR‘;_yl T = 0, i=23,4,5. (®)
1.4. Outline of the results
In Section 2 we derive the profile equations using the techniques of geometrical
optics. However, the size of the solution considered here is too big to allow a standard
derivation, and we have to make a transparency assumption. To our knowledge (see
[IMR2], [L1]), this assumption is satisfied by all the physical systems of the form (1).
The profile equations found in this case are given in Theorem 1. In particular, one can
notice that the evolution equations of the oscillating and mean modes are coupled.
In Section 3 we assume the existence of a solution to the profile equations and
prove a few properties of the approximate solutions associated to these profiles. In
Proposition 7 we show that the residual that one obtains when plugging these approx-
imate solutions into (1) is small.
Section 4 is devoted to the study of a particular subclass of systems (see (1)),
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the Maxwell-Bloch systems. This class of problems has been extensively studied in
[JMR2]. Under a strong transparency assumption, we prove that the nonlinearity
appearing in the evolution equation of the mean mode vanishes. In this case, the
existence of a solution to the profile equations is proved. Moreover, we prove in
Theorem 2 that the associated approximate solutions are stable, that is, remain close
to an exact solution of (1).

The 1-dimensional case is another framework in which we can prove the existence
of a solution to the profile equations, as we show in Section 5.

Finally, we prove in Section 6 an existence theorem for the profile equations
in two dimensions, without doing the strong transparency assumption. Though the
system we consider in this version is simplified with regard to the profile equations
given in Theorem 1, it is of particular interest since this is the system obtained by
Sulem and Sulem [Su] when studying the long-wave short-wave resonance for water
waves.

2. Derivation of the equations

2.1. Equations for the profiles
As usual in geometric optics, we expand L°u® — f(u®, u®) (where u® is the approxi-
mate solution given by equations (2) and (3)) in powers of €. One finds
LEuf — f(uf, uf) = <8_1/2iL(ED9)%1 + &% L(BDg) % + &' 2iL(BDs) 5
+ (8 + A1dy, )% + &' i L(BDo) % + (3, + A0y, )2
+ A1 ()% — f(%, %) + &% L(B Dy ) %s
+ (0 4+ A1y, )% + A1 (dy) U + 01 — 2f (7, W)
+ 82(3, + Ay, )Us + Ar1(3y)Us + 01U — [ (U, W)
—2f (%, %) + P27

T=et,Y=\/eyi1.0=p-x/e

(6)

where we recall that A;;(dy) := Z?:z Aj(dy;) and where Dy := 9g/i.
We want to choose profiles %; in order to cancel the first terms in the above
expansion. This yields the following profile equations:

iL(BDg)% =0, (7)
iL(BDg)% =0, ®)
iL(BDg)%s + (0 + A1y, )% =0, ©)
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iL(BDg)% + (0: + A10y,) % + A1 (Oy)?%0 — f(?.71) =0, (10)
iL(BDg)%s + (0r + A1y, )% + A1 Oy) U + 072 — 2 f (%, %) =0, (1)
and

(3 + A1y, )% + A11OY)Us + 30 — [, W) — 2f (7. %) =0.  (12)

2.2. Algebraic analysis of equations (7)—(12)
For the principal term of our ansatz, we choose
(T, Y, t,y1,0) :=21(T,7,t, yl)eie + c.c. (complex conjugate),

which means that we exclude nonoscillating terms from the principal term. This is
realistic since the nonoscillating terms, which are created by rectification effects,
cannot reach the same amplitude as the main oscillating terms.

In order to deduce conditions on %/ from (7)—(12) and throughout this section,
we need the following algebraic lemma.

LEMMA 1

Leta,b € CV, and let B € R4, The following two assertions are then equivalent:
(i) L(Ba=h,

(i) 7(B)b=0and (I —m(B))a= L(B)"'b.

Thanks to this lemma, equation (7) is then equivalent to the polarization condition
T (B)u = . (13)

Contrary to what has been done for %, we allow nonoscillating terms for the
first corrector %». We take therefore

%z(T, Y, t,y1, 9) = 02/20(T, Y, t, yl) + %21(T, Y, ¢, yl)em +c.c.

We first decompose (8) into its Fourier modes and then apply Lemma 1 to find that
(8) is equivalent to

7 (B) %1 = U (14)
and

7 (0) %0 = Uo. (15)

Pursuing our analysis, we now want to find necessary conditions from (9).
We search a 24 of the form

U(T, Y, 1, y1,0) == Uo(T. Y, 1, 1) + %1 (T, Y. 1, y1)ei9 +c.c.,
so that the nonoscillating Fourier coefficient of (9) reads

L(0)Z30 = 0.
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Thanks to Lemma 1, this is equivalent to
n(0) %30 = %3o. (16)
The first mode of the Fourier expansion of (9) reads
iL(B)U3 + (0 + A10y,) %1 = 0.
Using Lemma 1 and (13), this is equivalent to the following two equations:
7(B)(3; + A1dy,)(B) 21 =0 (17)
and
(I —7(B) %1 =iL(B)~" (3 + A1dy,)w(B)%1;
that is, since L(8) '7 () =0,
(1 =7 (B) %1 = iL(B)™" Ardy, m(B) 7. (18)

Since (10) is nonlinear quadratic, we have to look for a %4 with the second
harmonic

02/4(T, Y, t,y1, 9) L= %o(T, Y, ¢, y1) + 7/41(T, Y, t, yl)em +c.c.

+ Ui (T, Y, 1, yl)em +c.c.

With the same method as above and using (15), we obtain the following equivalent
equations to (10):

7(0) (3 + A1dy, )T ()20 = 2%(7(0) f (x(B)21, (B Zh1))  (19)

and

(I — 7 (0)) %o = i L(0) ' A1y, m(0) 20 — 2iR(LO) " f (m(B)211. 7 (B) 7)),
(20)
as far as the nonoscillating mode is concerned, and

7(B) (3 + A1y, ) (B) %1 + 7 (B) A (3y)m (B) %1 = O @1
and
(I —m(B))%ar =iL(B)~ A1dym(B) %1 +iL(B) ' Ari(n)%1  (22)
for the first oscillating mode, and finally

Ui = —iL(2B)”" f (21, %) (23)

for the second harmonic, since L(28) is invertible thanks to Assumption 1.
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Since (11) is also nonlinear quadratic, we look for a %5 of the same kind as %4,
Us(T, Y, t,y1,0) := Uso(T. Y. 1, y1) + %1 (T, Y. 1, yl)em +c.c.
+ %52(T, Y, t, y1)62i0 +c.c.,
and we obtain the following equivalent conditions:
7(0)(3; + A1y, ) (0)%30 + 7 (0) A1 (dy)7 (0) %20 24)

— 4R (7 (0) f (x (B) %1, 7 (B) %1 )
and

(I —7(0))%s0 = i L(0)~" A1d,,7(0)%30 0s)
+iL () A (By) 20 — 4LO)'R(f (%1, U1)),

as far as the nonoscillating mode is concerned, and
w(B)A1dy, T (B) U1 + 7 (B) A1 By) T (B) W1 + dr e (B) 21 = 27 (B) f (%, W)
(26)
and
(I —7(B)%s1 =iL(B)"" (3 + A1dy,) U1 +iL(B) " A11(dy) %1
—2L(B)~" f (1. W)

for the first order term of the Fourier expansion. The second harmonic %5, is obtained
in the same way as %3,

Usr = —2L(2B) " f (%, U). (28)

Equation (26) involves %431, which can be split under the form 73| = n(é)%l +
(I — 7(B))31. Plugging this decomposition into (26) and using the expression of
(I — 7 (B)) %31 given by (18) yields

e2)

dr ()71 + i (B)A1dy, L(B) ™" A1dy, 7 (B) %1
+7(B)(3 + A1dy, ) (B) 21 + 7 (B)A11(By)m (B) W1 (29)
= 21(B) f (7 (B) %1, 7 (0) 2).

We finally consider (12). In fact, we do not solve it entirely, but only its projection
onto the range of 7 (0). The equation thus obtained reads, thanks to (15)-(16),

7(0)(3; + A1y, ) %0 + w(0) Ay (dy) 7 (0) %30 + 7 (0)d7 7 (0) %20
= 1 (0)(f (7w (0) %0, T (0)%50) L + 2f (n(B) 1. ﬂ(ﬁ)%zl)) (30)
+AR( ) f (R (B) %1, Ua1)).
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2.3. The transparency condition

Without any additional information, the equations found in the above section cannot
be solved. We recall indeed that the scaling of our solutions is bigger than the normal
scaling, so that the nonlinear effects should occur too soon to allow a study over large
times. As said in the introduction, these nonlinear effects do not occur in many cases,
provided that the following transparency condition is fulfilled.

ASSUMPTION 4 (Transparency)
Forany a,b € CN, one has

7(0) f (7 (B)a, m(B)b) = 0.
Under this assumption, (19) becomes linear,
m(0)(d; + Ay, ) (0) %0 = 0, (31)
and so does (24), which reads
7 (0)(3; + A18yl)n(0)?/3o + 7 (0)A7;(dy)m(0)%0 = 0. (32)
We finally consider (30). Under the transparency assumption, it reads
77 (0) %0 + 7(0)(8; + A1y, ) %0 + 7 (0) A1 (3y)7w (0) %30
= 7(0) f (7 (0)%a0, 7(0)240) + 4R (7 (0) f (m(B) %1, (I — 7 (B)) U51)).

We can now use the expression of (1 —ﬂ(é))%3 | given by (18), decompose %4 under
the form %o = 7(0) %o + (I — 7 (0)) %40, and use the expression of (I — 7 (0)) %o
given by (20) to find

A7 (0)%a0 + im (0)A1dy, L(0) ™' A1dy, 7 (0) %20
+ 7(0) (9 4+ A1y, ) (0) %0 + 7 (0) A 17 (dy) 7 (0) %30
= 1(0) f (7 (0) %0, 7 (0) %) (33)
+ 4% (7 (0) f (m(B) 21, i L(B) "1 A0y, 7w (B)%11))
+2im (0)A1dy, LO) 'R (f (7 (B) 21, 7 (B) 7).

2.4. Transport at the group velocity

In this section, we review some of the profiles which are transported at the group
velocity, since these profiles play the essential part in the asymptotic study. The first
proposition we give is a simple consequence of the classical property of transport
along rays.
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PROPOSITION 2
When B is a smooth point of €7, and under Proposition 1, one has

7(B) (3 + A1dy, )7 (B) = (3 — diT(mdy, )7 (B)

and
(B)A11@y)m(p) =0.
Proof
It is known that for all j one has 7 (B)A jm(B) = —dt(n)7(B). Since in the present
case we have 9 jr(ﬂ) = 0 when j > 2, the results of the proposition follow. O

Using this proposition, together with (17) and (21), yields
(8 — 317 (m)dy, ) (B) %1 =0

and

(9 — 1T(m)dy, ) (B) U1 =0, (34)
so that both 7 (8)% and 7 (B8)%>, are transported at the group velocity, since we
recall that the gﬁ)up velocity reads —t/ (Q) = (01 ‘L’(Q), 0,...,0) in our coordinates.

We finally prove that a component of 7 (0)%5 also travels at the group velocity.
We recall that, thanks to (31), one has

7(0)(; + A1dy, ) (0)%0 = 0.

Since 7 (0)(d; + A19y,)m(0) is a hyperbolic symmetric operator of dimension 1, we
can decompose it under the form

14
7(0)(3; + A19y,)7(0) =Z 3 + v;0y, )7/ (0), (35)

where the v; are the distinct eigenvalues of 7(0)A;7(0) and where 7/ (0) is the
associated orthogonal projector defined on the range of 7 (0).

Each component 71 (0)g of (0)% is therefore transported at the velocity
v;, with respect to the variables ¢ and y;. The following lemma says that one of these
components is tranported at the group velocity.

LEMMA 2
The group velocity —d1t(n) is an eigenvalue of w(0) A (0).

Proof
The vector (1, —r’(ﬂ)) is by definition normal to the tangent plane & to ¢, at B.
We recall that 8% = (1, ") is on the contact line between &2 and ¢; thanks to
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Assumption 2, we thus know that (1, —7’(1)) is also normal to €° at 0.

Denoting by 7°(1) alocal parametrizati_on of ¢ in a neighborhood of 8%, we have
therefore rol(no) = r’(ﬂ) and t°(n") = 1. But since €V is conic, t° is homogenous
of degree 1, and Euler’s formula yields t°(n") = ro’(no) - Y. It follows that 1 =
T'(n) - 1"

Since in our coordinates we have no = (n(l), 0,...,0), this last equality reads
1= 811:(2)77?, and B0 thus reads ° = (alt(ﬁ)n?, 77(1), 0, ...,0). We have therefore
L(B%) = n0@it(n) + A1)

Since B° € ¢V, the endomorphism 7(0)L(B°)7 (0) is not invertible on the range
of 7(0), and hence neither is 7 (0)(d;t(n) + A;)7(0), thanks to the expression just
found for L(B°). This means that —Blr(_ﬂ) is an eigenvalue of 7 (0)A 7 (0), and the

lemma is thus proved. O
Convention

In other words, the lemma says that there exists j such that v; = —d;7(n). Upto a
change of indices, we suppose from now on that vy = —alr(ﬂ), so that 7! )Y

travels at the group velocity.

2.5. Averaging

We now use the average projectors introduced in [L1] to obtain new equations that
describe the asymptotic behavior of the solution for long times. We first recall the
definition of the average projector in the case in which we are interested.

Definition 1 (Average projector)
Let T(9y) := 0x + vdy, be a transport operator. The average projector associated to
T is the operator ¢r defined on smooth functions on R,z, y, as

1 h
Grw(t, y1)=hli)rroloE/0 w(t + s, y1 + vs) ds

when this limit exists.
If v = —917(n) and if the function Y7 w exists, it is denoted by (w).

The following proposition gives the properties of ¢7 which we need in this paper.

PROPOSITION 3
(i) Let T(0x) = 0; + v0y,.
o If w is a smooth function of (t, y1) € R? such that T (3x)w = 0, then we have

Yrw = w;
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o If w has a sublinear growth, that is, if lim;_, o (1/t)||w(¢, -)|lco = O, then
Gr (T (3)w) = 0.

(ii) Let vy # vy, T1(0x) := 9; + v10y,, and T5(3y) := 0 + v20y,.
If w is such that T1(0y)w = 0, then

Yr,w = 0.

(iii) Let T1(dy) := 0; + v1dy,, To(dx) := 0; + v20y,, and T (dy) := 0; + vdy,, and
suppose that T1(3y)wy = T2 (dy)wy = 0. Then

Gr f(wy, wz) =0
unless v = v| = vy, in which case
Gr f(wy, w2) = f(w, wa).

(iv) If w has a sublinear growth, (w) is well defined, and v # —017(1), then one

has
(0 -+ v o) = (17 + )0y, ().
Proof
We only prove (iv) since all the other assertions of the proposition can be found
in [L1].
One has

1 h
i /0 [(3 + vy Jw](t +5,5 = dre(ps) ds

1 rh
=E/‘a@0+&y—%ﬂ@9)
0

+[(v+ it )3y, w](r + 5.y — 01t (n)s) ds
1
=Ewﬁ+hy—&ﬂ@@—wﬁyﬂ
1 h
+ E/o (v401T()dy,w(t +s,y — hr(n)s)ds
1
= E[w(t +h,y —dit(h) —w(t, y)]
1 h
+{v+mﬂ@mnzf w(t+s,y—di1t(n)s)ds.
0
Since w has a sublinear growth, the first of these two terms tends to zero when

h — oo. The second of these terms tends toward (917 () + v)dy, (w) since (w) is
well defined. The assertion of the proposition is thus proved. O
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We first use these results to solve (32), which reads
7(0) (3 + A1dy, )7 (0)%30 + 7 (0)A17(3y)7 (0) 220 = 0.

There is not uniqueness of the solution to this equation; the following lemma gives
the most natural.

LEMMA 3
As a solution to (32), one can take

7(0) %0 = 7 (0) 20
and
)4

Z alr(n) +v;

(0230 = (7 (0)%30) = 35,1/ (0) A1 (3y) (0) %0

(where the vj, j > 2, are the eigenvalues of w(0)A17(0) distinct from —d17(n)).

Proof
Using decomposition (35), equation (32) writes

p
D (0 +vjdy, ) ()30 + w(0) A1 (3y) 7 (0) 220 = O,
j=1

with v = —d17(n) and v; # v for j > 2. We also recall that 7(0)%0 =
Zle I (0) %50 with (3; + v;dy, )7/ (0)%0 = O for all j, so that

p
> (@ +vjdy,) nf(())%o+n(0>Au(ay)an(0>%o—0
j=1 j=1

Multiplying this equation on the left by 77/ (0), with 1 < j < p, yields

P
(8 + vjdy, )77 O30 + 9 () Ar1(3y) Y 7 ()220 = 0.
k=1

Let us introduce the operator 7;(dy) := 9d; + v;dy,. Since we impose that %3¢ has a
sublinear growth, we can apply the average projector ¢¥7; to the above equation and
use Proposition 3 to find

7/ (0)A 11 (dy)m! (0)240 = 0. (36);

When j > 2, the operator 77/ (0)A;; (3y)m/ (0) is in general not equal to zero, so that
we take 77/ (0)%50 = 0 as a solution to (36) j-
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When j = 1, things are different since w!(0)A;7(dy)7'(0) = 0, as we now
prove. This is done in two steps

(1) One has ker7(0)(d1t(n)I + A7 (0) = kerm(0)( + Am?)n(O). Indeed,
one has ker (0)(d17(n)1 + A (0) = ker 7 (0) (1T (mnf1 + A1n))m(0), and 1 =
01 r(n)n(l), as we have seen in the proof of Lemma 2.

(ii) As in the proof of Lemma 2, denote by 7°(17) a local parametrization of € in a
neighborhood of BY. Denote by 7%(n) the orthogonal projector on ker 7 (0) L (°(n), n)
7(0). Thanks to (i), we know that 7°(n°) = 71(0). We thus have

7' (0)A;7'(0) = —3;7°(n°),

and since ro/(no) =1t'(n) = (011(n),0,...,0), we have Jrl(O)Ajnl(O) = 0 for all
j = 2, and therefore B B

7' (0)A11(3y)7' (0) =0,
as wanted.

Therefore, (36); does not impose any condition, so that the choice of 7 (0)%29
= 11 (0)%y is free.

Before giving an expression for w(0)%430, first remark that if %5g is regular
enough, 77/ (0)%30, for j > 2, is a sum of regular functions that travel at velocity
vy or vj, so that (7 (0)%30) exists. Thanks to Proposition 3, applying 7, on (36);
yields

(317 + v)) 3y, (7 (O Z30) = =77 (0)A11 (By) 7' (0) %20,

It is then easy to see that the function given in the lemma indeed solves (32). O

Remark 1
As one can see in the proof of Lemma 3, the solution given by the lemma is not the
only possible one, but it is the simplest and most natural.

We now use the average projector to obtain two new equations equivalent to (29). We
recall that 7 (8)% 1, m(B)%, and 7' (0)%» are transported at the group velocity
and are therefore left invariant by the action of ( ). Using also Proposition 2 and the
fact that %, has a sublinear growth, one then finds, after applying () to (29), that
this equation is equivalent to the couple of equations

arm(B)% + im(B)A13y, L(B) " A13y, 7 (B) 21 = 21 (B) f (w(B) 21, 7 (0) Za0)
37
and

p
7 (B) (3 + A1dy, ) (B)U31 =27 (B) f (n@%, > (0)%0> .
j=2

Since one has 7 (0)%50 = 7 ! (0)%/0 from Lemma 3, this last equation reads
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7(B)(3; + A10y,)(B)U31 =0, (38)

which is equivalent to saying that 7 (8)%43, is transported at the group velocity, thanks
to Proposition 2. B

In the evolution equation for %, given by (37), the corrector %5 also appears,
and we therefore need another profile equation in order to determine %1 and %».
This second equation is derived from (33). In fact, we do not solve (33), but only its
spectral component on the range of 77! (0). It is obtained by multiplying (33) on the
left by 1(0). Using decomposition (35) and Lemma 3, this reads

dr ' (0) %0 + in ' (0) A1 8y, L(0) ' A1dy, 7' (0) 240
+ (8 — a1 ()dy, )" (0) %o + 7' (0) A1 ()7 (0) X0
=71 (0) f (7" (0) %0, 7' (0)%0)
+4(x ' 0) f (T(B) %1, iL(B) T A1y, 7 (B) 1))
+2i' (0)A13y, LO) ™ f(m(B) %1, 7w ()1 ).

Since %, %30, and %) travel at the group velocity and since we impose that
a0 has a sublinear growth, we can see by applying the average projector ¢ to this
equation that it is equivalent to

dr ' (0) %0 + in ' (0)A13,, L(0) "1 A1 8y, ' (0)%0

1

— 3 ')A () (0%
) v, b T (0) A1 (9y)m (0) %20

p
' (O)A )
j=2

| | 1 39
="' 0) f (7' (0)%0, 7' (0)%0)

+4%( ' 0) f ((B) 21, i L(B)~" A1y, 0 (B)71))
+2im' (0)A1dy, L)~ f(w(B) 21, 7 (B) %))

and
(3 — a1t (mdy, )" (0) %o = 0.

Equation (39) is the coupled equation on %} and %»( for which we were looking.

2.6. The evolution system for 7w(B)7 1 and 7102
We simplify here (37) and (39), which yields a system on 7 ()% and 710) %0
that is easier to handle. We first need the following proposition.

PROPOSITION 4
(i) One has

1
7(B)Aidy L) Mdyw(B) = STt (B)3],
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and
71(0)A18,,L(0) 1 A18,, 71 (0) = 0.

(i) Forany a,b € RY, we have
7' 0) f (=" (0)a, 7' (0)b) = 0.

(iii) The first quadratic term in %1 in (39) is a derivative:

4% (7O f (r(BY 21, iL(B)~" A19y, 7w (B) 1))
= —2idy, 7" (0) f (017 (B) %11, 7 (B)Z1).

Proof
(1) The first assertion of this point is very classical and can, for instance, be found in
[DIMR]. We now prove the second assertion.

For any 81 := (tr,m) € R2, introduce Li(t,n) ==t +Aym + Lo/i. The
associated characteristic variety %7 is parametrized by (tlj (m1)) j=1,...,r» Where, up to
a change of indices, rll, R r; denotes the rlj such that rlj 0) =0.

Since we are in dimension 1, the rlj are analytic functions (cf. [K]) and are odd
when j < s (because A1 and L are real). We also denote by n,j (n1) the projector on
ker L ]('L'Ij (n1), n1) when B is smooth. These functions can be analytically extended
to R (cf. [K]).

(a) We prove here that nlj (0) =7/ (0) for 1 < j < s (where n{ (0) denotes the
analytic extension of 7 IJ (n1) to zero).

We know that the characteristic variety %10 defined as {(z, n1), det(w (0)(z I +
Any + Lo/i)m(0)) = 0} is the tangent cone to %7 at (0, 0) (see [L1]); as we are in
space dimension 1, it is a union of straight lines. But, thanks to decomposition (35),
we can write

P
7(0)A1(0) = > ;7! (0),
j=1
so that
<g,0:{f+vjm:0,j:1,...,p}. (40)

On the other hand, since %7 is the union of the analytic curves rIj , the tangent cone
<€10 is given by
0 Jj’ ;

%,:{r—rl (0)771:0,]:1,...,s}. 41)

Thanks to (40) and (41), we know that p = s and that, up to a change of indices,
v
v; = —1; (0).
We also have
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n}(m)(r/(m) + A + lTL0> =0, Vn.

Differentiating this equality yields
) 1 . .
m’(m)(f}(m) + Ay + ;Lo> + o) (d o+ A1) =0 @)

Taking the limit of this equality when 17 — 0 and multiplying on the right by n’{ 0)
yields
J S J
w; (0)Aym; (0) = —71; (0)7y (0).

Since —rlj /(O) = v, this means that J'r[j (0) is the eigenprojector associated to the
eigenvalue v; of 7] (0)A;7; (0), and therefore 7] (0) = 7/ (0).
(b) We now introduce

() ) + -+ + JT,p(m))Al(JT,' m)+---+ ﬂf(m)) — 7 (0)A7(0)
m '

¢ (1) =

and we prove that

P ./ ./ ’ Y i/
nlliglo¢(m)=—2f} O] O+ > (rF ) =1 )7} O)f(0). (43)

J=1 Jokk#j

We know that 7le (m)Aln,j(m) = —r,j/(m)n{(m) and, as we have seen in (a), that
7 (0)A1r(0) = — 5’=1 rIj/(O)JTIj (0). We therefore have

2o o =l o
¢(n1)=§ %N;(m)
; n
j=l1
14 J J J k
+§ :le’(o)”[() 77[(771) +Z7T[(771) 1771(771)
j=1 m oy m
=A+B+C.

One then has . ‘ .
e A —> Zj r,j (0)7‘[; (0) when n; — 0, and therefore A — 0 since the t[j are odd
for j < p;
!
e B— — Zj t]’(O)rrIj (0) when n; — 0;
i/ v
.Cez#mﬁm—ﬁQMﬂWWMMmm%Q
In order to prove this result, we first multiply (42) on the right by n;‘ (n1), fork # j,
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m’(m)(t}(m) + A + lTL0>7TIk(771) + 1) (n) Ay (m) = 0,
and thus,
. . .
(¢} ) = f )7y )z (o) + 7] () Avf (m) = 0.
We have therefore
. : !

D o ml A m) =Y (tf (m) — 1} )] (m)mf (m).

i#] i#]
We just have to divide this equality by 7, and take the limit when n; — O to obtain
the desired result.
Since ¢(n1) = A + B + C, equality (43) is proved.

(c) Let us introduce I1(n) := (711l ) +---+ ﬂlp(ﬂl))~ One has I1(0) = 7 (0),
and IT is an analytic function of 7;; we prove here the equality

L) ' A17(0) + (I — 7 (0))TT'(0) = 0. (44)

In order to prove this relation, first notice that

P, |
I1 (r}(m) + A + 17L0>H(771) =0.

j=1

Differentiating this equality with respect to n; yields

L ; 1 / ; 1
> l_[(f/(m) + A + 7L(> (xf o +A) [] (r/m) + A + 17L0>H(?71)

k=1 j<k i~k
Pl 1
+ 1_[ (f/(m) +Aim + 7L0>H’(m) = 0.
i
j=1
Taking the limit of this expression when 7; — 0 yields

L 1 ) 1 S
YT] lfLo(r;‘ O+ A1) [] 71O+ ,1:[1 ~LoTl'(0) = 0;

k=1 j<k Jj>k

s—1 s
(%) ATI0) + (%) 7' (0) = 0.

Multiplying this equality on the left by (L(0)~")* then yields equality (44).
(d) We prove here that

that is,

lim ¢ (m) = —27(0)A1L(0) ' A1 (0) (45)
n—
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~'O) > 7 O] 0 - 37/ O] O ).
j j

Indeed, one has

(TI(m1) — 7 (0)) A TI(m) + 7w (0) A1 (TI(1) — 7(0))
d(m) = " ,

and therefore
lim0¢(m) =I'(0)A11(0) + IT'(0) A T1(0).
n—

But thanks to (c), it is easy to see that
M (0)A;T1(0) = I'(0)(1 — T1(0)) A{ T1(0) + 1"(0)T1(0) A T1(0)
= —T1(0)A;L(0)" ' A{T1(0) — IT'(0) Zr{’(O)n{(O).
j

We just have to transpose this equality to find IT(0) A;IT'(0), and thus (45) is proved.
(e) Thanks to (43) and (45), we find an expression for 7(0)AL(0)~' A7 (0). It
is then easy to see that if we multiply this expression on both sides by ' (0), we find
zero, so that the second assertion of point (i) of the proposition is proved.
(i1) Thanks to what we have seen in the proof of (i), we can write

7' (0) f (' (0)a, ' (0)b) = lim, 1 (0) f (7t (n)a, 7} (n1)b).

Since n}(m) = 7w (By), with B := (r}(m), n1,0,...,0) € Rt the right-hand
side of the above equation is equal to zero, thanks to Assumption 4, and the result
follows.

(iii) The proof of this point can be found in [C]. ]

We have thus proved the following theorem.

THEOREM 1
Suppose that u®, given by

- X
u®(x) = x/g%(e, &t, Neyir, t, yi, é—)
£
with
U =W + el + eUs + > Uy + 2 Us

is the approximate solution to (1) given by geometric optics. If % = 1'% + c.c.
and U = Uy + Us1€'? + c.c., then one has

()2 = ., U1 =0, and  7w(0)%0 = Uo.
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Moreover, w(B)71 and Y0)20 = (71(0)%0) are transported at the group velocity
—811'(2), that is,

(9 — 01T )y, ) (BY 211 = (0 — 31T(Q)3yl)7Tl(0)“2/20 =0,

and must also satisfy

arm(B) 2 + %a%r@ai,n(g)% =2 (B) f (7 (B)2%1. 7' (0)%0)  (46)

and

14
1 .
1 1 -1 1
orm (0) %0 — m (0)A77(dy) ;:2 mayl 7/ (0)A;7(y)m " (0) %0

o i 7)
= —2id,,7'(0) f (017 (B) %1, 7w (B) 7 )

+2in' (0)A1dy, LO)™' f(m(B) %1, T (B) 7).

3. The approximate solution #° and its properties

3.1. The leading terms of the ansatz

We want to know the leading term %] of ansatz (3). We have seen that 71| = 24 1€+
c.c. and that (T, Y, t, y1) satisfies the polarization condition %, = 7 (B8)?1,
together with the transport equation B

(9, — 31T ()dy,) %11 =0,

so that %11(T, Y,t, y;) may be written under the form %(T,Y, ¢), where ¢ :=
yi +1it(n).

The second term of the ansatz writes % = %+ %1€'? +c. c., and its nonoscil-
lating mode % satisfies the polarization condition %0 = 7' (0)%5 together with
the same transport equation as %], so that we can also write %50(7, Y, ¢, y;) under
the form %40(T, Y, ¢).

We have seen that the slow evolutions of % and %5 are coupled by (46) and
(47). Such a system presents many difficulties. In this paper, we assume that it admits
sufficiently regular solutions and pursue the analysis.

ASSUMPTION 5

Let 0?/101 = n(é)Q/lol and ?/200 = 7'[1(0)07/200 be in HOO(R‘;, ;). There exists a T > 0,
an integer s sufficiently large, and a unique couple of profiles %y, %o € C([0, T];
HS (R?I,, {)) satisfying
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I (B) % + %afr(g)azn@% =27(B) f (m(B) %1, = (0) %),

————— 3, 7 (0) A Oy)m (0%
) oy ¢ 7’ (0) A (3y)m (0) %0

= —2i3:7"(0) f (017 (B) %1, n(B) %)

+2in (OALLO)™ 3 f (n(B) 21, 7 (B) A1)

p
dorm (0) 20 — ' (0) A1 (By) Y
S) j=2

together with the polarization conditions

w1 = w(B)% and Uy = 7' (0) U
and with the initial conditions

K40 |T:0 = 02/101 and %20|T:0 = %200-

Remark 2

In Section 4 we prove that this assumption can be proved for Maxwell-Bloch systems
satisfying a strong transparency condition. We also prove that this assumption is
satisfied in the 1-dimensional case in Section 5. Finally, we give in Section 6 an
existence theorem for a simplified system arising also in the study of water waves.

Under this assumption, the profiles %, and %5( may be determined, and the other
terms follow, as we now see.

3.2. Corrector terms of the ansatz
In this section, we suppose that % and %> are known, and we construct the missing
terms of ansatz (3) in accordance with the equations found in Section 2.

The leading term % is already known since % = U€e'? + c.c., but we still
have to find %, to determine the first corrector %. The only conditions found so far
on %, are the polarization condition (14) and the transport equation (34). We can
therefore take 25 = 0.

The second corrector 2 writes 23 = Uy + U31€'? + c.c. The nonoscillating
component satisfies the polarization condition (16), that is, 239 = 7 (0)%430, and is
therefore given by Lemma 3.

The component 77 (8)%3; of the oscillating mode must only satisfy the transport
equation (38) and can therefore be taken equal to zero. The component (I — 7 (B8)) 71
is given in terms of %, by (18). B

For the corrector % = %o+ Uae'? +c. c. +Une*? +c. c., we obtain similarly
(I — (0)) %40, thanks to (20), and we can take 7 (0)%0o = 0. The component (/ —
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1 (B))%4, of the first oscillating mode is given by (22), and we can take 7w (8) %41 = 0.
The second harmonic is found using (23). B

Finally, for the last corrector % = %50 + Usie'? + c.c. +Usre'? +c.c., we
obtain (I — 7(0))%50, thanks to (25), and we can take 7 (0)%s9 = 0. The component
(I — (B))%s, is given by (27), while 7 (8)%5 can also be taken equal to zero. The
second harmonic is given by (28) and is therefore equal to zero, since %51 = 0.

All the components of the ansatz (3),

%(8, T,Y,t,yi1, 9) = (%1 + U + U3 + &Py + 82%5)(8, T,Y,t,y1, 6),

are therefore known, once Assumption 5 is made. The dependence on ¢ and y; of
all these profiles is indeed a dependence on ¢ = y; + d17(n)¢ since they are all
transported at the group velocity. We now give explicitly the eXI)ression of the ansatz
we have found:

U(e,T,Y,8,0) = n(B)21(T, Y, §)e" +c.c.+/en (0)2%0(T, Y. ¢)
P
——1‘ —1j 1
T /—X; ait(n) +v; 9, 7/ (0)Ar1(dy)m " (0) %0

+iL(B) ' A1dem(B) %1€ +c.c.

+ 2L 0) " A9, (0) 260 —2i LO0) ' f (w (B) 201, w (B)Z)
+iL(B) " A (By)m(B) %1€ +c.c.

—iLQ2B)~ (%1, %1)e*? +c.c.

p
1 .
2_iL0)'A — 7/ (0)A; (0 Lo
+ & —iL(0) 1;:281T(2)+vj77() 11(0y)7 " (0) a0

— (LB (1) + A1) L(B) " ArdET(B) 2
=2 LB f(%1, Uan))e +c.c.

3.3. Properties of ansatz (3)
Now that we have found the ansatz we were looking for, we give a few properties.
The first one concerns regularity.

PROPOSITION 5

If 921 and > are in C([0,T]; H® (]R?,’ éV)) as asserted in Assumption 5, then all
the Fourier coefficients %j, i = 1,...,5and j =0,...,2, are in C([0, T]; HS 2
(RY.)).
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Proof
Thanks to the expression of %/ given above, the only difficulty is to prove that
¢ 1 1_j 1
0) %30 = — —9, 7/ (0)Ar;(@y)7 ()%
7(0) %30 éaﬂ@ﬂjg (0) A7 (dy)m ' (0) %0

is in C([0, T]; H* *(R} ).

The crucial point is that the nonlinearity of the second equation of (S) is a deriva-
tive with respect to ¢. If 71 (0)%g and n(é)%ll solve (S), then # := aglnl(O)%O
solves

p
orW — ' 0)A11(3y) Y o 7/ (A (By) W
j=2

dit(n) +v;
=2i"(0) f (17w (B) 211, 7 (B) %)
+2ix ' (0)ALL©O) 'R(f (n(B) 21, 7 (B)71)).

Since the second member of this equation is in C([0, T']; H® (]R‘f,’ {)) (if s is large
enough), then % is also in this space. Since 7 (0)%430 writes

P
1 .
0% = — — 7l (OA;; )W,
(0 %30 jgalf(g)+v,’n (0)A77(dy)
it is therefore in C ([0, T']; Hsfl(R‘;izyg))- =

We now prove that the corrector term /%5 + - - - + £2%5 remains smaller than the
leading term %/ for times O(1/¢). In order to do this, we show that the boundedness
condition (4) and the sublinear growth conditions (5) are satisfied.

PROPOSITION 6
The profile 7/ satisfies the boundedness condition (4):

3C >0, sup |%C, -t C.

. <
R )”Lf’o([O,ﬂxR‘f,_nxT) =
The other correctors %;, i = 3,4, 5, also satisfy this boundedness condition, so that

the sublinear growth condition (5) is a fortiori satisfied.

Proof
We recall that %5 = 7'(0)%y, so that the fact that % satisfies the boundedness
condition (4) is a mere consequence of Assumption 5 if s is large enough.

Thanks to the expressions already given, it is also easy to see that the other
correctors %;, i = 3,4, 5, are also bounded. O
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Remark 3

(1) As seen in Proposition 6, all the profiles are bounded, so that the sublinear growth
condition may seem too strong. But it was not a priori obvious that this would be
the case. What happens here is that all the profiles considered travel at the velocity
—d17(n), while sublinear growth occurs when other velocities are present. To be more
precise; if w; and w, are two functions such that

(9, — 01T (m)dy, w1 = w and (wp) =0,

then w has a sublinear growth. In [L1], we can find a second member w, that travels
at a different velocity than —d; (). One then has (w>) = 0 but wy # 0, and w; has
therefore a sublinear growth but is not bounded. In this paper, the second member w;
is always equal to zero, so that wi is bounded.

(2) The fact that all the profiles are bounded suggest an improvement of the
precision of our approximation, as we see in the next sections.

3.4. Estimate for the residual

In this section, we prove that the approximate solution (defined thanks to the ansatz
we have found) is almost a solution of problem (1) since it provides a small residual.
We first give a regularity result for the residual.

LEMMA 4
To the approximate solution u® = \/e% (s, et, /€Y1, t, Y1, B - X /€) corresponds the
residual B

LE@u® — f(u®, u®) =k (x),

which may be written under the form

B-x
kf(x) = c%/(é‘, et, ey, y1 + it (e, _T>

with \
H (e, T, Y. 8,0)= > Hj(e.T.Y,¢)e’,
j=—4

and the J; are in C([0, T]; H“_4(R‘¢,{)) if 2 and > are in H® as asserted by
Assumption 5.

Proof

The proof of this lemma is straightforward, once we have proved that the deriva-
tives 7%, or%», Ot %3, or%4, and dr%s which appear in the residual are in
C(0. T H~*(RF ).
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This is clear for d7 %, thanks to the first equation of (S).

We have already seen in the proof of Proposition 5 that # = 9 L L0y 20
isin C([0,T]; H® (R‘;! {)). Thanks to the second equation of (S), dr%; is thus in
C(10, TJ; HS *(R§, ).

Diftferentiating the second equation of (S) with respect to 7 and using the
same method as in the proof of Proposition 5 then yields that 878; Y is in
c((0, 11, Hs_z(R‘f,’ g))- Thanks to the expression given by Lemma 3, we can then
conclude that 7% is in C([0, T']; H*~3 (]R?,’g)).

The proof that d7% and dr%s are in C([O, T]; H‘Y_4(R‘)j,’ {)) is left to the
reader. =

Knowing in which spaces things are living, we can give estimates on the residual.

PROPOSITION 7
(i) The Fourier coefficients of the profile ¢ of the residual satisfy

2 .
”Kj”LOO([O,Z],HS*“(R‘{,.{)) =0(), forj=—-4,....4

(i) We have a better estimate for the component 7' (0).% of the nonoscillating mode

1 _ 5/2
| (O)Ko||L°°([O,Z],H5*4(R‘}_§)) = 0(e7?).
Proof
This proposition is a direct consequence of the method we have used to find our
approximate solution, since we have cancelled the terms of expansion (6) up to the
power &3/2,. We also have cancelled the component polarized along 7 ! (0) of the term

in £2, which yields the improvement stated in (ii). O

Remark. (i) If the profiles %4, %4, and %5 had a sublinear growth instead of being
bounded, then we would have JZ; = o(e) and 710).#) = 0(£3/?) instead of O(&?)
and O (/?), respectively.

(i) Proposition 7(ii) is of crucial importance in the proof of the stability result of
the next section.

4. The case of Maxwell-Bloch systems

In the previous section, we proved that our approximate solution u® is almost a
solution of problem (1). But the most important thing is to prove that u® remains
close to the exact solution u®. Such a stability property is very difficult to prove
because of resonances (see [JMR2]). The general case remains at the moment out
of reach, and, as done in [C], we limit ourselves to a smaller class of problems than
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those of type (1). Under a strong transparency assumption we also prove that the
nonlinearity in System (S) vanishes, so that Assumption 5 can be proved in this case.

4.1. General Maxwell-Bloch systems
We now look for solutions of size O (4/€) to systems of the form

d
L
ou’ + ZAI-B),].US + ?Oue = f(us,vs),
j=1 (48)

where A; and B; denote symmetric real-valued matrices, while Lo and My are skew-
symmetric.

The mappings f and g are bilinear mappings and g is symmetric.

For (t, n) € R4, we recall that

dy
L
L(z,n) =rI+ZAjnj+TO,

j=l1

as well as

dy
Arr(n) =Y Ajnj.
j=2
We similarly define
d M.
M(t,n) = TI+ZBjnj + TO,
j=1

as well as
d>

Bii(n) =) _ Bjnj.
j=2
The set of all B := (7, n) € R such that det(L(B)) = 0 is the characteristic variety
of L and is denoted by %7 . Similarly, ) denotes the characteristic variety of M.
For any 1 € R4, we denote by (—r£ (m)i=1....,p; the eigenvalues of A(n) + Lo/i and
by (—r/lw(n))lzl ,,,,, p, those of B(n) + Mo/ i, thus providing a parametrization of %7,
and %. Up to a renumbering, we can suppose that 8 = rLl n).

We also denote by 77 (8) and my(B) the orthT)gonal [_)rojectors on ker(tl +
A(n) + Lo/i) and ker(z1 + B(n) + My/ i), respectively, and we denote by L(B)~!
and M(B)~" the partial inverses of L(8) and M (B). Similarly, 77 (0) and 7;(0) are
the orthogonal projectors on the kernel of L(0) and M(0), and L)~ and M(©0)~!
their partial inverses.
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We finally denote by %E and %18[ the characteristic varieties of the operators
7 (0) L8 (0y)7 L (0) and 77 (0) M (9, )71 (0), respectively. Thanks to Lemma 2, we
know that 737 (0) By (0) admits —9; tLl(n) as an eigenvalue. The associated eigen-
projector is denoted by ,{,, (0), while the prGj ectors associated to the other eigenvalues
v; are denoted 711{,[(0), j=2.

Assumption 1 on the choice of 8 and Assumption 2 on the long-wave short-wave
resonance are replaced in this new framework by the following assumption.

ASSUMPTION 6
() The point B of €L is smooth and 2B ¢ €1 ; neither B nor 2 is in .
(ii) The plane & tangent to €1 at B is tangent to ‘518[ at (0, 0).

As systems like (48) are a subclass of systems like (1), all the results proved above
remain valid. In particular, we can construct approximate solutions (u°, v®) to (48)
under the form

B-x
uf(x) = %;(EI, Veyrr, yi + dit(nr, _T>

&

B-x
Vo (x) = 7/“8(81‘, ey y1 +01t(n), >
where the profiles % and ¥,° are given by the formulas

U (T, Y, £,0) = Ve(mL(B) %1€ +c.c.)
+&2(iL(B) ™ AL (B) 1€ +c.c.)
+e2(iL(B) " A ) TL(B) %1€ +c.c.)

+ 85/2(— (L(g)*l(alrL(g) + AN L(B) Ao (B) W
+2L(B)" f (%1, V20) ) +c.c.)
and

VE(T, Y, £,0) = en ) (0) 30

p
2: 1 .
- —3_1103 9 107/

’ j=281fL(Q)+vj ¢ 73, (0) B (9y)my, (0) V20

+ &% M(0)™" Bidg 7y (0) V30 — 2iM(0) ' g (r (B)%i1. T (B) 71 )

—iM(2B)" ' g(%1, %) +c.c.
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— 7l (0)By(3y)m, (0) 5.
31‘EL(Q)+UJ-7TM( )B11(3y)my(0)720

p
—&2iM©0)"'B, Z
j=2
Remark 4
One can notice that ¢ = O(/¢) while ¥* = O(¢), so that 4’ and v’ defined
as u® = /eu'’® and v* = £v’® are of size O(1). Instead of looking for solutions of
size (O (/€), O(¢)) to (48), we could therefore look for solutions u’® and v'* of size
o(l) to

dy
Lo
/€ 1€ 1€ 1€ 1€
9,u +;A,~8yju +?u =¢ef (W, V"),
jd_z i (49)
v+ ZBjaij’s + Tov’g =g(u*,u").
i=1

Such a system belongs to the general class of Maxwell-Bloch systems introduced and
studied in [JMR2].

4.2. A stability result

Assumption 4 is not strong enough to allow the proof of a stability result; that is
why we introduce a strong transparency condition, as in [JMR2] and [C]. This strong
transparency condition is satisfied by the physical Maxwell-Bloch systems, and we
also prove that if it is satisfied then the nonlinearity of the second equation of (S)
vanishes, so that Assumption 5 can be proved.

ASSUMPTION 7 (Strong transparency condition)
There exists C > 0 such that for all n, 1/, and 0" in R, all 1 < j, k < py, and
1 <1< ps andalla,b e CV, one has

|7 (B g (wL(Bra. 7 (B)D)| < Cllalllibll|<f () + f () — T4y (")),
where B := (] (1), ), B' = (tf (). n'), and B" = (thy (1), n").

Remark 5
It is straightforward to see that Assumption 4 can be deduced from Assumption 7.

The following proposition asserts that, under Assumption 7, the nonlinearity of the
second equation of (S) vanishes and that Assumption 5 can therefore be proved.

PROPOSITION §
Suppose that Assumption 7 is satisfied; then
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(i) one has
—3(0)g (7L (B) 21, T (B 1) + 73 (0)ALL(O) ' g(m(B) 211 w(B)Z11) = O
(ii) the system (S) reads
O + 50Tt 021 = 271 (B)f (wL(B) 1. iy (O Uo).
Ir U0 — 73 (0)Aq1 (dy)

P
x Y —————— 87 7l (0) A1 (Oy) L (0) 230 = O,
j:Z;alTL(ﬂ)+Uj ¢ oM M

so that Assumption 5 is satisfied.

Proof

(i) Let o be in a neighborhood of zero in R, and take here 8 = (tLl (n+(«/2,0)),n+
(@/2,0)), B’ = (t} (=0 + (@/2,0)), —=n + («/2,0)), and B” = (t};(, 0), (a, 0)).
Expanding 7y, (B”)g (. (8")a, w(B)b) with respect to a near zero yields, for all a
and b in CV,

7 (B")g (i (B))a, w(B)b) = 7wk (0)g (w1 (B)a, 7r.(—B)b)

1
+a |:§711{,,(0)g(8171L(é)a, 7L (=p)b)

1
— 57uO)g(L(B)a, i (—p)b)

+ () O (m(B)a, ﬂ(—é)b)] + o(a).

The leading term of this expansion vanishes, thanks to Assumption 4. Using the fact
that 7 (—B) = 7 (B) and taking b = a therefore yields

7 (8")8 (wL(B)a, 7(B)8) = o[ 74y ) (172 (B)a, 7L (Pa) -
+ (m3) O)g(x(Bra, 7(Bra) | + o).

Now, introducing n = n + (0, @/2), n = —n + (0, a/2), and n" = (a,0), and
expanding rLl (n + rLl(n’) — T]},[(n”), yields

T () + () — 1) =0+ a[diTL(n) — i1y (0)] + o),
but, thanks to Assumption 6, we have 9; rg (Q) = 0 r,},l (0), so that

() + 1 () — 13, (n") = o). (51)
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Thanks to Assumption 7, we know that

|70 (B")g (1 (B)a, m(B)a)
[7p () + T, () = 7y (")

must remain bounded for all «. Equations (50)—(51) say that this is possible if and
only if

Ty Og(himL(Ba, mL(Ba) + (my) O)g(m(Ba. m(Ba) =0.  (52)

We now prove that this condition gives the one given in point (i) of the proposition.
As in the proof of Proposition 4, we write that, for all « in a neighborhood of zero,

n}v,(a)(rg(a) + Aa + %) =0.
Differentiating this equality with respect to « and taking the limit « — 0 yields
(nﬂy)/(m% + 13,0 ((x) ()] + Ay) =0,
and multiplying on the right by L(0)~! thus gives
(7031) ©)(1 — 1 (0)) + 7p () ALL(O)™" = 0.
Therefore, one has
(m31) O (I — i (0))g(w(B)a, T(B)a) = —m3, ()AL L(0) "' g(w(B)a. 7(B)a):
that is, since 7y (0)g((B)a, w (B)a) =0,

(73) g (m(B)a, m(B)a) = —m};(0)AL(©0) 'g(m(B)a, x(B)a).  (53)

Equations (52)—(53) then prove the desired result.

(i1) It is a straightforward consequence of point (i) that system (S) takes the form
given in the proposition. It is also easy to prove that Assumption 5 can be proved in
this case. O

We can now prove a stability result for those Maxwell-Bloch systems.

THEOREM 2
Let 07/101 =y (é)ai/lo1 and 7/2% = JTIIW(O)“//z% be in HOO(R‘;’C), and suppose Assump-
tions 5, 6, and 7 are satisfied.

Then there exists Tmax > O such that
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(1) for all 0 < T < Tpax, there exists a unique smooth exact solution (u®, v¥),
defined on [0, T /] x RY, to problem (48) with initial conditions

u’l—o(y) = 81/2(67/101 (0, Veyrr. )ﬁ)eiﬂ'y/s + c.c.)

and
Ve li—0(y) = e750(0, Vevi1, y1):

(ii) we can write u® and v¢ under the form

B-x
uf (x) = &'/2U* <8t, eyt oy, _T>

and

B-x
vi(x) =eV® <8t, eyt yi, _T>’

with U and V¢ bounded in C ([0, T1; H*(R¢ x T)), and we have

1 1
HUS - —= + ‘V‘E — =Y =o(1).
ﬁ C([0,T]; HS (R4 xT)) € C([0,T]; H (R4 xT))
In particular,

1 1
ﬁ”“s —u’ ” L0, /e]xRAxT) T g”"s - USHLOO([O,Z/S]XR"X']I') = o(l).

Proof

Existence on a small time interval (depending on €) is given by general theorems. It is
therefore sufficient to obtain some bounds in H* for the solution in order to prove the
existence part of the theorem. Call .Z° = U® —(1//e)%; and A ¢ = V¢ —(1/e)Vf.
Then .#* and .#/¢ satisfy

1 1 1
0 —A0 —A;7(0 -0 0, ]
{T+8 1;+\/E 11(Y)+81f(ﬁ)g+l

L)

2
‘ (54)
= f(a*, N)+ f| M* 17/8 +f I%EJVE +‘%8
- ’ ’8 a \/E a’ 83/2
and
1 1 1 M(BDe)| .
or + —Bi1oy + —=B11(dy) + —hit( +i—=— ¢t N
& JeE e - & (55)

1 2 1 S
= —g(°, M°) + —g(/ﬁ, —%j) +—,
& & & &
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where, thanks to Proposition 7,
|%° | o,y 1) = O(€7)

and
| L qo.ry: i) = O(7).

Following [JMR2] and [C], we perform the change of functions

D = oM A oy ke T HLBDO) T/ e . Sf(%) 0
&

and

9 — ¢ B0+ 2B (dy)+ed T ()oc +iM(BDy)(T/e%) yre . S5 (822)/8

Note that this kind of group has also been used in [S], [Gr], [BMN], and [Ga]. The

equations satisfied by & and 2 are written

T T T
nz=si()(5(-5)75(-2)2)
T T 1
* Sf(:z)’” (Sf (‘ :2)9’ z”)
T 1 T T\ %°¢
”f(s—z>f (—e% ’55(‘ :2)@ ”f(a—z)m

1 T T T
oo =si(3 el 2) 751 5)7)

2 T T 1 T\ #
sesi(@)e(si( )7 ) +s(5)

and

(56)

(57

As S7 and S5 are unitary groups on all the Sobolev spaces H*, we just have to find
estimates on & and 2 in LY°([0, T']; H® (RZ’ y X Tg)) foraT > 0. Denoting by |- |7

the norm associated to this space, (56) yields

1Pl < CT(12171 27 + 1211 + 1Qlr + O(e'?)) + | 2(T = 0)

HS E)

where we have used the fact that

1 u
€

<C,

<C, and | %Z°|r = O(&?).
. NG 7 =0()

Moreover, one also has

(58)
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lor 2|, < C(2121 211 +12Iz + 1011 + O (e'/?)). (59)

The case of (57) is more delicate. One has

1 [T ef S e s ¢ s
2 (T s\ (o Y (s) s
()l E) e [ Sz(—z)e—zds

=2(T=0)+11+ DL + Ix.

We now estimate [, >, and I3 separately.

e Estimate of I
We use the spectralization of the groups S| and S5 as follows. Denote by m, &, and
&171 the Fourier dual variables of 0, ¢, and Y, respectively, and introduce ni(n) =

mr(t) (n), n) and 7, (n) == 7p (Th, (1), ).
We then have

T : ! 3/2
Sf (8—2> = Z 712 (Qm + (851, 83/2;;:”))6—’['"1'*‘531T(Q)Sl—fL(QmHaEl,EW E1)T /e2)
l

and

—

S§<812> Z 7y (m+ (81, 328, ) )i lmTHeNTE - Ty (imA-(e81.6> 251 )T /7).

Denoting by .% (I1)(m, &) the Fourier transform of I}, we have therefore
F(11)(m, &)

/ ZZZZ/”M nm + (€1, &7%))

14 1

« o ilmztedT (g — Ty (im+(e61.6¥2611)]1(s /)

x g(ﬂlL (np + (emi. &n11))
« ei[Pz-l-aBlT(ﬂ)m—T{(ﬂp-i-(sm,83/27711))]@/82)@1)(”),
wh (nm — p) + (& — o), (&1 — 1))

i Lm=p)T+ed1 T () € =) =T, (n0m—p)+(eE1—n1),e¥ 2 Er=ni)1(s/6%)

X P p(E =) dnds,
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and thus
F (1) (m, &)
1 T
DD
T
o Th im(e81,63261 ) =1, (np-+(em,e¥ D)=l (om—p)+(er—n).e¥2Er—nD)]is/e?)
X JT;[w(Qm + (&1, 83/2&11))8(7TIL (np + (em. en11)) 2 (),
my (nm — p) + (e(&1 — m1).
e32(&11 = 111))) Ponep (& — 77)) dnds.

Integrating by parts and using Assumption 7 yields

T
|7 (1) m, &) sCe/o > [ 1700131 Z- (& = | dnds
p
+Ce 2 [ 17200)|| P& = ] anm)
p

+Ce Z/ | 20| P p(E — )| dn(0).
)4

It follows that
2 2
1|7 < C81|32|1|8Tf@|1+ Ce(|92|1+ |2(T = 0)|Hs). (60)

e Estimate of I
Recall that

UE(T, Y, ¢,0) = Ve(n(B) e +c.c.)
+&2(iL(B) " MdemL (B2 +c.c.)
+e2(iL(B) ' A ()L (B) e +c.c.) + O(e7?).
As in [C], introduce
U1 = Yoy apy1=1/ym) 21

The following lemma is a direct consequence of the decreasing properties associated
to the regularity of 2.

LEMMA 5
The difference between 7\ and %161 is controlled by

~ 5
%1] - q/ll T =< Ce |02/“|L°°(0,£;Hs+4)'
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As B is a smooth point of %@L, there ex1sts a local parametrization 77 — ‘L’L 9(n) defined

on a neighborhood of 7 such that TL (n) = z. We denote by ! L 9(n) the associated
spectral projector. Thanks to [C], we know that, for all j,

. /! .
iL(B) ' AmlO () = —id;x (),
so that |
ﬁ% = n?(ﬂ + (e, 83/28y))5%51em +c.c.+e T
with
| Zelr < C

since 7rL 9(&) is smooth near & = n and since the spectrum of @151 is included in

&l < 1/4/e.

We can therefore write

2 (T _
L= 5/0 55 (iz>8<5f (— %) P(s), 0 (n + (edc, e %0y)) %, + c.c.) ds

i S(Ebs( 2o
= I + In.

It is clear that
lInlr < CTVel 2. (61)

Now remark that

(0 + e (61, VEE)) = T2 () + €117 () + O(£?)
since 977 (n) = 0. Defining

~ .o I . 2 ==
7//]8] — il e Vegrn) -t (m—e&1diT (T /e )T[é) (ﬂ + (82;‘1, 83/25”))%181’

we thus obtain

77 and |90 77, (62)

Ir = r =

We can write

~ T
o+ (e, 200)) Ty = 5 - g—z)%a

2 (T s S S
w2 [ (o 2) ()

It follows that I»; has the same form as /;, and an integration by parts yields, using
(62),

and
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|Lilr < CeT(|or 2|, + | 211) + Ce(121r + [ 2(T =0)| ). (63)
It follows from (61) and (63) that
|Llr < czﬁ(|am@|1+ |2Ir) + Ce(1 2|1 + 1). (64)

o Estimate of I3
We first recall that, thanks to Proposition 7, we have .7 /e? = S + O(e) and

S =S50 Y) + (FhHeH? +c.c),

as well as 7 1},[(0),7180 = 0, thanks to Proposition 7(ii).
We now introduce the notation

. 1 s . .9
J _ I3 € i
Iy = /0 S2(_82>'/1je ds.
As Yf f is smooth enough, we have

&
1, ay121/ 051517 < Ce
and thus

T
J - S ij6
1751y = ‘/0 55(8—2>l|<a;,ay)|sl/\/éf5ﬁlgje” ds

For j = 2, since 28 is not in the characteristic variety of M, an integration by parts
yields

+ Ce.
T

|I3], < Ce* + Ce < Ce. (65)

r
For j = 0, one has

T
Lo;(lg):/o Zei(ealr(g)a—rb(s(sl,\/@su)))<s/e2)njlw(8(51,Jggll))
[

X 1{|(3zs3Y)|51/\/5]9f0(5’ &)ds + O(e)
=Y F(0) + 0().
/

We may encounter three cases.
(i) We have 'L’ZIW(S(E[, JVE&Er)) — rjlw(O) # 0 when ¢ tends towards zero.
In this case, an integration by parts yields

Z IH0)

1,7}, (0)£0

(ii) We have t},(e(&1, V/e&11)) ~ €317}, (0)& and 3;7},(0) # 317 (n). In this case,
the phase does not vanish except in a neighborhood of zero, and a standard
argument yields

< Ce2.

T
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> Ko

Lo17h, (O£ T(n)

=o(1).
T

(iii) We have 'L'IIM (e(&1, \/e&11)) ~ €01 T(n)&:. In this case, we cannot expect anything
from the phase; however, we have the following lemma.

LEMMA 6
Uar},\l(o) = 017(1)), then we have
m 7}, (e &1, Ve£r1)) (1 =74y () = 0.

i
e—0

Proof
First recall that 1{,1 (0) is the spectral projector of my(0) Bimys(0) associated to the
eigenvalue —9d,7(n).
The mapping_
e —> (e (€1, Vekrr))
is analytical and bounded for ¢ small enough and ¢ # 0. Thanks to [K], we can
therefore extend this function analytically to zero. We denote by JTIIVI (0) the value of

this extension.
By definition of JTIIW (e(&1, \/€&11)), one has

(711\/1(8(51,‘511)) +eBi& + &2 B (&) + @)n&(e(a, Veg)) =0.  (66)

Multiplying this expression on the left by 5/(0), dividing it by ¢, and finally taking
the limit when ¢ — 0 yields

7 (0) (£19174,(0) + B1£1)7h,(0) = 0.
As we have 311}\4 (0) = 917(n), we can conclude that
31 (0) By} (0) = =317 () 71 ()77, (0).

We just have to prove that the range of JTIIW (0) is contained in the range of m;(0) to
complete the proof.

But taking the limit when ¢ — 0 in (66) yields Lon}/w(O) = 0, which proves the
desired result. - O

It follows that 130 — 0 when ¢ — 0, and we thus obtain

lim 75 = 0. (67)

e—>0

It follows from (60), (64), and (67) that
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12Ir < |2(T =0)|y, + CeT|PIr|dr P|; + Ce(1 217 + | 2(T = 0)
+ CVeL (1o 21 +12Ir) + Ce(IPlr + 1) + o(D).
Thanks to (58), (59), and (68), we can end the proof of the theorem as in [C]. O

) 68)

5. The 1-dimensional case
We consider in this section 1-dimensional problems that belong to the general class
(1). They read

(3 + Ard)u® + %ue = f(u®, u°). (69)

As said in the introduction, one seeks in this case approximate solutions to this
system under the form

- X
MS(JC) = \/EW/(S, 8t7 t’ yl’ é_>’
£
with
U(e. T,t, y1,0) = (2 + el + eUs + 32Uy + 2Us) (e, T, 1, y1, 0).

We have also seen that the long-wave short-wave resonance condition reduces in this
case to the usual rectification condition.

The study of this 1-dimensional case can easily be deduced from the multidi-
mensional study made in the previous sections.

The following theorem gives the evolution equations that the leading terms of the
ansatz must satisfy in order for u® to be a good approximation of the exact solution u®.

THEOREM 3
Suppose that u®, given by

u®(x) = ﬁ%(e, et t, yi, ETX)

with
U = U + U + eUs + &> Uy + >Us,

is the approximate solution to (69) given by geometric optics.
If % = 1€ +c.c. and U = U + U160 + c.c., then one has

(B2 = i, U =0, and 7w (0)0 = Y.

Moreover, w(B) 71 and Y0)20 = (71(0)%0) are transported at the group velocity
—01 r(ﬂ), that is,

(8 — 1T ()dy, )t (B) %11 = (3, — diT(m)dy, )7 (0) %0 = O,

and must also satisfy
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arm(B) 21 + %afr@ailn@% =2m(B) f(w(B)2%1. 7' (0)%0)  (70)
and
arm' (0) 20 = —2idy, 7' (0) f (01w (B) %1, m(B)71)

.1 -1 g 71
+ 2i7'(0)A19y, L(0) m(f(n(g)%“, n(ﬁ)%u))-
The system that ﬂ(é)%“ and 7' (0)%50 must solve is simpler than the system (S)

found in the multidimensional case since the dispersive term g ! disappears. The
system found here can be solved, so that we do not need to do an assumption like
Assumption 5.

Since the dependence of 7 (8)%)1 and nl(O)%go on ¢ and y; is made through
¢ := y1 +1t317(n), we can write ;(,B)%“(T, t, y1) and 71 (0)%0 (T, t, y1) under the
forms ﬂ(é)%] 1 (_T, ¢) and ' (0) ?/26 (T, £). We then have the following theorem.

THEOREM 4
Let %), = n(B)%)\ and Uy, = 1" (0)%sy be in H* (Ry) for s > 0.

There exists a T > 0 and a unique couple of profiles U1, %o € C([0, T]; H®
(Ry)) satisfying

orm (B2 + %3121(2)8;271(@%11 =2 (B) f (w(B) 21, ' (0)U).
(S1) Y arm 1 (0) %0 = —2id; 7 (0) f (0170 (B)%11. 7 (B) 211 )
+2in1(0)A1L(0)_1B;St(f(n(ﬁ)%n, n(é)%u)),

together with the polarization conditions

U =nB)%  and U = 7" 0) U,

and with the initial conditions

— g/0 — 9,0
Y| p_g =) and  Us|;_y = Uy

Proof
The theorem is proved if we can have an existence/uniqueness result for a general
system writing
oru + i)u’)?u = fi(u, v),
drv = ¢ fo(u, u),
where A € R\{0}, f1 and f> are two bilinear mappings and u# and v are vector-valued
functions defined on [0, T'] x R, . This system is completed with the initial conditions

(72)

u(T=0)=upe H*R) and v(T =0) =19 € H'(R).
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A direct proof using Picard iterates cannot yield the result for a system like (72)
since we must deal with the loss of a derivative because of the term 9, in front
of the second member of the equation. In order to overcome this difficulty, we use
a technique introduced in [OT] for the Zakharov equations. We thus introduce the
system

T
drw +ird;w = fi(w,v) + fi (uo—l—/ w, E)Tv),
0
orv = 0 fo(u, u), (73)

: T 1 T
(82—1)u:iw—uo—/ w— —f1 uo—l—/ w,v |,
¢ A 0 A 0

together with the initial conditions
(T =0) =g and w(T =0) = —itug + fi(uo, vo) € L*(R).

This system is formally obtained by differentiating the first equation in (72) with
respect to 7" and introducing w = dru. The problem due to the loss of derivatives
has disappeared from this new formulation.

The third equation in (73) gives u in terms of v and w, thanks to an ellipti-
cal inversion. Using the expression of u thus found, the first two equations of (73)
are written in terms of v and w. It is easy to show, using classical Picard iterates,
that this system of two equations on v and w admits a unique solution (v, w) €
C([0,T1; H'(R) x L?(R)), for a T > 0, and satisfying (v, w)(T = 0) = (vo, wo).

Once v and w are known, we can find «, thanks to the formula

. T T
u:(ag—l)_l(iw—uo—/ w—%fl(uo—f—/ w,v)).
0 0

The system (73) thus admits a unique solution (u#,v,w) € C([0, T]; H?*(R) x
H'(R) x L*(R)) such that (v, w)(T = 0) = (vo, wo). The proof of the theorem
will therefore be complete once we have proved that u € C L([0, T']; L*(R)) with
dru = w, and that u(T = 0) = uyg.

Differentiating the third equation in (73) with respect to 7', one gets

. 1 T
(87 — 1)ogu = Zorw—w— —or fi[ uo +/ w,v ). (74)
A A 0
But thanks to the first equation of (73), one has
. T
(82—1)w=18Tw—w—18Tf1 uo—i—/wv
¢ A 20T 0 s s

so that we can conclude that d7u(T) = w(T) in H~2(R). But it is easy to see, thanks
to (74), that d7u is in C([0, T1; L*(R)), so that u € C'([0, T1; L>(R)).
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Using the third equation of (73) and the initial conditions associated to this
system, one gets u(7T = 0) = ug, and the proof of the theorem is thus complete. O

Theorem 4 gives the leading oscillating term and the leading nonoscillating term
of the ansatz. As done previously for the multidimensional case, we can determine
completely our ansatz thanks to these two profiles. Here again, a stability property
for the approximate solution u#® can be proved, but only in the case of systems of the
form (48).

6. About Proposition 1 and Assumption 5

6.1. Proof of Proposition 1
More precisely, we prove the following proposition.

PROPOSITION 9

Suppose that Assumptions 1 and 2 are satisfied, and assume that t'(n) - n° # 0.
Then there exists a problem (T) in one-to-one correspondence with problem (1)

and for which the contact direction and the group speed are colinear.

Proof
We can always suppose that 8° as defined in the introduction is of the form 8% =
(1,79,0,...,0).

Let P = (pji) be an invertible matrix; to any function u(#, y) we associate the
function u defined as

u(t,y) = u(t, P_ly).
Then, if u solves (1), that is, if
Lf@)u+ f(u,u) =0,

then 7 solves (1),
L*@)u + f(u,u) =0,

where
d Lo d
LE(3y) :=d Aidi+ — d A= KAk
(0x) T+j2_; Jj+8 an Jj ;ijl\

We also introduce the operators Z(ﬂ) and 7 (B) which are linked to (~1) and whose
definition is straightforward. To g we also associate E defined as E = (r, (P~HT n).
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(a) We prove here that 7 (E) = 7(p). Indeed, one has

where (e, ..., eg) denotes the canonical basis of R¥,

Since ﬁ = (P_I)TQ, one has Pe; 'ﬁ = n,, and therefore

d
o Lo
Lp)=z+ E Aij + l_';
j=1

that is, L (E) = L(é). The kernels of these matrices are therefore the same, and thus
we have 7(f) = m(B).
(b) Denoting by T(n) a parametrization of 4%, we now prove that T (E) =

17,0, ..., 0).
‘We know that

FB)A;FB) = —9;T(B)T(B).
which, thanks to the result of (a), reads

T(B)Ajm(B) = —,T(B)m(B).

We now say which matrix P we take. Denoting by /; its line vectors, we take /| = ey,
and for (I3, ..., ;) we take any basis of the orthogonal hyperplane to t/(8). Since
we have supposed that 7/(8) - n° # 0, that is, that 7/(8) - e; # 0, P is invertible.
We then have n(,B)XU?(,B) =n(B)Am(B),and since this last quantity is equal to
—01T(B)(B), we can conclude thatgl?(z) = d17(B). When j > 2, one has

d d
T(B)Am(B) = pur(B)At(B) ==Y  piht(p)=—1;-T'(B)=0
k=1 k=1

since (/}) j>2 is a basis of the orthogonal hyperplane to t’ (B)-
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We therefore have o ﬁ“(E) = 0 for j > 2, so that

~

"(B) = (317(B).0, ..., 0).

(c) Denoting by %0 the tangent cone at (0,0) to €%, we now prove that the
tangent plane & to 67 at E is also tangent to € at g°.
Thanks to the results of (b), we know that the vector n := (1, —9; r(é), 0,...,0)

is normal to % . We thus have to show that it is also normal to €° at BY. With
arguments similar to those used in (a), we can prove that

. e?’ « (r.(P7") n) %,

so that i’fjo(n) is a parametrization of ¢V, then 70 () := t%(PTp)isa parametriza-
tion of €°. We have therefore

2 (1) = ¥ (PTn%) PT = 29 (") PT,

since n° = e;. But Assumption 2 says that ro/(no) = ‘L'/(é), so that one has ;0'(170) =
7/(B)PT, and hence 9; 20 (%) = /(B) - 1 for all j. Thanks to the definition of the
1}, this yields ~

") = (317(B).0,....0),

and therefore n = (1, —9;7(B),0,...,0) and is thus normal to %6 at ,30, as we
wanted to prove. B

(d) We have thus proved that for the problem (T), Assumptions 1 and 2 remain
true, and that Proposition 1 is also satisfied. O

6.2. An existence theorem

In Assumption 5 we supposed the existence and uniqueness of a regular solution to the
coupled problem (S) which gives the leading terms of our approximate solution. We
have not proved yet this existence/uniqueness theorem, but we give here an existence
theorem for a simplified version of system (S) which also appears in the study of
water waves (see [L2], [Su]). This system reads

10:u + afu =uov,
v+ 071 93v = —Jul?,

where d; and d; denote the partial derivative with respect to the first and the second
space coordinate, respectively. We want v to be real valued, while u may take complex
values.
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The second equation does not make sense since the operator 9, ! 822 does not act
on distributions. However, the integral equation (used in Theorem 9),

o, 103 ! 3 102(1—s)y, 12
v=e% 2Myy— el 2 |ul“(s) ds,
0

makes sense since the group e "1 acts on every Sobolev space H?®, and for u €
L%°(0, T; L?), |ul? lies in L>°(0, T; H®) for some negative s.
This system may be seen as a simplified version of (S) in space dimension equal
to 2 where u plays the role of 7 (8)%11, and d;v plays the role of 7(0)%y.
Throughout this section, the Fourier dual variables of y1 and y; are denoted by

&1 and &, respectively.

6.2.1. The regularized problem
In order to define a regularized problem associated to (T), we introduce, for any
w > 0, the operator d,,, whose symbol is given by

JtE
g
The operator 9, I'is therefore given by the symbol

&1
//L+E1’

—i

which is also used to regularize the KP equation in R? (see [IMS]). In the following
lemma, we give some of the properties of these operators.

LEMMA 7
(i) 0, and . U are antiadjoints.
(ii) If ¢ is a real-valued function, then 9, and 8; Lo are also real valued.

Proof

() This is a consequence of the fact that the symbols of 9, and 9, I are purely
imaginary.

(i) It follows from the fact that these symbols are also odd.

We can now define the regularized problem. For € > 0 and i > O,

i0pu + 0%u = udyv,

O (14+eA?)v+ 09030 = —|ul.

(Ten)
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The end of this section is devoted to the proof of the following theorem.

THEOREM 5

(i) Let (uo, vo) € L?>x H>/*(R?). There exists a unique solution (u, v) € C(R; L*(R?)
x H32(R?)NCY(R; H2(R?) x HY*(R?)) of (Te.,,) with initial values (u, v)(t
= 0) = (uo, vo).

(i) If (ug, vo) € H* x H, then (u,v) € C(R; H> x H)NC'(R; L? x H).

Proof
Solving (T¢ ) in the spaces given in the theorem is equivalent to solving the two
integral equations

t
u= S ({tuy— i/ S1(t — s)udiv(s) ds (75)
0
and .
v = S(0)vo —/ $2(t — 5)(1+ €A2) ™ |u>(s) ds, (76)
0

where 2
97 _a-! 2y—1
Sl(t) = elalt and Sz([) =e 8/L 05 (1+eA™)"t

are two unitary groups on L?.
For (u, v) € C(R; L? x H>/>(R?)), let us introduce

% (u,v) = (€1(u, v), €2 (u, v))
with .
G (u, v) = S1(ugy — i/ S1(t —s)uov(s)ds (77)
0
and

t
G, v) = SH(H)vo —/ Sa(t —s)(1 +eA2)“|u|2(s) ds. (78)
0

We also introduce the space X7 := C([0, T1; L>(R?) x H>/*(R?)) and consider its
natural norm

I(u, v)|lxy := max (|M|L00([0,T];L2), |U|L:>o([0,T];H5/2)>-
For any R > 0, we also denote by Bg the ball of X with radius R. We can now state

the following lemma.

LEMMA 8
Let R :=2max(|uolz2, |vol gs,2)-
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There exists Ty > 0 such that, for all T < Ty, the application € maps Bg into
itself.

Proof
One has
|<gl (l/t, v)|L°Q([0,T];L2) S |’/‘0|L2 + T|M8] U|L°°([0,T];L2)
< luolz2 + Tlulpeoqo,73: 22101V Lo0 ([0, T L) (79)
< |M0|L2 + C] T|”|L°0([O,T];L2) |U |L°°([0,T];H5/2) s
since 3;v € H3/2(R?) c L.
We also have
—_ A)/4
|(1 A) <52(1’1’ U)|L°O([0,T];L2)

1
< Jolgsp + T(1 = 8)* (1 +€A) " ul?] e .7 12):

but

|(1 = A1+ en?)” < C|(1 - )M

L2 2
lul |L°O([0,T];L2) |ul |L°C([0,T];L2)

and
[l yoime < Cllul?|,

for any o > 0. Taking o = 1/2 thus yields
ul| =32 < Cllul?| 1 = Clulz.
| H L L
We have therefore
|(1 - A)5/4<52(u7 U)|L°°([0,TJ;L2) =< |UO|H5/2 + C2T|u|%oo([0’T];L2)' (80)

With R = 2max(|uo|;2, |[volgs2) and (u, v) € Bg, equation (79) yields

R 2
|<g1(u’ v)|L°°([0,T];L2) =< E + CITR s

and (80) yields
R
|(52(u, v)|L°°([0,T];H5/2) = 5 + C2TR2.
With 71 = min(1/2C(R, 1/2C,R) and T < Tj, we have therefore |4 (u, v)| x; < R,

and Lemma 8 is thus proved. O
We now prove another lemma before pursuing the proof of the theorem.
LEMMA 9

There exists Ty > 0 such that, for all T < T», € is a contraction on the ball Bg
of Xr.
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Proof
Let (u,v) and (u, v) in X7 be such that (u, v)(t = 0) = (i, v)(t = 0) = (uo, vo).
One has

Ci1(u,v) — 61 (u,v) = —i /f Si(t — s)(u81v — ﬁalﬁ) ds,
so that '
|61 (u,v) = G (@, IN))|L°°([0,T];L3)
< T (= @010 o 2y + 1O = 0D o711
= T(Cl lu = it o, 71,2 [V L 0,71 H512)
+ Cilitl oo, 22V = 5|L°°([0,T];H5/2)>-
If (u, v) € Bg and (u, v) € Bg, one then has
|6 (u, v) — G (@, ﬁ)|Lm([O,T];L2) <2C\TR| @, v) — @, 0|y, , (81)
and one can show in the same way that

|<€2(u, 'U) - %2(1’7’ {))|L°°([0,T];H5/2) = 2C2TR|| (M, U) - (12, 'D) " X7’ (82)
and the lemma is thus proved if we take 7> = 1/4C, R. O
Thanks to those two lemmas, the proof of the following proposition is straightforward.
PROPOSITION 10
For all (ug,vo) € L* x H>/?, there exists a unique maximal solution (u,v) €

C([0, Tmaxl; L? x H'?) to (T¢ ) such that (u, v)(t = 0) = (ug, vo).
Moreover, if Tmax < 00, then

lul;2(t) + [vlgspe(t) — oo whent —> Tiax.
Once the next proposition is shown, the proof of Theorem 5(i) will be complete.

PROPOSITION 11
One has Thax = +00 (where Thx is defined in Proposition 10), and for all t € R,

one has
(/ |u|2)<t)=/ luol®.
R2 R2
Proof

Let (u, v) be as given by Proposition 10. We have
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i0pu 4 0%u = udyv, (83)

and u € C([0, Tmax), L?) N CY([0, Tmax), H2).

Let py(y1, y2) be a regularizing sequence defined on ]R? We then take the con-
volution product of p, and (83). The L? scalar product of each term of the equation
thus obtained with pg * u is well defined. Taking the imaginary part yields

o [ ol =3( [ o taine) o).

Integrating this equality with respect to the time variable ¢ then yields

t
/|pa*u|2(t)—/|pa*uo|2=2/0 3</pa*(u81v)(pa*ﬁ)>.

But since u € C([0, Tmax), L?), we have py * u(t) — u(t) for all t when o — 0.
Moreover, one has udv € C([0, Tmax), L?), so that py * (udiv)(t) — udv(t)
for all . We have therefore

[ oo ware)pu ) — [ wlanwe

when o — 0, and thus

3(/ Pa * (U31) py *ﬁ(t)) — 0.

We now prove a domination property. One has

:9/ (Pa * (ualv),otx *ﬁ(t))‘ =< |pa * (M3]U)|L2|,0a *E|L2 = |u31U|L2|ﬁ|L2 = R3,

with R such that (u, v) is in the ball B of X7.
Thanks to Lebesgue’s dominated convergence theorem, we have therefore

t
/ 3(/pa*(u81v)pa*ﬁ> ds — 0
0

when o« — 0, and we have thus proved that |u|;2(t) = |ug| > for all .
Moreover, inequality (80) applied to 6> (u, v) = v yields, for all T < Tax,

2 2
L°([0,T); H3/2) = IVOIH5/ 2 0 .72y = VOl H5/ 2 Oly2-
[v] ([0,T]: 52)<|v| 52+CT|M|L ([0,T]:L?) lvol s + CaT|u |L
Therefore, if Ty,x < 00, we have
2
[V £00 (10, Tyn): F5/2) = 1V01 52 + C2Tmax|uol 2

and

|tt] oo ([0, Tya):22) = W01 12,
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which is in contradiction with the explosion condition of Proposition 10. We have
therefore Tmax = 400, and the proposition is thus proved. O

We now prove Theorem 5(ii), which concerns the regularity of the solutions. Let
(1o, vo) be in H> x H?. Solving the Cauchy problem in H> x H3 locally in time
does not raise any difficulty, and we omit the proof. It remains to show that the result
is valid globally in time.

Thanks to Theorem 5(i), we know that we can find a continuous function C(¢)
such that |v| 5,2 (t) < C(¢) for all .

From (77) we deduce

t
) g1 () < |uol +/ |udrv| ;1 (s) ds. (84)
0
But one has 9(1#dv) = dudiv + udd;v and
|dudiv|, 2 < 19ul2]01v]e < |ul g C(t); (85)
we also have
|uddiv| > < lulp4|001v|,4
< Cst [ulg12[0010] 10 (86)
< Cst|u|g12|v] 52
< CstC(t)|ulg.
Thanks to (84)—(86), we have

t

lu| g1 (2) < luol g +Cst/ C(s)|ulgi(s)ds,
0

so that Gronwall’s lemma yields the existence of a continuous function D(¢) such
that |u| 1 (t) < D(t).
From (77) we also deduce

t
|ul g2 (1) < [uo| 2 +/ |udiv] ;2 (s) ds. 87)
0

But one has 8%(ud,v) = 9%ud v + 20udd;v + ud?d;v and
|0%udiv] > < [8%u],21810] 00 < CSLC () |ul g2 (88)
we also have
|0ud10v|, > < [0ul,4|010v| 4

< Cst[0u|g112]9100] )0 (89)
< Cst|dulg12|v|gsr

< Cst C(1)|ul 2
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and
|udd1v|,> < |ul;2]9%01v], < Cstul;2]9%01v] 2 < Cstuolp2lulys.  (90)

Thanks to (87)—(90), we have

t
lul 2 (1) < [uol 2 +C5t/0 (CONulg2(s) + [v(s)lps) ds. (€29

From (78) we deduce
T
lvls < lvolys +/0 [[u]?] ;1 () ds, (92)

and we have 9|u|* = 20 (@du) and
_ 12, 172
[wdu|r2 < |ulpaloulps < Cstlu|gip|0u|gip < CSt|u|L2 |M|H1 || g3/2,

so that [#du|;2 < Cst/D(t)|u|y2. From (92) we then deduce

t
[vlgs < lvolgs +Cst/ \/D(s)(|u|H2(s)+1)ds. (93)
0
Equations (91) and (93), together with Gronwall’s lemma, yield that
lgs + lulge < E@),

where E(t) is a continuous function.
It is now easy to conclude the proof of the theorem. O

Remark 6

(1) Since |v|ys and |u| g2 control [v]y 1, and |u]|~, We can easily obtain results for
more regular solutions. One has, for instance, a solution in H 3 x HE.

(ii) In the above proof, we found two constants C{(7T") and C,(T) such that

|, V) oo o, 71 255 < C1(T) and |, V) oo o, 11 L2 x H52) < C2(T).

These constants C(7T') and C»(T) depend on T, €, ug, and vg but not on 1.

We now prove the following theorem, which deals with the continuity of the solutions
given by Theorem 5 with respect to the parameter p.

THEOREM 6
(i) We take here . = 0. If (ug, vo) € L2 x H5/2 then there exists a unique solution
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(u,v) € C(R; L? x H3?) 1o the integral equations (75)—(76) such that (u, v)(t =
0) = (uo, vo).
Moreover, if (o, vo) € H*> x H?, then we also have (u,v) € C(R; H* x H).
(i) Let (ug, vo) € L* x H>'? (resp., H> x H> or H®> x H®), and let (u™, v*) be
the solution of (75)—(76) such that (u, v)(t = 0) = (ug, vo), with u > 0. Then the
mapping
RT — C(R; L? x H*/?) (resp., H* x H’ or H® x H°),

uw—> (u*, vh)

is continuous.

Proof
(i) The proof made for Theorem 5 remains valid. The only difference is that we
cannot use the partial differential equation satisfied by v because of the operator 9, !
but we do not need it.
(ii) We consider here the case L2 x H>/2.

We write the integral equations (75)—(76) for p and o > O:

t

ut* = S1(Hug — i/ S1(t — s)u" 9 v (s) ds,
0

t
v = SK )y —/ Syt —s)(1 +6A2)*‘ ™ (s) ds
0

and .
ut® = S1(Hug — i/ S1(t — s)ur09,v"0(s) ds,
0

t
v = SH(1)vg —f SE(t —5)(1+ €)™ w0 P (s) ds.
0

Subtracting those two systems yields on the one hand

t
|u“ — u“0|L2 < / |u“31v“ — u“°8|UMO|L2(s) ds
0

t
< / | 2] 910" = 0100, o 4 191070 oo Ut — ut0] 12 (5) dis.
0

We have seen that |u”|;2> = |ug|;2 and [v#0| s () < C(t), where C(¢) is a contin-
uous function of + which does not depend on . We have therefore

t
ut —uho| < Cst/o (I = 0] 2 (5) + CO) | = u] o)) ds. (94)

One has on the other hand
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V= 080 < (850 = S0 0) o) s

t
+/ (S8t — 5) — S50 — ) (1 + A2 7 ul | (5)| 5o ds
0

t
+f |(1+eA2)*‘(|u“0|2— " ?)] s ds
0
= |(S§(l) - Sgo(t))U0|H5/2

t
+ / (85 (1 = 5) = $5°0 — )P (5)| =32 ds
0

t
+ /0 (102 — 0 P) ;32 (s) ds.
But we know that

I e T o A o [ e P

< Cst (|u"0] 2 + [u"|;2)

< Cst|u“0 — u“|L2,

- o

so that

t
0 = 00y = (S50 = S50 @)l + Ct [ fur — ]
’ (95)

t
+/ |(S5(t = 8) — S50t — 9))[uh0*| 32 ds.
0
‘We introduce
t
mi(t) == /0 (S5t — ) — S5°(t — ) [u"0 > (5)| ;-3 ds,

and we want to prove that m(z) — 0 when i — po. Denoting by i P, the symbol
of 0, we have

2
F(($4¢ =) = 82 = 9) [ ') ) 1. &)
_ (e_,‘pu(El)(]+e|§|4)_1§22(t—s) - e—iPuO(51)(1+€|E|4)71§22(’_5))ﬁﬂu“o|2)(§),

and it is clear that the second member tends toward zero for almost every &1, &>, and
t when u© — [o.

Since the integrand that appears in the definition of m () is dominated by
[|uto|?| y-32(s) € LlloC (R), we can conclude, thanks to Lebesgue’s dominated con-
vergence theorem, that

mi(t) — 0 in L. (R) when u —> puo.
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‘We now introduce
ma(t) == | (S5 (6) — S4°(0))vol 592,

and we want to prove that it also tends towards zero when u — . We have

F((S40) - S 0)u)

= (e PrEUFelENTIET _ =i Pug D U+eleD T8 5 )
» 4y-1g2 _ H-lg2 00
= (e PnENUHelENT 63t _ o=iPug EDUHED T 1 o1 116,12 T0(6)

+ ()0 = Mg <oy Mgy 12 T0 (€)
= fu(t, ) +gu(t, £).

Let y > 0, and choose « > 0 sufficiently big and 8 > 0 sufficiently small to have

1(1+ 1617 g2, )

With the same « and 8, one has

|1+ 182 £, )]s =/[(1+|.s|2)5/2|v7>(s)|2

% |e—fPﬂ0(sl)<1+e|s|4)—'s§r _ e iPuED(elslh) e 2

LSV (96)

x 1{|s|5a}1{|sl|zﬂ}] dg.

For |£] < @ and |&(| > B, one has, forr < T,
|e7iPuo(sl)(1+e|s|4)*‘s§r _ e—iPu(sl)(1+e|S|4)*‘s§z|2 < C(a, B)T? |1t — pol?,

so that it is easy to see that

[(1+1617)" fut, &)

if u and po are close enough. Together with (96), this yields

5/4 2
/ sz)’z

ma(t) — 0 in Liy (R)  when u —> .

Equation (95) thus is written

t
|Uu - U“0|H5/2(f) <m(t) +ma(t) + CSt/ |MM — ul® 12(s)ds,
0

with my(¢) + ma(t) — 0 as u — po in Ly, (R). Using (94) and Gronwall’s lemma
yields

|u" — u"°|L2 + |v“ — v“°|H5/2 — 0 in L, (R) as p —> po,

and the proof is thus complete. O
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6.2.2. Energy estimates

We first prove a few energy estimates linked to the regularized problem (T ), for
@ > 0. These estimates are very similar to those obtained by Ph. Laurencot [La] for
the 1-dimensional problem.

THEOREM 7
Let (ug, vo) € H? x H.
Then the solution (u,v) € C(R; H> x HY) given by Theorem 5 for © > 0

satisfies
)
/ lul* (1) =/ luol;
R2 R2
(ii)
1 _ 1/2 2
/Rz |8]u|2+|u|281v+§|82(8M18]) / vl
1 _ 12 |2
=/ |31u0|2+|M0|231U0+§|32(3M131) Pl
RZ
(iii)
/RZ [(1+€a2) 200 + 2iudya = /R (1 + €A2)28100)* + 2iugdy s
@iv)
t
/ |(1+6A)1/2v|2=/ |(1+6A)1/2v0|2—2/ / lu*v(s) ds.
R2 R2 0 JR?
Proof

(i) Taking the imaginary part of the L? product of the first equation of (T, ,) with &

yields
o / ul> =0,
and the result follows.

(i) Taking the real part of the L? product of the first equation of (Te,,) with d;u

yields
1 5 N _
—58, [Oju|” =N EATITR Y
1
= —/8,|u|231v

2
1 1
= 53,/|u|2alv— 5/|u|za,alv,
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a,/|alu|2+a,/|u|2alv=/|u|za,alv. 97)

The second equation of (T¢ ,) may be written under the form

and therefore

dv+ 9, 92 (1 +ea?) v =—(1+ea?) Nul, (98)
so that [ ;(98)|u|? reads

/ala,v|u|2+/aljlala§(1+6A2)*1v|u|2=0, (99)

since (1 4+ €A?)~13; is antiadjoint.
We now compute f(98)8228;1 d1v and find

1 _ 12 12 -1 _
—Ea,/|az(aulal) / v|" = —/(1+EA2) ul*039, ' 01v. (100)
Since (1 + € A%)~! is self-adjoint, (99)~(100) yield
1 _ 1/2 12
[anaonar = =3 [ lasta o) PP
so that plugging this equation in (97) yields
1
at/ Bl + lu?ayv + = |82(3; " ar) Po|* = 0,
RrR2 2

and the result follows.
(iii) Taking the L? product of the second equation of (Te,,) with 3121) yields

1
—58,/|(1+6A2)1/281v‘2= —/|u|2812v =/ﬁalualv+ualﬁalv.

One then takes the expressions on #d;v and 10 v given by the first equation of (T ;)
and plugs them into the above equation, and thus one obtains

—%ar/ |(1+€a?)25,0)? =/81u(—i8tﬁ+312§) + 012 (i 9 + 97u)
=l/3]ﬁaru — 31u3,ﬁ+0

- ia,/ualﬁ,
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8,(/|(1+6A2)1/281v|2+2ifu8ﬁ> =0,

and the result follows.
(iv) Taking the L? product of the second equation of (T ;) with v reads

8;/|(1+eA2)l/2v|2=—2/|ulzv,

which yields the result. O

so that

The following corollary gives energy estimates associated to the solutions of (T¢ o).

COROLLARY 1
We take here p = 0. The solution (u, v) given in this case by Theorem 6 satisfies

@
/ Jul? (1) = / Juol?;
R2 R2
(i)
2 2 1 2 2 2 1 2
|01u|” + |u[01v + S 020" = [ |91uol” + |uo|“d1vo + S [d2v0%;
R2 2 R2 2
(iii)
/ (1 4+ ea?) 00| + 2iudyu = / (1 + €a2)28100|” + 2iugdy o
RrR2 2
(iv)
t
/ (1 4+ ea)/2|? =/ |(1+6A)1/2v0|2—2/ / lu*v(s) ds.
R2 R2 0 JR?
Proof
This corollary is a consequence of Theorem 7 and of the continuity of the flow with
respect to the parameter p. i
Remark 7

The results of the corollary cannot be obtained directly without treating the case
u > 0. Indeed, the estimates cannot be done directly on (T¢ o) since 9, ! 8221) and o;v
are not distributions.

6.2.3. Finding bounds independent of €

Useful inequalities
We first give two useful inequalities that we use throughout this section.
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LEMMA 10
If u and dyu are in L*(R?), then

/ ( sup |u|2> (y2) dyz < 2lul2|d1ul;.

yieR

Proof
Since for any function f € H'(R) one has [ floo < ﬁ|f|2|f’|2, we can write

( sup |u|2> (y2) =< 2lul2,y, (y2)101ul2,y, (y2)-

V1 eR

Integrating this inequality with respect to y, and using the Cauchy-Schwarz inequality
then yields the result. O

LEMMA 11
If v and d>v are in L*>(R?), then

1/2
1/2 1/2
sup(/v2<y1,yz)dy1> < V21l 19,017,

y2

Proof
Let i be defined as

1/2
Yy (/sz(yl,yz)dyl) .

One has ¢ € L*(R) and |¥/|» = |v|>. Moreover, we have
[ vdvdy;
1/2°
([ 2, y2)dyr)'/

so that |y (y)| < (f 18,v|% dy;)'/? by Cauchy-Schwarz.
One has therefore ¢ € H'(R) and || < |8,v|, and thus

V' () =

1/2 1/2
W looys < V2001 ?1820]37. o

Local bounds in time, for small initial data
The following theorem gives useful bounds independent of €.

THEOREM §
We take here u = 0, and we let T > 0.
There exists €q > 0, and there exist A > 0 and C > 0 independent of €, such that
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if (uo, vo) € H? x HO is such that
2 2 2
luol3 + [d1uol; + lvol 3 < A,

then the solution (u, v) of (Te 0) such that (u, v)(t = 0) = (uo, vo), given by Theo-
rem 6, satisfies

Il 2o, ry;22) F 191t Lo,y 02) + IVlLeqo,rymny = €.

Proof
We first introduce the quantity Ny defined as

2 1
Ny = / | 10| + uo|*drvo + zlazvolz-
Thanks to Corollary 1(ii), one has

1
|alu|§+§|azv|%sN1+‘f|u|2alv

=M +2/ |ul [O1ue] 0], (101)

but one also has

2/|u||alu||v| =2f</|u||alu||v|dy1>dyz
52f|u|oo,y1<yz)</|alu||v|dy1>dyz
1/2 1/2
s2/|u|oo,yl<yz><f|alu|2dy1> (/|v|2dy1) dy
(102)
12 12
szsup(/|v|2dy1> /|u|oo,yl(/|alu|2dyl> dys
2
12 12
§2SUP(/|v|2dy1> (/|”|oo,y1dy2> [011]2
»2

< 4y 102013 |uly P 101uly?,

the last inequality being a consequence of Lemmas 10 and11.
Thanks to (101), we have therefore

1
[Brul3 + 2 12013 < Ny + 4ol 3201, o, Bruly, (103)
since for all ¢, |u|2(t) = |ugl>.
It is also a consequence of (102) that
1 2 12 12, 12 32
Ni < luol} + 5 [zvol; +41vol,*[aavo],*woly o 3. (104)

Thanks to Corollary 1(iv), one also has
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N Y

where one can write
/|u|2v =/(/uﬁvdy1>dy2,

5/|u|oo,y1(/|”||v|dy1>dy2
12 12
s/|u|oo,yl(/|u|2dy1) (/|v|2dy1> dy:
12 12
fsup</|v|2a’y1> /Iuloo,y.(/lulzdm) dy>
12 12
< SUP(/IUI dyl) (/Iuloondn) 173

1/2 1/2 3/2 1/2
< 20wy 10001y * uoly 2131l ?,

so that

‘/Wv

where the last inequality is a consequence of Lemmas 10 and 11 and of the conser-
vation of the L2 norm of u.
We have therefore

t
|(1+ea2) 202 < |1 +eA2)‘/2vo|§+4/ wly 212013 *luol3 *101uly?, (105)

so that, for 7 > QO and t < T, we have

1/2 1/2

(1 +€a2)u? < |(1+ea?) v + 4T v 2 (8201 uo 3% 81 y1 2,

where the norm | - |70, 77.£2) 1 denoted by | - |.
Since |v]y < |(1 + €A?%)!/2y]5, and since for € small enough we have |(1 +
eA2)1/2v0|§ < 2|v0|%, we have
I < 2Juol3 + 4T vl 2 120] 2 luol3 %191 y1'/2. (106)

Taking the sup in time in (103) and summing with (106) then yields

1
|alu|2+§|8zv|2+|v|2§ N1+ 2lvol3 + 4[v]'21820] 2 [uoly* |3yl 107

3/2
+ 4T )" 219501" 2 uoly * 101u) /2.
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We now use the Young inequality abcd < (1/4) (@* +b* + * +d*) witha =
4T|uo|§/2, b =|v|'?, ¢ =8v|"/?, and d = |d;u|'/? to obtain
3 1
Z(|am|2 + 31020l + |v|2)
| (108)
4
< N1+ 2fvols + 4101210201 luoly |1l + 2 (4T fuoly ).
We now use another Young inequality, abed < (1/8)(ad + b® 4+ 3¢8/3 4+ 348/3) with
a= Y2 b=0v|"2c= Iuolé/z, and d = |91u|?/? to obtain

1011 + [320]* + [v]* < Cst (N1 + |vol3 + T*|uol3)
4 Cst (|uo|§/3 + v + 19a)* + |81u|4>.
Introducing f := |v|® + |d1u|*> + |32v|%, we obtain from the above equation
£ = Cst (N1 + T*luol§ + lvol3 + luol3”) + Cst 2,

which is of the form «X? — X + B > 0. We want to choose « and 8 such that the
trinomial @ X?> — X + B has two distinct real roots. We want therefore 1 — 4af > 0,
which reads

1
Cst (N1 + T*uol® + Jvol3 + |uo|§/3) <7 (109)

For A > 0 small enough, it is a consequence of (104) that if
2
luol* + [druo|” + |U0|§,1 <A,

then condition (109) is satisfied, and we denote by Xy < X the two roots. Since for
all 7 such that 0 < r < T one has af (r)> — f(t) + B > 0, one has either f(r) < Xo
or f(t) > X for all + < T. We are in the first case if f(0) < X( and in the
second otherwise. In order to have an upper bound for f(¢), we therefore want to
have f(0) < X, which is the case if 2o f(0) — 1 < O, that is, if

Cst (|vo|2 + |31u0|2 + |32U0|2) <1,

which is satisfied if the A defined above is small enough. One then has forall r < T,

1—JT—ap

1
< - 110
2 -2 (110)

(I0]* + 191ul* + 320]*) (1) < Xo =

We now want a bound for |0y v]|; one has

/|31v|2§/|(1+6A2)1/231v|2

< / (14 €A2) 29,0 + 2iudu

)

+ 2‘ / uou

and using Corollary 1(iii) yields
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/|81v|2 < ‘/|(1+6A2)1/28100|2+2iu081% + 20ul 2]81ul 2.

For € small enough, one has therefore

/ 910 < 2|31U0|iz +2/ luodiizo| + 2(ul 210 ul ;.

Since f(t) < 1/2, for all t < T, we can conclude that

/|31v|2 < Cst.

This inequality, together with (110), proves the theorem. O

6.2.4. Conclusion

Throughout this section, we denote by (u*, v¥) the solution to (T¢ o) given by Theo-
rem 6. Thanks to Theorem 8, we can consider a subsequence, still denoted by (u?, v®),
such that

u® = u in L>([0, T; Lz) weak *,
dut — du  in L®([0, T1; L?) weak ,
v® — v in L%([0, T; Hl) weak .

We want to prove that (u, v) solves (T).
We first give a compactness result for v°.

LEMMA 12
If|uo|2 € H!, then one has v — v strongly in L*°([0, T'1; L? ).

loc

Proof
Multiplying the first equation of (T¢ o) by #° and taking the imaginary part yields

1
Ea,|u€|2 +23(8{u’u’) = 0,

and therefore .

luf)? = |u0|2—481/ 3(81u°wt) (s) ds,
0

since d1uf9;u’ is real. Introduce now
t
U? = / I(uut) (s) ds,
0
so that

t
v = o= BNy / eI BTN (] e Ay [Jug 2 — 48, U] ds.
0
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We also introduce
2 —_ t a—1q2 —
VE i o 01 05 (14+eA) 1rU0 _/ o—01 103 (1+ed) l(r—s)(1 +eA)Vuol? ds
0
and

t
we ;:4/ e B+ =) (1 4 e A) 19, U (s) ds,
0

so that v¥ = V¢ 4+ W¥.
As soon as vo € H' and |ug|?> € H', we have V¢ bounded in L>°([0, T']; H")
and V¢ — V in L*([0, T']; H') when € — 0, where

—97 192t ! —3a7'92(t—s)),, |2
Vi=e % 2y — e 1 2 luo|“ ds.
0

Since v¢ and V¢ are bounded in L ([0, T']; H'), then so is W& = v® — V. Moreover,

one has

t 1 B -
ath? — 4(1 +8A2)7181 U{;‘(t) _4/ e—al 132(1+EA2) 1(1—5)(1 +€A2) 2322U8 ds.
0

But the sequence U?, as defined above, is bounded in L*°([0, T']; Ll) and therefore
in L°([0, T']; H=3/2), so that 3, W¢ is bounded in L>®([0, T]; H~"/?).

It follows that W* is strongly compact in L*°([0, T']; leoc), and the lemma is

thus proved. O
The following lemma says that (u, v) solves the first equation of (T).

LEMMA 13
The functions u and v solve

i0:u + 812u = uov.

Proof
We know that
iou® + Bf‘us = ud v,
which is equivalent to
idu® + 812u8 =0 (usvs) — 91uf0e.

Izoc) and u® and 9;u® converge weakly in

L°°([0, TT; L2), we can take the limit in the above equation; that is,

But since v® — v strongly in L*°([0, T']; L

idiu + 0fu = 3y (uv) — duv,

which yields the result of the lemma. O
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In order to prove a strong compactness result for u°, we need the following lemma.

LEMMA 14
(i) One has udiv € L>([0, T1; Ly, (L3)).
(ii) Letug € L} (L3) and f € L™([0, T]; L}, (L3)).
Then the solution w of
idw + ow = f,
w(0, y) = uo(y),
is in C([0, T1; Ly, (L3)).

Proof
(i) One has
2
/|ualv| dy < |u|§o,yl(/|alv|2dy1>,
and thus
s 1/2 ) 1/2

(/|M31v| d)’l> < |u|oo,yl</|alvl dyl) .

so that

, 12 12
/(/|ualv| dy1> dys < (/|u|§o,yl dyz) 910l

1/2 1/2
< V20uly11uly* 191 vl2,

thanks to Lemma 10, and the proof is thus complete.
(i1) The function w is written

2 L
w:e’altuo—i/ N9 £(5)ds,

0
/|eiaftuo|2dyl :/|”0|2dyl,

the function ¢ > ¢/i"ug is in C([0, T]; L1 (L2)).
The proof does not differ for the component of w concerning the second mem-
ber f. O

but since

We can now state a compactness result for u®.

PROPOSITION 12
Letug € L), (L3).
Then u® — u strongly in L*([0, T] x R?).
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Proof
Thanks to Lemma 14(i) and (ii), we know that the weak limit u of u® is in C ([0, T';
Ly, (L3)).

We now introduce a regularizing sequence p (y1) of Ry, and we consider

EX /R (o * u)2 dy; = 29%(/ (Pa * ) (po * Oput) a’yl).

We know, thanks to Lemma 13, that
du —id2u = —iudv,

so that

o /R (po % 1) dyy = 25){(/ (0o % @) [i03(pa # 1) — i % (ud1v)] dy1>
=2;~s(/pa* (u910) (o *7) dyl).

But for almost every y; and ¢ we have udjv € L§1 (because u € H)l,l C L;’f). We
therefore have py * (101v) — udiv in L; when o — 0.
Moreover, for almost all y», u(-, y2) € L>

e and therefore py *u — u in L%l. We
have therefore

ga(y2, 1) == 23(/ Pa * (ud1v)(po * 1) a’y1> —0

almost everywhere in y, and ¢.
But we also have

ga(y2.1) = —2%(f pa * (910v) (po % 70) dyl) —23(/pa * (uv) (po * 017) dy1>,

so that
|8 (2, )| < 4101ul2,y, V]2, lttloo,y, = &(¥2, 1).
We have

' T 12
/ / g2 1) dyrdi <4 / |alu|2( f |u|§o,yldyz) sup [vla.y, df
0 JR 0 2

T
1/2 12, 1/2 12
< 8[ Ovulalul/ (1l w1 1501 dr,
0
thanks to Lemmas 10 and 11, and thus, by Theorem 8§,

t
/ /8()’2,I)dy2dt§CstT.
0 JR

We have therefore a domination condition on g, . Since we have also seen that g, — 0
almost everywhere in y> and ¢, we can conclude, thanks to Lebesgue’s dominated
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convergence theorem, that g, — 0 in Ll([O, T] x R).

d, / > dys =0,
R

/ |u|2dy] = Cst.
R

‘We now prove that this constant is equal to fR lug|? dy;.Aswehaveu € C([0, T]; L;,z
(Lil )), we have

12
/(/|M—M0|2dy1> dy, — 0 ast — 0,

/ lu — u0|2dy1 — 0

when ¢ — 0 almost everywhere in y;.

‘We have therefore

and therefore

and therefore

Hence, we have [ [ul?dy; — [ |uol|® dy; almost everywhere in y>. The con-
stant [p [u|? dy; is therefore equal to [p [uol? dyi.
Integrating this relation with respect to y» yields

]2 = |uola.

We recall that we also have |u®|, = |uglz, so that u® converges weakly towards u,
and it converges also in L? norm. We can therefore conclude that u® — u strongly
in L2([0, T] x R?), and the proposition is thus proved. O

Remark 8

Thanks to the compactness properties of (u*, v®), given by Lemma 12 and Proposi-
tion 12, Theorem 8 remains valid with initial values (ug, vo) € L> x H' instead of
H3 x HS. One just has to consider regularizations of these initial values and then
take the limit.

Thanks to Proposition 12, we can now take the limit in the expression which gives v?,

t
—142 2y—1 —1q2 2y—1 —
vE = o0 B (1+er?) rvo_/ o0 95 (14+eA?) (r—s)(l 652) 1|u£|2(s)ds,
0

and we state the following theorem.

THEOREM 9

Let (ug, vo) be two functions such that

o ug and dug are in L2, |lugl? € H, and ug € LI.Z(L;);
e Yo € H'.
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Let T > 0. If lugl2 + |01uo0l2 + |vo| g1 is small enough, then there exists (u, v) such
that
i0:u + 81214 =udiv,

v = eBI_IBZZIUO _ f(; 631_1322(1—5)|u|2(s) ds
and
ueC(l0,T1; L%, due L>®([0,T]; L?),

u(0, y1, y2) = uo(y1, y2),
ve L®([0,T1; H')n ([0, T1; LE,).

loc

Recall that the integral equation for v used in this result makes sense since the group
—1q2 . .
el % acts on every Sobolev space H*, and, for u € L>®(0, T; L?), |u|? lies in

L*°(0, T; H*) for some negative s.

Acknowledgments. The authors want to thank J.-L. Joly and G. Métivier for fruitful
discussions about this work.
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