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Abstract – When long-wave short-wave resonance occurs, Davey–Stewartson systems become singular and have to be replaced by another system of
equations. This is this system we study here numerically. We use a finite difference scheme for which we prove existence and uniqueness of a solution.
We also prove a stability theorem and compute some invariants of the discrete system. We finally give and comment numerical experiments to study the
behaviour of the solutions. 2001 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

The motion of weakly nonlinear capillary-gravity waves on water of finite depth has been studied extensively
since the sixties. The variationη(x, y, t) of the height of the free surface with respect to the state of rest is
traditionnally written under the form

η(X,Y, τ)= ε

(
i

ω
A(x, y, t)sinh(kh)ei(kX−ωτ) + c.c

)∣∣∣∣
x=ε(X−cgτ ),y=εY,t=ε2τ

+ O
(
ε2),

whereω(k) is given by the usual dispersion relation for water-waves

ω2 = k
(
g + T k2) tanh(kh),

whereT denotes the surface tension per unit density of the liquid, andcg = ω′(k) is the group velocity.

The parameterε is small and corresponds to the amplitude of the waves.

It is known (see for instance [1–3] for irrotational flows and [4] for the general case) that this phenomenon
is governed by the Davey–Stewartson system:

i∂tA + 1

2
ω′′(k)

∂2A

∂x2
+ cg

2k

∂2A

∂y2
= k

cg sinh(2kh)

(
cgω

g
+ sinh(2kh)

)
ζA − ν|A|2A,

(gh − c2
g)

∂2ζ

∂x2
+ gh

∂2ζ

∂y2
= −c2

g

(
1+ g sinh(2kh)

cgω

)
∂2|A|2
∂x2

,
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whereh is the mean depth of the water,g is the accelaration of gravity andcg the group velocity. The first of
these two partial differential equations is a nonlinear Schrödinger equation with a forcing term, and the second
one is a linear equation which is either elliptic or hyperbolic, depending on whether the group velocitycg of
the capillary-gravity wave is (strictly) less than or greater than the velocity

√
gh of the long gravity waves.

Several instabilities or resonances have been studied for this system (see the book by Mei [5], see also [6]
for a study of interaction between long-waves and short-waves). We are concerned here by the long-wave
short-wave resonance which occurs when the group velocitycg of the fondamental mode (capillarity-gravity
wave) is exactly equal to the phase velocity

√
gh of the long-waves (long gravity waves). In 2D, this resonance

appears obviously since in this case the Davey–Stewartson equations reduce to the cubic nonlinear Schrödinger
equation in which the coefficient of the cubic term is proportional to 1/(c2

g − gh) which becomes infinite when
c2
g = gh. Djordjevic and Redekopp ([3]) have proposed in this case a new scaling which takes into account this

resonance; they have obtained the following set of amplitude equations:

i∂tA + 1

2
ω′′(k)

∂2A

∂x2
= BA,

∂tB = −α∂x|A|2,
whereα can be expressed explicitly (see [3]).

Sulem and Sulem ([7]) have extended this result for the 3D case, and Colin and Lannes ([8]) have proved that
such phenomena also occur in a general way in nonlinear optics. Under the long-wave short-wave resonance
hypothesis (c2

g = gh), the equation satisfied byA is coupled with that satisfied byζ and reads:

∂tA − i

2
ω′′(k)

∂2A

∂x2
= −ik

(
ω

sinh(2kh)
+ g

cg

)
Aζ,

∂tζ + cg

2
∂−1
x

∂2ζ

∂y2
= −1

2

(
sinh(2kh)

ω
+ cg

g

)
∂x |A|2,

wherecg = ω′(k).
These equations generalize the system obtained by Djordjevic and Redekopp [3]. The only modification is

the transverse dispersion on the mean flowζ in the second equation, i.e. the term∂−1
x ∂2

yζ , which is the same as
in the Kadomtsev–Petviashvili (KP) equation.

Remark: Assuming that the resonance conditionc2
g = gh is exactly satisfied is not very realistic from a

physical point of vue. In their book [7], Sulem and Sulem assume that it is approximately satisfied, and more
precisely that

√
gh − cg = εν, with finite ν. In this case, the second equation of the above system must be

replaced by

∂tζ + νζx + cg

2
∂−1
x

∂2ζ

∂y2
= −1

2

(
sinh(2kh)

ω
+ cg

g

)
∂x|A|2.

However, since the aim of the present article is to study the dynamics of the long-wave short-wave resonance,
we will assume that the resonance condition is exactly satisfied.

From a numerical point of view, the Davey–Stewartson equation have been extensively studied (see [9–12]
for instance), but as far as we know the modulation equations obtained in [7,8] under the long-wave short-wave
resonance assumption has not been investigated. Moreover, very few numerical studies ([13–15]) deal with the
KP equations, which are related to the system considered here since the term∂−1

x ∂2
y ζ is present in both cases.

In fact, to our knowledge, the most related study has been made by Alterman and Rauch ([16–18]), though in
a very different physical context. Indeed, they have studied the propagation of short pulses in nonlinear optics



C. Besse, D. Lannes / Eur. J. Mech. B - Fluids 20 (2001) 627–650 629

and proved that the classical Schrödinger approximation is then not valid anymore. In the linear case, it must
be replaced by the Linear Diffractive Pulse Equation

2utx = �yu,

which is the linear part of the equation of the mean flow in the system derived by Sulem and Sulem. The
numerical study carried out by Alterman and deals only with the linear case.

The aim of this paper is to give a numerical study of the nonlinear modulation equations arising under
the long-wave short-wave resonance assumption. In the next section, we set up the notation, give the main
known properties of the system, and explain the finite differences method we use for the numerical resolution.
In section 3, we study the properties of the discrete system, particularly focusing on the conservation of two
quantities, and on a stability theorem. Finally, we give in the last section the algorithms we have used, and
comment the numerical results obtained.

2. Numerical approach and known results

2.1. Notation

For all sequences of complex numbersa = (aj,k)(j,k)∈Z2 andb = (bj,k)(j,k)∈Z2, we introduce the following
quantities

(a, b) := ∑
(j,k)∈Z2

aj,kbj,kδxδy,

(a, b)k := ∑
j∈Z

aj,kbj,kδx, ∀k ∈ Z,

‖a‖ :=
( ∑

(j,k)∈Z2

|aj,k|2δxδy
)1/2

,

‖a‖k :=
(∑

j∈Z

|aj,k|2δx
)1/2

, ∀k ∈ Z,

which are finite ifa andb are inl2(Z2).

We now define difference operators which, for any sequencea = (aj,k)(j,k)∈Z2, are given by

(Dx
+a)j,k = aj+1,k − aj,k

δx
,

(Dx
−a)j,k = aj,k − aj−1,k

δx
,

(Dx
0a)j,k = aj+1,k − aj−1,k

2δx
,

(D
y
+a)j,k = aj,k+1 − aj,k

δy
,

(D
y
+a)j,k = aj,k − aj,k−1

δy
,

(D
y
0a)j,k = aj,k+1 − aj,k−1

2δy
.
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2.2. The continuous case

The system studied in this paper is the following

i∂tu + ∂2
xu= u∂xv, (1)

∂tv + ∂−1
x ∂2

y v = −|u|2. (2)

It is related to the system found in hydrodynamics and described above by identificatingu = A and∂xv = ζ .

We list here some of the properties of this system. The proof of all the results below can be found in [8]. The
first of these results is an existence theorem. The uniqueness of the solution remains open.

Theorem 1: Let u0 andv0 be two smooth functions, and letT > 0.

Then, if‖u0‖L2 + ‖∂xu0‖L2 + ‖v0‖H1 is small enough there exists(u, v) such that:

(i) u ∈ C([0, T ];L2(R2)) and∂xu ∈ L∞([0, T ];L2(R2));
(ii) v ∈ L∞([0, T ];H 1)∩ C([0, T ];L2

loc(R
2));

(iii) (u, v) solves system (1)–(2) with initial conditions(u0, v0).

The following proposition gives three invariants preserved by this system.

Proposition 1: Let (u, v) be given by the above theorem. Then, for allt ∈ [0, T ],
(i) ∫

R2
|u|2(t) =

∫
R2

|u0|2; (3)

(ii) ∫
R2

(
|∂xu|2 + |u|2∂xv + 1

2
|∂yv|2

)
(t) =

∫
R2

|∂xu0|2 + |u0|2∂xv0 + 1

2
|∂yv0|2; (4)

(iii) ∫
R2

(|∂xv|2 + 2iu∂xu
)
(t) =

∫
R2

|∂xv0|2 + 2iu0∂xu0. (5)

2.3. Numerical method and results

On the one hand, the equation (1) is the classical nonlinear Schrödinger equation but without the transverse
dispersion term∂2

y . Therefore, all usual methods, such as the Crank–Nicolson [19] or relaxation [20] ones, can
be applied to treat (1) numerically. On the other hand, the second equation (2), because of the term∂−1

x ∂2
y which

occurs also in KP, needs a new approach. The first idea is to attempt to take advantage of the relatively simple
form of the∂−1

x ∂2
y operator in Fourier variables but unfortunately, this operator is singular on the lineξ = 0

whereξ denotes the dual variable ofx.

However, the system of equations (1–2) can be written:

i∂tu + ∂2
xu = u∂xv,

∂t∂xv + ∂2
y v = −∂x|u|2, (6)

with the following change

(2) → ∂x(2).
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Note that on the lineξ = 0 where the above operator is singular, the Fourier transformv̂ of the long-wave
amplitude vanishes as one can see on (6). Thex-derivative in the source term indeed preventsv̂(ξ = 0, η �= 0)
to be forced.

Let us denote byun(x, y) the approximation ofu(t, x, y) with t = nδt , andvn+1/2(x, y) the one ofv(x, y, t)
with t = (n + 1/2)δt . Then, the second equation of (6) reads in semi-discrete in time form

∂x
vn+1/2 − vn−1/2

δt
+ ∂2

y

vn+1/2 + vn−1/2

2
= −∂x|un|2. (7)

Now, supposing thatvn−1/2 andun are known, equation (7) can be viewed as a non-homogeneous 1D heat
equation onvn+1/2 with x playing the role of the time variable andy of the spatial one. The problem is that we
have to solve this equation onR and not only on the half-line. This is possible because of the peculiar form of
the source term, and requires special care in the discretization of the space variables.

Hence, the numerical method consists in using the relaxation method in order to treat each equation of
system (6) at a different time (e.g. in our situation att = (n+ 1/2)δt andt = nδt). Therefore, the semi-discrete
in time scheme becomes

i
un+1 − un

δt
+ ∂2

x

(
un+1 + un

2

)
=

(
un+1 + un

2

)
∂xv

n+1/2,

∂x

(
vn+1/2 − vn−1/2

δt

)
+ ∂2

y

(
vn+1/2 + vn−1/2

2

)
= −∂x|un|2.

The spatial discretization is done by truncating the real domainR2 in * = [x0, x1] × [y0, y1] and by
using a classical Cartesian mesh. Then, finite difference methods are used. Finally, homogeneous Dirichlet
boundary conditions are given foru andv on + = ∂*. Let us denote byNx andNy the number of points of
discretization and setδx = (x1 − x0)/Nx andδy = (y1 − y0)/Ny . Thereby, we define a point of discretization
by {x, y} = {(j − 1)δx, (k − 1)δy}, with 1� j � Nx and 1� k � Ny .

Then, the complete discrete system is

i
un+1
j,k − un

j,k

δt
+

(
Dx

+D
x
−
(
un+1 + un

2

))
j,k

=
(
un+1
j,k + un

j,k

2

)(
Dx

0v
n+1/2)

j,k
, (8)

(
Dx

0

(
vn+1/2 − vn−1/2

δt

))
j,k

+
(
D

y
+D

y
−
(
vn+1/2 + vn−1/2

2

))
j,k

= −(
Dx

0 |un|2)
j,k

. (9)

We prove in section 3 the existence and uniqueness of(un+1, vn+1/2) solution to (8)–(9) inl2(Z2). In the
same time, we perform the computation of two discrete invariants which are the equivalents of the first two
continuous ones, namely (3) and (4). Unfortunately, the third invariant (5) is not conserved by the discrete
system (8)–(9). Finally, a stability theorem is shown for small enough initial data. Section 4 is then devoted to
the algorithms and numerical results of experiments.

3. Properties of the discrete system

3.1. An existence theorem for the discrete system

We prove here that the discrete system described in section 2.3 is well posed inl2(Z2).
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Theorem 2: Let u0 andv−1/2 be two sequences ofl2(Z2).

There exists one and only one sequence(un, vn−1/2)n∈N ∈ (l2(Z2)× l2(Z2))N which solves equations (8)–(9)
for all n ∈ N.

Proof. –Assuming that we know(un, vn−1/2) ∈ l2(Z) × l2(Z2), we prove that there exists a unique
(un+1, vn+1/2) ∈ l2(Z)× l2(Z2) which solves equations (8)–(9).

First of all, we define the discrete Fourier transform.

DEFINITION 1: Leta ∈ l2(Z2). The discrete Fourier transform ofa is the function̂a ∈ L2(T2) defined as

â(ξ, η) = ∑
(j,k)∈Z2

aj,k ei(jξ+kη).

We now prove the uniqueness part forvn+1/2; we thus assume the existence of a sequencevn+1/2 ∈ l2(Z2)

satisfying equation (9) for all(j, k) ∈ Z2. Taking the discrete Fourier transform of equation (9) yields

i
sin(ξ)

δxδt

(
v̂n−1/2 − v̂n+1/2

)
(ξ, η)+ 2cos(η)− 2

2δy2

(
v̂n+1/2 + v̂n−1/2

)
(ξ, η)

= i
sin(ξ)

δx

̂∣∣un
∣∣2(ξ, η), (ξ, η) ∈ T2,

which can also read(
−i

sin(ξ)

δxδt
− sin2(η/2)

δy2

)
v̂n+1/2(ξ, η) =

(
−i

sin(ξ)

δxδt
+ sin2(η/2)

δy2

)
v̂n−1/2(ξ, η)+ i

sin(ξ)

δx

̂∣∣un
∣∣2(ξ, η).

Introducingλ := (−i sin(ξ)
δxδt

− sin2(η/2)
δy2 ), we have therefore, when(ξ, η) /∈ πZ × 2πZ,

v̂n+1/2(ξ, η) = −λ

λ
v̂n−1/2(ξ, η)+ i

sin(ξ)

λδx

̂∣∣un
∣∣2(ξ, η). (10)

Since|λ/λ| = 1 and ∣∣∣∣i sin(ξ)

λδx

∣∣∣∣ � |sin(ξ)|
1

δxδt
|sin(ξ)|δx � δt,

these two functions areL∞ multipliers and the two terms of the right-hand side of equation (10) are inL2 since
we have assumed thatun andvn−1/2 are inl2.

Hence, ifvn+1/2 exists and is inl2(Z2) then its discrete Fourier transform is given by equation (10), which
proves the uniqueness part.

Taking the inverse Fourier transform of theL2 function given by the right-hand side of equation (10) proves
the existence part forvn+1/2.

We now just have to prove existence and uniqueness of a functionun+1, knowingun, vn−1/2 andvn+1/2.

Classical techniques used for the Schrödinger equation give a solutionun+1 ∈ l2(Z2) and the conservation of
the l2 norm we prove below in section 3.2 gives the uniqueness part.✷

Remark: The fact that the right-hand side of equation (9) is a derivative inx is crucial in the proof of the
above theorem. It it were not the case theL∞ multiplier i sin(ξ)

λδx
would be replaced by1

λδx
, which is not anL∞

multiplier, so that the theorem would not be valid.
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3.2. Some invariant quantities

Throughout this section, we will denote by(un, vn−1/2)n∈N the unique sequence ofl2(Z2) × l2(Z2) which
solves (8)–(9) for alln ∈ N, and given in section 2.3.

The following proposition says that the first invariant of the continuous system is preserved by the discrete
system (8)–(9).

Proposition 2: The l2 norm ofun is conserved, that is,

∀n ∈ N,
∥∥un

∥∥ = ∥∥u0∥∥.
More precisely, thel2 norm with respect to the first variable is conserved,

∀n ∈ N, ∀k ∈ Z,
∥∥un

∥∥
k
= ∥∥u0∥∥

k
.

Proof. –Multiplying equation (8) by 2zn+1/2
j,k = un+1

j,k + un
j,k and taking the imaginary part yields

|un+1
j,k |2 − |un

j,k|2
δt

+ 2�((
Dx

+D
x
− zn+1/2)

j,k
z
n+1/2
j,k

) = 0,

so that summing onj yields

‖un+1‖2
k − ‖un‖2

k

δt
+ 2�(

Dx
−D

x
+z

n+1/2, zn+1/2)
k
= 0,

and since a discrete integration by parts yields the nullity of the second term of the left-hand side of this equality,
we can conclude that|un+1|2k = |un|2k , for all k in Z. The end of the proof is then straightforward.✷

The following proposition asserts that the second invariant of the continuous system has a discrete equivalent.

Proposition 3: The quantityIn defined as

In := ∥∥D1
+u

n
∥∥2 + (∣∣un

∣∣2,D1
0v

n−1/2) + 1

2

∥∥D2
+v

n−1/2∥∥2

is independent ofn ∈ N.

Proof. –Multiplying equation (8) byun+1
j,k − un

j,k and taking the real part yields

2�((
Dx

−D
x
+ zn+1/2)

j,k

(
un+1
j,k − un

j,k

)) = (∣∣un+1
j,k

∣∣2 − ∣∣un
j,k

∣∣2)(Dx
0v

n+1/2)
j,k

.

Summing this expression onj ∈ Z yields, for allk ∈ Z,

2�(
Dx

−D
x
+ zn+1/2, un+1 − un

)
k
= (∣∣un+1∣∣2,Dx

0v
n+1/2)

k
− (∣∣un

∣∣2,Dx
0v

n+1/2)
k
.

However, one has

2�(
Dx

−D
x
+ zn+1/2, un+1 − un

)
k
= −2�(

Dx
+ zn+1/2,Dx

+
(
un+1 − un

))
k

= −�(
Dx

+
(
un+1 + un

)
,Dx

+
(
un+1 − un

))
k

= ∥∥Dx
+u

n
∥∥2
k
− ∥∥Dx

+u
n+1∥∥2

k
,
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so that ∥∥Dx
+u

n
∥∥2
k
− ∥∥Dx

+u
n+1∥∥2

k
= (∣∣un+1∣∣2,Dx

0v
n+1/2)

k
− (∣∣un

∣∣2,Dx
0v

n+1/2)
k
. (11)

We now study the right-hand side of this equality(∣∣un+1∣∣2 − ∣∣un
∣∣2,Dx

0v
n+1/2)

k
= (∣∣un+1∣∣2,Dx

0v
n+1/2)

k
− (∣∣un

∣∣2,Dx
0v

n−1/2)
k

− (∣∣un
∣∣2,Dx

0

(
vn+1/2 − vn−1/2))

k
. (12)

However, we can deduce from equation (9) that(∣∣un
∣∣2,Dx

0

(
vn+1/2 − vn−1/2))

k
= −δt

(∣∣un
∣∣2,Dy

−D
y
+ wn

)
k
− δt

(∣∣un
∣∣2,Dx

0

∣∣un
∣∣2)

k

= −δt
(∣∣un

∣∣2,Dy
−D

y
+ wn

)
k
. (13)

We would like to perform a discrete integral by parts with respect to the first variable on this last term, but
we first have to prove that the discrete integral ofW := D

y
−D

y
+ wn is well defined. This is what asserts the

following lemma.

Lemma 1: For all j and allk in Z, the sum

Sj,k = 2δx
∞∑
l=0

Wj−1−2l,k

converges. Moreover, We have the following properties:

– for all j andk in Z, Dx
0S = W ,

– the sumSj,k is given by

Sj,k = −v
n+1/2
j,k − v

n−1/2
j,k

δt
− ∣∣un

j,k

∣∣2.
Proof. –If Sj,k is well defined, it is easy to check that the last assertion of the lemma is satisfied. We now

prove the convergence ofSj,k .

Equation (9) writes, at point(j − 1− 2l, k) and for alll ∈ Z

1

δt

((
Dx

0v
n+1/2)

j−1−2l,k − (
Dx

0v
n−1/2)

j−1−2l,k

) +Wj−1−2l,k = −(
Dx

0

∣∣un
∣∣2)

j−1−2l,k.

Summing this expression forml = 0 until l = L thus yields

v
n+1/2
j,k − v

n+1/2
j−2−2L,k − v

n−1/2
j,k + v

n−1/2
j−2−2L,k

2δxδt
+

L∑
l=0

Wj−1−2l,k = −|un
j,k|2 − |un

j−2−2L,k|2
2δx

.

Sincevn−1/2, vn+1/2 andun are inl2, one has, for allk ∈ Z,

lim
L→∞

(
vn−1/2, vn+1/2,

∣∣un
∣∣2)

j−2−2L,k
= 0,

so that

Sj,k = −v
n+1/2
j,k − v

n−1/2
j,k

δt
− ∣∣un

j,k

∣∣2,
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which concludes the proof of the lemma.

We can now perform the desired integration by parts on equation (13)(∣∣un
∣∣2,Dx

0

(
vn+1/2 − vn−1/2))

k
= −δt

(∣∣un
∣∣2,W)

k

= −δt
(∣∣un

∣∣2,Dx
0S

)
k

= δt
(
Dx

0

∣∣un
∣∣2, S)

k
,

where the convergence of the last term can easily be deduced from the above lemma. Once again, using
equation (9) thus yields(∣∣un

∣∣2,Dx
0

(
vn+1/2 − vn−1/2))

k
= −(

Dx
0

(
vn+1/2 − vn−1/2), S)

k
− δt (W,S)k

= (
vn+1/2 − vn−1/2,Dx

0S
)
k
− δt

(
Dx

0S,S
)
k

= (
vn+1/2 − vn−1/2,W

)
k
.

Now, replacingW by its expressionW = D
y
−D

y
+ wn in the above equality, and summing overk yields(∣∣un

∣∣2,Dx
0

(
vn+1/2 − vn−1/2)) = (

vn+1/2 − vn−1/2,D
y
−D

y
+ wn

)
= −(

D
y
+
(
vn+1/2 − vn−1/2),Dy

+ wn
)

= −1

2

(
D

y
+
(
vn+1/2 − vn−1/2),Dy

+
(
vn+1/2 + vn−1/2)),

since we recall that 2wn = (vn+1/2 + vn−1/2). Sincevn+1/2 andvn−1/2 are sequences of real numbers, we have
therefore (∣∣un

∣∣2,Dx
0

(
vn+1/2 − vn−1/2)) = −1

2

(∥∥Dy
+vn+1/2∥∥2 − ∥∥Dy

+vn−1/2∥∥2)
.

We now sum equation (12) overk and replace(|un|2,Dx
0(v

n+1/2 − vn−1/2)) by the above expression to find(∣∣un+1∣∣2 − ∣∣un
∣∣2,Dx

0v
n+1/2) = (∣∣un+1∣∣2,Dx

0v
n+1/2) − (∣∣un

∣∣2,Dx
0v

n−1/2)
+ 1

2

(∥∥Dy
+vn+1/2∥∥2 − ∥∥Dy

+vn−1/2∥∥2)
,

so that equation (11) becomes∥∥Dx
+u

n
∥∥
k
− ∥∥Dx

+u
n+1∥∥2

k
= (∣∣un+1∣∣2,Dx

0v
n+1/2) − (∣∣un

∣∣2,Dx
0v

n−1/2)
+ 1

2

(∥∥Dy
+vn+1/2∥∥2 − ∥∥Dy

+vn−1/2∥∥2)
.

We can also write this last equality under the formIn+1 = In, and the proposition is thus proved.

Remark: The third invariant of the continuous system is not preserved by the discrete system we consider
here. In order to conserve this third invariant we would have to consider a non-linear discrete system, far more
difficult to handle.

3.3. A stability theorem

The following theorem asserts that the discrete system (8)–(9) is stable if the initial data are small enough.
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Theorem 3: If the initial datau0 and v−1/2 are small enough then there existsT > 0 such that for all
n = 0, . . . ,N , with N = T /δt , thel2 norm of the solution(un, vn−1/2) of the discrete system (8)–(9) is bounded
in l2(Z2)2. More precisely, one has

– ‖un‖ = ‖u0‖, for all n = 0, . . . ,N ;
– ‖vn−1/2‖2 + ‖Dx+un‖2 + 1

2‖Dy
+vn−1/2‖2 � 1/6, for all n = 0, . . . ,N .

Remark: At the end of this section, we give explicit conditions for the smallness of the initial data, as well as
an explicit condition for the computation ofT .

We first give two lemmas we will often use throughout the proof of the stability theorem.

Lemma 2: Let a ∈ l2(Z2). Then one has

∑
k∈Z

(
sup
j∈Z

|aj,k|2
)
δy � 2‖a‖∥∥Dx

+a
∥∥.

Proof. –For all (j, k) ∈ Z2, one can write

|aj,k|2 = �
k−1∑

l=−∞
(aj+1,k + aj,k)(aj+1,k − aj,k)

= �
k−1∑

l=−∞

(
(aj+1,k + aj,k)

√
δx

)((
Dx

+a
)
j,k

√
δx

)
� 2‖a‖k ‖Dx

+a‖k,

the last inequality being a consequence of Cauchy–Schwartz inequality. One has therefore

sup
j∈Z

|aj,k|2 � 2‖a‖k

∥∥Dx
+a

∥∥
k
, (14)

and summing overk and using Cauchy–Schwartz inequality with respect tok then yields the desired result.

Lemma 3: Let b be a sequence of real numbers inl2(Z2). Then one has

sup
k∈Z

‖b‖k �
√

2‖b‖1/2 ‖Dy
+b‖1/2.

Proof. –Introduceψ(k) := ‖b‖k . We can remark that

ψ(k + 1) − ψ(k)

δx
= 1

δx

ψ(k + 1)2 −ψ(k)2

ψ(k + 1) +ψ(k)
=

∑
j∈Z(bj,k+1 + bj,k)(D

y
+b)j,kδx

ψ(k + 1) + ψ(k)
,

so that Cauchy–Schwartz inequality yields

|ψ(k + 1) −ψ(k)|
δx

�
∥∥Dy

+b
∥∥
k
.

It is easy to see thatψ ∈ l2(Z), and that(
∑

k |ψ(k)|2δy)1/2 = ‖b‖. Therefore, using the majoration of the
derivative ofψ we have just obtained, together with inequality (14), yields

sup
k∈Z

ψ(k) �
√

2‖b‖1/2∥∥Dy
+b

∥∥1/2
,
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which proves the lemma.

Proof of the theorem. –The first step in the proof of the stability theorem is given by the following lemma.
It gives a first control of the growth of‖D1+un‖2 and‖D2+vn−1/2‖2.

Lemma 4: If (un, vn−1/2) is given by the existence Theorem 2, and ifI denotes the invariant given by
Proposition 3, then one has∥∥D1

+u
n
∥∥2 + 1

2

∥∥D2
+v

n−1/2∥∥2 � I + 4
∥∥u0∥∥1/2∥∥vn−1/2∥∥1/2 ∥∥Dy

+vn−1/2∥∥1/2∥∥Dx
+u

n
∥∥3/2

.

Proof. –One has ∥∥D1
+u

n
∥∥2 + 1

2

∥∥D2
+v

n−1/2∥∥2 = I − (∣∣un
∣∣2,D1

0v
n−1/2). (15)

We now transform the scalar product appearing in the right-hand side as follows(∣∣un
∣∣2,D1

0v
n−1/2) = −(

Dx
0

∣∣un
∣∣2, vn−1/2) = −2�(

zn+1/2Dx
0u

n, vn−1/2),
where we recall that 2zn+1/2 = un+1 + un. One has therefore∣∣(∣∣un

∣∣2,D1
0v

n−1/2)∣∣ � 2
∑
k∈Z

sup
j∈Z

∣∣un
j,k

∣∣(Dx
0u

n, vn−1/2)
k
δy

� 2
∑
k∈Z

sup
j∈Z

∣∣un
j,k

∣∣ ∥∥vn−1/2∥∥
k

∥∥Dx
0u

n
∥∥
k
δy

� 2sup
k∈Z

∥∥vn−1/2∥∥
k

∑
k∈Z

sup
j∈Z

∣∣un
j,k

∣∣∥∥Dx
0u

n
∥∥
k
δy

� 2sup
k∈Z

∥∥vn−1/2∥∥
k

(∑
k∈Z

sup
j∈Z

∣∣un
j,k

∣∣2δy)1/2∥∥Dx
0u

n
∥∥,

which yields, thanks to Lemma 2,

∣∣(∣∣un
∣∣2,D1

0v
n−1/2)∣∣ � 2

√
2sup

k∈Z

∥∥vn−1/2∥∥
k

∥∥un
∥∥1/2∥∥Dx

+u
n
∥∥1/2∥∥Dx

0u
n
∥∥.

Since‖Dx
0u

n‖ � ‖Dx+un‖, we thus have

∣∣(∣∣un
∣∣2,D1

0v
n−1/2)∣∣ � 2

√
2 sup

k∈Z

∥∥vn−1/2∥∥
k

∥∥un
∥∥1/2∥∥Dx

+u
n
∥∥3/2

.

Finally, we use Lemma 3 to obtain∣∣(∣∣un
∣∣2,D1

0v
n−1/2)∣∣ � 4

∥∥vn−1/2∥∥1/2 ∥∥Dy
+vn−1/2∥∥1/2∥∥un

∥∥1/2∥∥Dx
+u

n
∥∥3/2

= 4
∥∥u0∥∥1/2∥∥vn−1/2∥∥1/2 ∥∥Dy

+vn−1/2∥∥1/2∥∥Dx
+u

n
∥∥3/2

,

the last inequality being a consequence of the conservation of thel2 norm ofu. equation (15) therefore yields∥∥D1
+u

n
∥∥2 + 1

2

∥∥D2
+v

n−1/2∥∥2 � I + 4
∥∥u0∥∥1/2∥∥vn−1/2∥∥1/2 ∥∥Dy

+vn−1/2∥∥1/2∥∥Dx
+u

n
∥∥3/2

, (16)

which proves the lemma.

In order to exploit the above lemma, we need to control the growth of‖vn−1/2‖. Such a control is given by
the following lemma.
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Lemma 5: If (un, vn−1/2)n solves the discrete system (8)–(9), then, with the notations introduced above,

‖v‖2
T �

∥∥v−1/2∥∥2 + 4T
∥∥u0∥∥3/2∥∥Dx

+u
∥∥1/2
T

‖v‖1/2
T

∥∥Dy
+v

∥∥1/2
T

.

Proof. –As usual, we write 2wn = vn+1/2 + vn−1/2.

With S being, as in Lemma 1, the discrete integral ofD
y
−D

y
+wn with respect to the first variable, one has,

thanks to Lemma 1,

(
S,wn

) = −2
(
vn+1/2 − vn−1/2

δt
,wn

)
− (∣∣un

∣∣2,wn
)
,

and since integrations by parts show that(S,wn) = 0, one then has

∥∥vn+1/2∥∥2 = ∥∥vn−1/2∥∥2 − 2δt
(∣∣un

∣∣2,wn
)
. (17)

We now look for an upper bound of(
∣∣un

∣∣2,wn). One has(∣∣un
∣∣2,wn

)
�

∑
k∈Z

sup
j∈Z

∣∣un
j,k

∣∣∥∥un
∥∥
k

∥∥wn
∥∥
k
δy � sup

k∈Z

∥∥wn
∥∥
k

∑
k∈Z

sup
j∈Z

∣∣un
j,k

∣∣∥∥un
∥∥
k
δy

� sup
k∈Z

∥∥wn
∥∥
k

(∑
k∈Z

sup
j∈Z

∣∣un
j,k

∣∣2δy)1/2∥∥un
∥∥,

thanks to Cauchy–Schwartz inequality. Now, using Lemmas 2 and 3 yields(∣∣un
∣∣2,wn

)
�

√
2
∥∥wn

∥∥1/2∥∥Dy
+wn

∥∥1/2√
2‖u‖1/2∥∥Dx

+u
∥∥1/2∥∥un

∥∥
= 2

∥∥u0∥∥3/2∥∥wn
∥∥1/2∥∥Dy

+wn
∥∥1/2∥∥Dx

+u
n
∥∥1/2

, (18)

since thel2 norm ofun is conserved.

Equations (17)–(18) therefore yield∥∥vn+1/2∥∥2 �
∥∥vn−1/2∥∥2 + 2δt

∥∥u0∥∥3/2∥∥vn+1/2 + vn−1/2∥∥1/2∥∥Dy
+
(
vn+1/2 + vn−1/2)∥∥1/2∥∥Dx

+u
n
∥∥1/2

, (19)

and therefore

‖v‖2
T �

∥∥v−1/2∥∥2 + 4T
∥∥u0∥∥3/2∥∥Dx

+u
∥∥1/2
T

‖v‖1/2
T

∥∥Dy
+v

∥∥1/2
T

,

which proves the lemma.

From Lemma 4 we can easily deduce

∥∥Dx
+u

∥∥2
T

+ 1

2

∥∥Dy
+v

∥∥2
T

� I + 4
∥∥u0∥∥1/2‖v‖1/2

T

∥∥Dy
+v

∥∥1/2
T

∥∥Dx
+u

∥∥3/2
T

.

Summing this inequality with the inequality given by Lemma 5 we obtain

‖v‖2
T + ∥∥Dx

+u
∥∥2
T

+ 1

2

∥∥Dy
+v

∥∥2
T

� I + ∥∥v−1/2∥∥2 + 4
∥∥u0∥∥1/2‖v‖1/2

T

∥∥Dy
+v

∥∥1/2
T

∥∥Dx
+u

∥∥3/2
T

+ 4T
∥∥u0∥∥3/2∥∥Dx

+u
∥∥1/2
T

‖v‖1/2
T

∥∥Dy
+v

∥∥1/2
T

.

However, Young’s inequality yields

4T
∥∥u0∥∥3/2∥∥Dx

+u
∥∥1/2
T

‖v‖1/2
T

∥∥Dy
+v

∥∥1/2
T

� 1

4

(
4T

∥∥u0∥∥3/2)4 + 1

4
‖v‖2

T + 1

4

∥∥Dy
+v

∥∥2
T

+ 1

4

∥∥Dx
+u

∥∥2
T
,
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so that
1

2

(‖v‖2
T + ∥∥Dx

+u
∥∥2
T

+ 1

2

∥∥Dy
+v

∥∥2
T

)
� I + ∥∥v−1/2∥∥2 + 4

∥∥u0∥∥1/2‖v‖1/2
T

∥∥Dy
+v

∥∥1/2
T

∥∥Dx
+u

∥∥3/2
T

+ 1

4

(
4T

∥∥u0∥∥3/2)4
.

We now use another time Young’s inequality to obtain

∥∥u0∥∥1/2‖v‖1/2
T

∥∥Dy
+v

∥∥1/2
T

∥∥Dx
+u

∥∥3/2
T

� 1

8

(
3
∥∥u0∥∥4/3 + ‖v‖4

T + ∥∥Dy
+v

∥∥4
T

+ 3
∥∥Dx

+u
∥∥4
T

)
� 3

8

∥∥u0∥∥4/3 + 3

8

(‖v‖4
T + ∥∥Dy

+v
∥∥4
T

+ ∥∥Dx
+u

∥∥4
T

)
,

so that
1

2

(‖v‖2
T + ∥∥Dx

+u
∥∥2
T

+ 1

2

∥∥Dy
+v

∥∥2
T

)
� I + ∥∥v−1/2∥∥2 + 3

2

∥∥u0∥∥4/3 + 1

4

(
4T

∥∥u0∥∥3/2)4 + 3

2

(‖v‖4
T + ∥∥Dy

+v
∥∥4
T

+ ∥∥Dx
+u

∥∥4
T

)
.

Introducingf := ‖v‖2
T + ‖Dx+u‖2

T + 1
2‖Dy

+v‖2
T , the above inequality reads

f � A + 3f 2,

with A := 2I + 2‖v−1/2‖2 + 3‖u0‖4/3 + 1
2(4T ‖u0‖3/2)4.

The inequation 3f 2−f +A � 0 is not satisfied for allf if its discriminent� := 1−12A is positive. Indeed,
if �> 0, then eitherf � (1− √

�)/6 orf � (1+ √
�)/6. In order to have an upper bound forf , we want to

be sure that we are in the first case.

From now on, we assume that�> 0, which is the case if the initial data are small enough.

Denoting by r2 the positive numberr2 = (1 − √
�)/6 and introducingfn = ‖vn−1/2‖2 + ‖Dx+un‖2 +

1
2‖Dy

+vn−1/2‖2, we want to prove that iffk � r2 for k = 1, . . . , n, then we also havefn+1 � r2.

We thus assume thatfk � r2 for k = 1, . . . , n.

Since for alla ∈ l2(Z2), one has‖Dy
+a‖ � 2/δy‖a‖, we can deduce from inequality (19) that

∥∥vn+1/2∥∥2 �
∥∥vn−1/2∥∥2 + 2

√
2

δt√
δy

∥∥u0∥∥3/2∥∥vn+1/2 + vn−1/2∥∥∥∥Dx
+u

n
∥∥1/2

�
∥∥vn−1/2∥∥2 + 2

√
2

δt√
δy

∥∥u0∥∥3/2∥∥Dx
+u

n
∥∥1/2(∥∥vn+1/2∥∥ + ∥∥vn−1/2∥∥)

� r2 + 2
√

2
δt√
δy

∥∥u0∥∥3/2
r1/2(∥∥vn+1/2∥∥ + r

)
,

thanks to the induction asumption. The inequalty obtained is of the form‖vn+1/2‖2 − α‖vn+1/2‖ − β � 0,
with α = 2

√
2 δt√

δy
‖u0‖3/2r1/2 andβ = r2 + rα. The study of the functionX2 − αX − β yields that one has

necessarily ∥∥vn+1/2∥∥ � r + α. (20)

We also know thanks to Lemma 4 that∥∥Dx
+u

n+1∥∥2 + 1

2

∥∥Dy
+vn+1/2∥∥2 � I + 4

∥∥u0∥∥1/2∥∥vn+1/2∥∥1/2∥∥Dy
+vn+1/2∥∥1/2∥∥Dx

+u
n+1∥∥3/2

,
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so that, thanks to Young’s inequality,

∥∥Dx
+u

n+1∥∥2 + 1

2

∥∥Dy
+vn+1/2∥∥2 � I + 4

∥∥u0∥∥1/2∥∥vn+1/2∥∥1/2
(

1

4

∥∥Dy
+vn+1/2∥∥2 + 3

4

∥∥Dx
+u

n+1∥∥2
)
.

Using inequality (20), we thus obtain

∥∥Dx
+u

n+1∥∥2 + 1

2

∥∥Dy
+vn+1/2∥∥2 � I +B

(∥∥Dx
+u

n+1∥∥2 + 1

2

∥∥Dy
+vn+1/2∥∥2

)
,

with B = 3‖u0‖1/2(r + α)1/2.

From now on, we assume thatB < 1, which is the case if the initial data are small enough.

In that case, we deduce from the above inequality that

∥∥Dx
+u

n+1∥∥2 + 1

2

∥∥Dy
+vn+1/2∥∥2 � I

1−B
. (21)

From equations (20) and (21), we obtain therefore

fn+1 � I

1− B
+ (r + α)2,

and since we have already proved that eitherfn+1 � r2 or fn+1 � r2 + √
�/3, we just have to prove that

fn+1 < r2 + √
�/3 to be sure that it is smaller thanr2. This condition is satisfied if

I

1− B
+ (r + α)2 < r2 +

√
�

3
,

which is the case if the initial data are small enough (for null initial data, this inequality reads 0< a/3).

Sincer2 < 1/6, the theorem is thus proved, since the conservation of thel2 norm of un has already been
proved.

We now list the explicit conditions under which the theorem is valid.

3.4. Explicit conditions of validity for Theorem 3

3.4.1. Condition 1

A := 2I + 2
∥∥v−1/2∥∥2 + 3

∥∥u0∥∥4/3 + 1

2

(
4T

∥∥u0∥∥3/2)4
< 12,

whereI is the invariant given by Proposition 3.

3.4.2. Condition 2

B := 3
∥∥u0∥∥1/2

(
r + 2

√
2

δt√
δy

∥∥u0∥∥3/2
r1/2

)1/2

< 1,

wherer2 = (1− √
1− 12A)/6.
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3.4.3. Condition 3

I

1−B
+

(
r + 2

√
2

δt√
δy

∥∥u0∥∥3/2
r1/2

)2

< r2 +
√

1− 12A

3
.

4. Numerical algorithms and results

4.1. Algorithms

We recall that the numerical semi-discrete in time scheme is defined by

i
un+1 − un

δt
+ ∂2

x

(
un+1 + un

2

)
=

(
un+1 + un

2

)
∂xv

n+1/2,

∂x

(
vn+1/2 − vn−1/2

δt

)
+ ∂2

y

(
vn+1/2 + vn−1/2

2

)
= −∂x|un|2.

Let us explain how we resolve each equations. In order to reduce the CPU time, let us denote byνn+1/2 =
un+1+un

2 andwn = vn+1/2+vn−1/2

2 . Thus, the scheme becomes

2i
νn+1/2 − un

δt
+ ∂2

x ν
n+1/2 = ∂xv

n+1/2νn+1/2,

∂x

(
2wn − 2vn−1/2

δt

)
+ ∂2

yw
n = −∂x

∣∣un
∣∣2.

Thus, we have (
2i

δt
I + ∂2

x − ∂xv
n+1/2

)
νn+1/2 = 2i

δt
un,

(
2

δt
∂x + ∂2

y

)
wn = −∂x

∣∣un
∣∣2 + 2

δt
∂xv

n−1/2.

So, in totally discrete form, it reads(
2i

δt
I +Dx

+D
x
− − (

Dx
0v

n+1/2)
j,k

)
ν
n+1/2
j,k = 2i

δt
un
j,k,(

2

δt
Dx

0 + D
y
+D

y
−
)
wn

j,k = −(
Dx

0

∣∣un
∣∣2)

j,k
+ 2

δt

(
Dx

0v
n−1/2)

j,k
,

for 2 � j � Nx − 1 and 1� k � Ny . For a point on the boundary of*, we have(
2i

δt
I + Dx

+D
x
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Dx
+v

n+1/2)
j,k

)
ν
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Dx

+
∣∣un
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(
Dx

+v
n−1/2)

j,k
,

for j = 1, 1� k � Ny , and(
2i

δt
I + Dx

+D
x
− − (

Dx
−v

n+1/2)
j,k

)
ν
n+1/2
j,k = 2i

δt
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j,k,(

2

δt
Dx

− + D
y
+D

y
−
)
wn

j,k = −(
Dx

−
∣∣un

∣∣2)
j,k

+ 2

δt

(
Dx

−v
n−1/2)

j,k
,
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(a)

(b)

(c)

Figure 1. u and contour of|u| at: (a)t = 0.1; (b) t = 1.0; (c) t = 2.0.

for j = Nx , 1� k � Ny .

Therefore, we have for each equation a linear system to solve which givesνn+1/2 andwn. Finally, we get
un+1 by un+1 = 2νn+1/2 − un andvn+1/2 by vn+1/2 = 2wn − vn−1/2.
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Figure 2. ‖u‖∞.

4.2. Experiments

As for classical nonlinear Schrödinger equation, we take a Gaussian function as initial datum. In order to
verify the hypothesis of smallness of initial datum, we takeu0(x, y) = exp−(x2+y2)

16 . Unfortunately, we do not
know an a priori initial datum forv. However, it represents physically the mean flow, that must be null a time
0. The experiment is done on a box[−160,40] × [−40,40]. The discretization steps are set toδt = 0.001,
δx = δy = 1/2. Actually, the constantNx andNy areNx = 480 andNy = 160. We plot hereafter the modulus
of u andv for different times. Moreover, we show the decay ofL∞ norm ofu, the relativeL2 norm error, i.e.,
‖un‖2−‖u0‖2

‖u0‖2
, and the relative error made on second invariantIn, i.e., In−I0

I0
.

Remark: In order to have small boundary conditions, we have to take big boxes forv because this function
decays very slowly. The mean flowv has only slow decay because if it were strongly decreasing, its Fourier
transform would be regular, which is not the case due to the presence of the symbol exp(−itη2/ξ) in the
associated semi-group.

Figure 1describes the evolution of|u| with t . Likewise, we plot on the same plot lines the contour of|u|.
One has to notice the remarkable behaviour of the modulus ofu. As expected by the analysis of equation (1),
the dispersion is only in thex-direction which we see on the contour figures. At this stage, nonlinear dynamics
cannot be observed onu. In order to see them, one must go beyond the validity conditions of Theorem 3,
considering for instance large initial data, as we do in section 4.3.

We expect a decay ofL∞ norm of u because the system is dispersive. We get this behaviour onfigure 2.
Figure 3shows how the solutionv behaves. It is striking that influence propagates to the left and that the trail
left by the nonlinearity which acts as a source term in the second equation of system (6) is parabolic. This is
due to the fact that the linear part of this equation is simply the wave equation in coordinates rotated 45 degrees.
The domain of determination at a point(t, x, y) is therefore a backward light cone whose intersection with the
plane{t = 0} is a parabolic region. This has been discussed in [18].

Figure 3(e)presents reflexions on boundaryx = −160. This is due to the homogeneous Dirichlet conditions.
Finally, we show the good result of relative error forL2 norm andI n invariant (figure 4).

4.3. Large data

In this section, we consider ‘large’ initial data, where the factor 1/16 has been removed from the expression
of u0. That is, we consider hereu0(x, y) = exp(−x2 − y2). The results of such an experiment are interesting
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(a) (b)

(c) (d)

(e)

Figure 3. v at: (a)t = 0.1; (b) t = 0.5; (c) t = 1.0; (d) t = 1.5; (e) t = 2.0.

for two reasons: the numerical scheme we have proposed appears to be stable beyond the conditions stated in
Theorem 3, and the dynamics we observe onu is not purely dispersive as previously, but nonlinear asfigure 5
shows.

4.4. Stability with respect to perturbations

In this section, we observe numerically that perturbing the initial conditions in frequency or in space does
not affect significantly the behaviour of the solution.
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(a) (b)

Figure 4. Relative error: (a) ofL2 norm; (b) onIn.

(a) (b)

(c) (d)

Figure 5. Contour of|u| at (a)t = 0.5; (b) t = 1.0; (c) t = 1.5; (d) t = 2.0.
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(a) (b)

(c)

Figure 6. Perturbation in frequency: (a)‖u‖∞; (b) relative error ofL2 norm; (c) relative error onIn.

4.4.1. Perturbations in frequency

We perturb here the initial condition in frequency (i.e., we perturb its Fourier transform). More precisely, the
initial condition we consider here isu0(x, y) = exp(−x2 − y2)/16· (1+ cos(x)/10).

Figure 6(a)gives the evolution in time of theL∞ norm. It is similar to the one observed in the nonperturbed
case.Figures 6(b)and (c) show that the relative errors made on theL2 norm and on the invariantI n remain
very small.

We now give the contour of|u| and the behaviour ofv at timest = 0.1 andt = 2.0 (figure 7). Here again,
one can observe that the perturbation does not affect the dynamics of the solution.

4.4.2. Perturbation in space

We perturb here the initial condition in space. More precisely, we consideru0(x, y) = exp(−x2 − y2)/16+
exp(−(x − 1)2 − (y − 1)2)/160.
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(a) (b)

(c) (d)

Figure 7. Perturbation in frequency: contour of|u| at (a)t = 0.1 and (b)t = 2.0; v at (c) t = 0.1; (d) t = 2.0.

Here again theL∞ norm keeps the same behaviour as in the unperturbed case, and the relative errors made
on theL2 norm and onI n remain very small (figure 8).

Figure 9 shows that, as for a perturbation in frequency, the dynamics are not affected by a perturbation in
space of the initial conditions.

5. Conclusion

The scheme we have studied manages to handle the main difficulty, which is the resolution of the heat
equation on the whole real line. As we have shown in the existence theorem, this is due to the peculiar form of
the right-hand side in equation (2), which allows us to findvn−1/2 in l2(Z2). This function is therefore decaying,
but the expression of its Fourier transform given in the proof of the existence Theorem, shows that this decay is
at most algebraic. This fact is confirmed by the above numerical experiments, and appears to be the principal
difficulty in the computations. Indeed, in order to neglect the boundary terms, we have to work with big boxes,
and the calculus is therefore heavy.
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(a) (b)

(c)

Figure 8. Perturbation in space: (a)‖u‖∞; (b) relative error ofL2 norm; (c) relative error onIn.

As we do not have an existence/uniqueness theorem for the continuous case, we cannot expect for the
moment proving the convergence of our scheme. However, we have proved its stability, and the first two
invariants of the continuous system are well conserved numerically.

Another kind of approach would consist in following the proof of the existence theorem of the continuous
case. In this case, the term∂−1

x ∂2
y is approximated by a regularized operator whose symbolTµ is given by

Tµ := i
ξ

µ + ξ
η2,

whereξ andµ denote the dual variables ofx andy respectively.

The idea would be to perform a Fourier analysis of the regularized version of the second equation of system
(6), and to treat the first equation as here.
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(a) (b)

(c) (d)

Figure 9. Perturbation in space: contour of|u| at (a)t = 0.1 and (b)t = 2.0; v at (c) t = 0.1 and (d)t = 2.0.
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