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Abstract — When long-wave short-wave resonance occurs, Davey—Stewartson systems become singular and have to be replaced by another system of
equations. This is this system we study here numerically. We use a finite difference scheme for which we prove existence and uniqueness of a solution.
We also prove a stability theorem and compute some invariants of the discrete system. We finally give and comment numerical experiments to study the
behaviour of the solution§] 2001 Editions scientifiques et médicales Elsevier SAS

1. Introduction
The motion of weakly nonlinear capillary-gravity waves on water of finite depth has been studied extensively
since the sixties. The variation(x, y, t) of the height of the free surface with respect to the state of rest is

traditionnally written under the form

nX,Y,t)=¢ (’—A(x, y, t) sinh(kh) €*X=<0) 4 c.c>
w

x=¢(X—cg1),y=6Y,t=6%r
+0(e?),
wherew (k) is given by the usual dispersion relation for water-waves

w® = k(g + Tk?) tanh(kh),

whereT denotes the surface tension per unit density of the liquidcaréw’(k) is the group velocity.
The parametet is small and corresponds to the amplitude of the waves.

It is known (see for instance [1-3] for irrotational flows and [4] for the general case) that this phenomenon
is governed by the Davey—Stewartson system:

1 9%2A ¢, 0%A k Co®
10, A+~ (k .4 = (g— sin 2kh) A —v|AJPA,
At 5 R e T oy T sk g T h2kh) )¢ A = vIA]

9%¢ 9%¢ g sinh(2kh)\ 92|A|?
h—c®)— +gh— = — 2(1 )
(h—=cp) x2 t8 + Co® 0x2

’
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whereh is the mean depth of the water,is the accelaration of gravity ang the group velocity. The first of

these two partial differential equations is a nonlinear Schrédinger equation with a forcing term, and the second
one is a linear equation which is either elliptic or hyperbolic, depending on whether the group vejoaity

the capillary-gravity wave is (strictly) less than or greater than the velQgity of the long gravity waves.

Several instabilities or resonances have been studied for this system (see the book by Mei [5], see also [6]
for a study of interaction between long-waves and short-waves). We are concerned here by the long-wave
short-wave resonance which occurs when the group velogitf the fondamental mode (capillarity-gravity
wave) is exactly equal to the phase velogjfg/ of the long-waves (long gravity waves). In 2D, this resonance
appears obviously since in this case the Davey—Stewartson equations reduce to the cubic nonlinear Schroédinger
equation in which the coefficient of the cubic termis proportional/t@:?.— gh) which becomes infinite when
cf, = gh. Djordjevic and Redekopp ([3]) have proposed in this case a new scaling which takes into account this
resonance; they have obtained the following set of amplitude equations:

2

10; A + 1 N(k)a A = BA
1o 2¢ ax2

0B = —ad.|A]%,
wherex can be expressed explicitly (see [3]).

Sulem and Sulem ([7]) have extended this result for the 3D case, and Colin and Lannes ([8]) have proved that
such phenomena also occur in a general way in nonlinear optics. Under the long-wave short-wave resonance
hypothesiSc(f, = gh), the equation satisfied by is coupled with that satisfied kyand reads:

i, 32A _ w
azg S|nh(2kh)
Ce 1
G+ 50 dy? 2( g>a|A|

wherec, = o' (k).

These equations generalize the system obtained by Djordjevic and Redekopp [3]. The only modification is
the transverse dispersion on the mean ftoin the second equation, i.e. the teﬁg;nlayzg, which is the same as
in the Kadomtsev—Petviashvili (KP) equation.

Remark Assuming that the resonance conditio@: gh is exactly satisfied is not very realistic from a
physical point of vue. In their book [7], Sulem and Sulem assume that it is approximately satisfied, and more
precisely that,/gh — ¢, = ev, with finite v. In this case, the second equation of the above system must be
replaced by

2
B¢ + Vi + gax 137{ 2(
However, since the aim of the present article is to study the dynamics of the long-wave short-wave resonance,
we will assume that the resonance condition is exactly satisfied.

sinh(2kh)

+ )8 |AI%.
o 8

From a numerical point of view, the Davey—Stewartson equation have been extensively studied (see [9-12]
for instance), but as far as we know the modulation equations obtained in [7,8] under the long-wave short-wave
resonance assumption has not been investigated. Moreover, very few numerical studies ([13—-15]) deal with the
KP equations, which are related to the system considered here since thgi@ﬁm is present in both cases.

In fact, to our knowledge, the most related study has been made by Alterman and Rauch ([16—18]), though in
a very different physical context. Indeed, they have studied the propagation of short pulses in nonlinear optics
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and proved that the classical Schrédinger approximation is then not valid anymore. In the linear case, it must
be replaced by the Linear Diffractive Pulse Equation

2Lttx = Ayu,
which is the linear part of the equation of the mean flow in the system derived by Sulem and Sulem. The

numerical study carried out by Alterman and deals only with the linear case.

The aim of this paper is to give a numerical study of the nonlinear modulation equations arising under
the long-wave short-wave resonance assumption. In the next section, we set up the notation, give the main
known properties of the system, and explain the finite differences method we use for the numerical resolution.
In section 3, we study the properties of the discrete system, particularly focusing on the conservation of two
gquantities, and on a stability theorem. Finally, we give in the last section the algorithms we have used, and
comment the numerical results obtained.

2. Numerical approach and known results

2.1. Notation

For all sequences of complex numbers- (a; ) xezz andb = (b; ) ;) ez2, We introduce the following
quantities

(a,b) = Z aj,km(SxSy,

(J.kyez?
(@.b):=> ajibjidx, VkeL,
JEZ
1/2
lal = ( 3 |a,-,k|25xay> ,
(J.kyez?
1/2
llallx = (Zlaj,k|26x> , VYkelZ,
JEZL

which are finite ifa andb are inl?(Z?).
We now define difference operators which, for any sequene€a; ;) ; «cz2, are given by

_Gj+1k — 4k

(Dia)jj=—"—"""
+4)j, Sx >
Ajr —aj—1k
(Dfa)j,k — %’
Sx
Ajr1k — Aj-1k
(D}a); ;= e e e
0 Js 28)(: ’
: Ajk+1 —Ajk
(Dia)j,k — /Jrif’
8y
Ajk —ajk-1
(D}ra)j’k — %’
8y

ajk+1 — Aj k-1

Dla);x=
( Oa)j,k 26)/
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2.2. The continuous case

The system studied in this paper is the following
iatu—l-afuzufixv, D
v+ 0, 102y = —|ul’. 2)
It is related to the system found in hydrodynamics and described above by identificatigandd, v = ¢.
We list here some of the properties of this system. The proof of all the results below can be found in [8]. The
first of these results is an existence theorem. The uniqueness of the solution remains open.
Theorem 1Letug andvg be two smooth functions, and I&t> 0.
Then, if |ugllL, + l|9xuollz2 + llvoll 2 is small enough there exists, v) such that:
(i) ueC([0, T]; L%(R?) andd,u € L>([0, T]; L*(R?));
(i) veL>([0,T]; H) N C([0, T]; L (R?));
(i) (u, v) solves system (1)—(2) with initial conditiorng, vo).

The following proposition gives three invariants preserved by this system.
Proposition 1 Let (u, v) be given by the above theorem. Then, forzad [0, T'],

(i)
/|u|2(r>=/ luol?: @3)
R2 R2
(i)
1 1
/ 192 + [ul?35v + =13, 0[2 (r)=/ 1911012 + lu0l23v0 + =13, vol: @)
R2 2 R2 2
(i)
[ a0+ 2iudm) 0 = [ 18,00l + 2iuod, (5)

2.3. Numerical method and results

On the one hand, the equation (1) is the classical nonlinear Schrodinger equation but without the transverse
dispersion term’ﬂf,. Therefore, all usual methods, such as the Crank—Nicolson [19] or relaxation [20] ones, can

be applied to treat (1) numerically. On the other hand, the second equation (2), because of apéaéminich

occurs also in KP, needs a new approach. The first idea is to attempt to take advantage of the relatively simple
form of the 8;183 operator in Fourier variables but unfortunately, this operator is singular on thé né

whereé denotes the dual variable of

However, the system of equations (1-2) can be written:

iou+ 8fu = Uo,v,

(6)
3,9, v + 020 = — 0, |ul?,

with the following change
(2) = 9,(2).
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Note that on the ling = 0 where the above operator is singular, the Fourier transiwhthe long-wave
amplitude vanishes as one can see on (6).dderivative in the source term indeed prevents = 0, n # 0)
to be forced.

Let us denote by” (x, y) the approximation ofi(¢, x, y) with r = nét, andv"*?(x, y) the one ofv(x, y, 1)
with t = (n 4+ 1/2)4t. Then, the second equation of (6) reads in semi-discrete in time form

vn+1/2 _ vn—l/Z vn+1/2 + vn—l/Z
P + 92 =—9,|u"|? 7
X 5 ; 5 Ju”| (7)

Now, supposing that”~'/2 andu” are known, equation (7) can be viewed as a non-homogeneous 1D heat
equation on*¥2 with x playing the role of the time variable andof the spatial one. The problem is that we
have to solve this equation @ and not only on the half-line. This is possible because of the peculiar form of
the source term, and requires special care in the discretization of the space variables.

Hence, the numerical method consists in using the relaxation method in order to treat each equation of
system (6) at a different time (e.g. in our situation at (n + 1/2)8¢ andr = nét). Therefore, the semi-discrete
in time scheme becomes

l_un+l —u" N az(un+l + u”) _ (un+l + u”)axvn.',-l/Z
8t ! 2 2 '

vn+1/2 _ vn—l/2 vn+1/2 4 vn—l/2
Oy| —————— 32— ) = -0, Ju"%
() () =

The spatial discretization is done by truncating the real don®finn Q = [xo, x1] x [yo, y1] and by
using a classical Cartesian mesh. Then, finite difference methods are used. Finally, homogeneous Dirichlet
boundary conditions are given farandv onI" = 9€2. Let us denote by, and N, the number of points of
discretization and seftx = (x; — xo)/N, anddy = (y1 — yo)/N,. Thereby, we define a point of discretization
by {x, y} ={(j — Déx, (k —1)dy}, with 1 < j < N, and 1< k < N,.

Then, the complete discrete system is

Wttty n+1 n w1 4+ u"
i J.k 5 J.k + (Dli<M 2+ u >) _ < J.k 5 j,k) (ngn+l/2)jk’ (8)
Jj-k '
ntl/2 _ on-1/2 ntl/2 | on-1/2
<Dg (L» n (DJ{DY($>) = —(D3lu"P) . (9)
ot .k 2 .k %

We prove in section 3 the existence and uniqueness’of, v"+1/?) solution to (8)—(9) in?(Z?). In the
same time, we perform the computation of two discrete invariants which are the equivalents of the first two
continuous ones, namely (3) and (4). Unfortunately, the third invariant (5) is not conserved by the discrete
system (8)—(9). Finally, a stability theorem is shown for small enough initial data. Section 4 is then devoted to
the algorithms and numerical results of experiments.

3. Properties of the discrete system
3.1. An existence theorem for the discrete system

We prove here that the discrete system described in section 2.3 is well pdd&&in
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Theorem 2 Let x® andv—Y? be two sequences ¢t(Z?).

There exists one and only one sequeqge v"~Y?),x € (12(Z?) x 1?(Z?))Y which solves equations (8)—(9)
forall n € N.

Proof. —Assuming that we knowu",v*~Y?) e I%(Z) x [3(Z?), we prove that there exists a unique
"t v"+Y2) € 12(Z) x 1?(Z?) which solves equations (8)—(9).
First of all, we define the discrete Fourier transform.

DEFINITION 1:Leta €[?(Z?). The discrete Fourier transform afis the functiorz € L?(T?) defined as

Q€ m= Y auduh.

(j.k)ez?

We now prove the uniqueness part idr/?; we thus assume the existence of a sequerit&? e [(Z?)
satisfying equation (9) for allj, k) € Z2. Taking the discrete Fourier transform of equation (9) yields

Sln(g) n— 1/2 n 1/2 2CO$7’]—)—2 m T—FZ
" sxot Swor ! vrE) & ) + 25y2 SR )&
=i e, E@met?
which can also read
sing)  sirf(n/2) — i [ .sin@) | sirf(n/2)\—— 7 sin(§) ~
(_l sx8t 8)? >v+ (g’n)_<_l T ) G T
Introducing := (—i 2% — s”‘2(’7/2)) we have therefore, whei§, n) ¢ 7Z x 27 Z,
—_— x/\
VHUR(E, ) = = Zu YR )+ @) wl & (10)

Since|A/A| =1 and

| sin(&)|
|sm(f;‘)|8x

.sin(S)
! Aox

’

Sxét

these two functions are™ multipliers and the two terms of the right-hand side of equation (10) aké since
we have assumed that andv"~/2 are in/2.

Hence, ifv"*%2 exists and is i?(Z?) then its discrete Fourier transform is given by equation (10), which
proves the uniqueness part.

Taking the inverse Fourier transform of thé function given by the right-hand side of equation (10) proves
the existence part far+%/2.

We now just have to prove existence and uniqueness of a funetidn knowingu”, v"~%2 andv"+/2,

Classical techniques used for the Schridinger equation give a saltitibre 2(Z?) and the conservation of
the? norm we prove below in section 3.2 gives the uniqueness part.

Remark The fact that the right-hand side of equation (9) is a derivative is crucial in the proof of the
above theorem. It it were not the case ftfe multiplier i S'”@) would be replaced bx— which is not anL*°
multiplier, so that the theorem would not be valid.
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3.2. Some invariant quantities

Throughout this section, we will denote Igy”, v*~1/2),,cy the unique sequence ¥(Z?) x 1?(Z?) which
solves (8)—(9) for alk € N, and given in section 2.3.

The following proposition says that the first invariant of the continuous system is preserved by the discrete
system (8)—(9).

Proposition 2 Thel? norm ofu" is conserved, that is,
VneN, [u"l|=[[«°].
More precisely, thé?> norm with respect to the first variable is conserved,

VneN, VkeZ, |u"]|, =’

Proof. —Multiplying equation (8) by 2”+1/2 = u;”,;l +u’} , and taking the imaginary part yields
|un+1|2 |un',k|2 - Y oy _ndl/2 n+1/2
St ! +2;§((D+D—Z +/)j,kzj,k ):0’
so that summing o yields
n+1
llu ||;;t llu” 17 +23(DX D2, )

and since a discrete integration by parts yields the nullity of the second term of the left-hand side of this equality,
we can conclude that |2 = |u"|2, for all k in Z. The end of the proof is then straightforward:

The following proposition asserts that the second invariant of the continuous system has a discrete equivalent.
Proposition 3 The quantityl, defined as
DL,m Dl n—1/2 } D212 2
= | D3|+ ([, )+ 5D
is independent of € N.
Proof. —Multiplying equation (8) byu"+1 —u'; , and taking the real part yields
25}1((DfDi Zn+1/2)j,k (”Tlgl - uyk)) = (| n+1’ - | u; k| )(ngnﬂ/z)/’,k'
Summing this expression ohe Z yields, for allk € Z,
DD DL 2 Y20 =) = (| Dy ), — (fu P, D" ),
However, one has
Z%(DfDi Zn+l/2’ un+l _ un)k — _Z%(chr Zn+1/2’ chr (unJrl _ Mn))k
= (DL (" +u), DL (" — ")),

= || Dy ¢ = || DL
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so that
X _n 2 X _n 2 n 2 X n n 2 X, .n
|DYu[[; — || Diu HHk: (Ju %, Dyv H/Z)k = (|u"[", Dgv +1/2)k_ (11)
We now study the right-hand side of this equality
(’Mn+1’2 _ ‘un’2’ ngnJrl/Z)k _ (’MnJrl
= (Ju"
However, we can deduce from equation (9) that
n 2 X n n— n 2 n n 2 X n 2
("7, Dy (0" Y2 —v372)) = 5t (", DL DL w"), 8t (w7, Dy |u"[),
= —5t(|u"|?, D2 D% w"),. (13)

We would like to perform a discrete integral by parts with respect to the first variable on this last term, but
we first have to prove that the discrete integralVof:= D? D} w" is well defined. This is what asserts the
following lemma.

* Dy ), — (' g ),

2’ DS (vn+1/2 _ vn—l/Z))k. (12)

Lemma 1 For all j and allk in Z, the sum

o
Sj,k = 28)( Z Wj*l*Zl,k
1=0
converges. Moreover, We have the following properties:
— forall j andk in Z, D§S =W,
— the sumS; ; is given by
n+1/2 n—1/2

2
Sjk= T - ’u;lk’ :

Proof. —If §; « is well defined, it is easy to check that the last assertion of the lemma is satisfied. We now
prove the convergence 6f ;.
Equation (9) writes, at pointj — 1 — 2/, k) and for alll € Z

l X, .n X,  n— X n 2
E((Dov +1/2)j—1—21,k - (DOU 1/2),-_1—21,1() + Wi o= _(D0|” | )j—l—Zl,k'

Summing this expression forin= 0 until / = L thus yields
+1/2 +1/2 -1/2 -1/2 L 2 2
e o Sl 4 T L e Y n Z W T G ok
25x51 Ak 25x

=0

Sincev" 12, y"*t1/2 gandu™ are in/2, one has, for alk € Z,

n+1/2

lim (v”_l/z,v , u”|2) 0,

L—o0

j—2-2Lk =

so that
n+1/2 n—1/2
_ ik T Yk n
Sj»k__ St - |uj,k

2

9
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which concludes the proof of the lemma.
We can now perform the desired integration by parts on equation (13)

2’ Dg(anrl/Z _ vn71/2>)k — —8t(|u”
= —8t(’u"

=8t (Dg|u"

2

W)y
2 X

- D5 S),
2

’ S)k’

where the convergence of the last term can easily be deduced from the above lemma. Once again, using
equation (9) thus yields

(’un |2’ DS (Un+1/2 _ Un—l/Z))

([

=—(Dg (V"2 — "2 85), — 8t (W, )
= (V"2 — v Y2 D3s), — 8t(D§S, S),
— (vn+1/2 _ Un—l/Z’ W)k

Now, replacingW by its expressiotW = D D w" in the above equality, and summing oveyields

2’ Dg (Un+l/2 _ vnfl/Z)) — (Un+l/2 _ vnfl/Z’ D{Di’r wn)
— —(DB{_ (vn+1/2 _ vn—l/Z)’ DB{_ wn)
1 ,
— _E(D-yl- (vn+1/2 _ vn—l/Z)’ D-yl- (vn+1/2 + vn—l/Z))’

since we recall that@" = (v**¥? 4 v*~1/2), Sincev"*%/? andv"~/2 are sequences of real numbers, we have
therefore

k

(Ju"

n|2 px(,n n— 1 ) n 2 ) n— 2
(Ju"|", Dg (v /2 = 0" 2)) = =S (|| DR 2" = [ D).
We now sum equation (12) ovérand replace|u" |2, Dg(v"*Y/2 — v"~1/2)) by the above expression to find
n 2 n|2 X, .n n 2 X, .n n|2 X, n—
(Ju " = |7, Dgu™*¥2) = (ju™**", Dgv" %) — ([u" [, Dgv"~"?)
1 " 2 He1/2]2
(2P — | DL,
so that equation (11) becomes
X n 2 n
— || D3 =

1 - 2 12112
+ S (1D3 R D).

| DYut " D§y" ) — (u" [, D" )

le

We can also write this last equality under the fokm, = I,,, and the proposition is thus proved.

Remark The third invariant of the continuous system is not preserved by the discrete system we consider
here. In order to conserve this third invariant we would have to consider a non-linear discrete system, far more
difficult to handle.

3.3. A stability theorem

The following theorem asserts that the discrete system (8)—(9) is stable if the initial data are small enough.
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Theorem 3 If the initial datax® and v=%2 are small enough then there exigts> 0 such that for all
n=0,...,N,with N = T/5t, thel? norm of the solutior(u”, v"~/?) of the discrete system (8)—(9) is bounded
in 12(Z?)?. More precisely, one has

— |lu*|| = |4, foralln =0, ..., N;

— Y212 4+ | DX u" |2 + 3| DY v 2|2 < 1/6, foralln =0, ..., N.

Remark At the end of this section, we give explicit conditions for the smallness of the initial data, as well as
an explicit condition for the computation @f.

We first give two lemmas we will often use throughout the proof of the stability theorem.
Lemma 2 Leta €1%(Z?). Then one has

> (supla;«[?)8y < 2ljal|| Dal|

kez €%

Proof. —For all (j, k) € Z?, one can write

k—1
|aj’k|2 =N Z (@ji1k+ aj,k)m
[=—00
k—1
=N Z ((@jr1x+aj)Véx) ((Dfra)j,k Véx)
[=—00

<2lallk I1D3all

the last inequality being a consequence of Cauchy—Schwartz inequality. One has therefore

(14)

2
supla; | < 2|lallx|| Dall,,
JEZL

and summing ovet and using Cauchy—Schwartz inequality with respedét tioen yields the desired result.

Lemma 3 Letb be a sequence of real numbergi(Z?). Then one has

fuzpnbnk < V2| Y2 || DY b)Y,
€

Proof. —Introduceyr (k) := ||b]|x. We can remark that

Y+ —y®) 1 yh+D*—yk)? 3 enbjass+bju)(Dib)dx
8x S Sx Yk+D+yk) Yk+1) + k)
so that Cauchy—Schwartz inequality yields

Y (k+1) — k)]
Sx

k)

<[ Dbl

It is easy to see that e [2(Z), and that(>", | (k)|?5y)¥2 = ||b||. Therefore, using the majoration of the
derivative ofyr we have just obtained, together with inequality (14), yields

supy (k) < ~/2|1b11 Y| Db 2,
keZ
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which proves the lemma.

Proof of the theorem. Fhe first step in the proof of the stability theorem is given by the following lemma.
It gives a first control of the growth dfD1u"||? and|| D2 v"~ %22,

Lemma 4 If (u",v""'/?) is given by the existence Theorem 2, and itlenotes the invariant given by
Proposition 3, then one has

n||2 1 n— 2 /2 n— 1/2 n— 1/2 x n|3/2
1D3 "+ S D227 < 1 Al o2 D" 2P D
Proof. —One has
n 2 1 n— 2 n 2 n—
| DL [*+ S||D2v 22 = 1 = (|u” [*, D3"2). (15)
We now transform the scalar product appearing in the right-hand side as follows

(|u”|2 Dyv"Y?) = —(D6‘|u"|2, V"2 = 2% (2 2Dju, v ),

where we recall that221t%2 = y*+1 4+ 4”. One has therefore

(. D =2)| < 23 suiu | (D3 v ~2), 5y
kez JEL
<2 supu,| [ [|Dgu" |, 8y
kez €L

<2suv" ¥, > supu] ||| Dgu”, 8y
keZ kez i€z

1/2
<2sufo" )| (S suptur, sy ) | Dg
keZ tez €L

which yields, thanks to Lemma 2,

(£, Dv2)| < 23252, " |2 D2 |2 3o |
Since||Dgu"|| < || D} u"||, we thus have
(£, D %) < 2325l 2, " [ D22

Finally, we use Lemma 3 to obtain
([, D" 72)[ < Afjo= Y272 | DL Y2 |72 D12
= 4|02 Dy 2 Dy,
the last inequality being a consequence of the conservation &f tiem ofu. equation (15) therefore yields
1 :
| D3P S D3 2P < 1+ a2 DL D (16)
which proves the lemma.

In order to exploit the above lemma, we need to control the growth®f/?||. Such a control is given by
the following lemma.
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Lemma 5 If (", v"1/?), solves the discrete system (8)—(9), then, with the notations introduced above,

3/2 1/2

1/2
I 72 D3|,

oI < |Jo= 2| + 4T |[u®)| ¥ D2ul[; 0]

Proof. —As usual, we write " = v"+t1/2 4 yn=1/2,
With S being, as in Lemma 1, the discrete integralif D} w" with respect to the first variable, one has,

thanks to Lemma 1,
vn+l/2 _ Unfl/Z 2
n — _2 n _ n n
(5.0 = —2( S5 ) = (o),
and since integrations by parts show th&tw") = 0, one then has
0" 2217 = (o2 = 28t (| ) (17)

We now look for an upper bound ¢fu"|", w"). One has

() < 3 s " b < s 5 supa ] 5

kezZ /€ kez, J€

<suqyw I8 <ZSUHM,/¢’ 5Y) H”nH

keZ J

thanks to Cauchy—Schwartz inequality. Now, using Lemmas 2 and 3 yields
1/2 n1/2 x 112\ n
(ju"]*, w") < V2w |2 Dy 72V 2l M2 DY ||
3/2) anl/2 a2 e n111/2
= 20| " |7 D3 w" [ DY (18)
since the? norm ofu” is conserved.
Equations (17)—(18) therefore yield

022 < o2 o 28 ) o 2 0 2 DY (2 o) D[R (29)

and therefore

ol < [lo=2)* + 47 [|u®] | Dxull 1ol D3o 7,
which proves the lemma.
From Lemma 4 we can easily deduce
2 1, ., 2 1/2 2 12 3/2
1Dz + S D3 vlly <1+ 4l ol | Dvllr ™| D ul
Summing this inequality with the inequality given by Lemma 5 we obtain
1, .,
ol + ([ Dtully + 5 Dvll7
<+ o727 a2l | Dol D7 4 4T [l D50 DY o

However, Young’s inequality yields

32\ ~x  111/2 2 1/21 324 1 1. 5 2 1 . 2
a7 2 D5 Y22 D[ < ST PP 4 Sl + %]+ 5] 05l
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so that

ez L2
(lli7 + [ D3ully + Sl D3oll7)

NI~

1/2

R e R e S oS e 247"

We now use another time Young’s inequality to obtain
[ 2102 Dol 5] < 5 31l +1vnt + | DLo]7 + 3] Du7)
43 3 ;4 4
< O+ gUIvli7 + [ Dolly + [|D3ul7).
so that

o2 1 2
(lli7 + || D3ullz + S[1DYvll7)

NI -

12 3 43 1 3/2, 4
ST o2+ Sl Z (4T [W0)77) " + (II ollf + | DLy + || DYul7).
Introducing f := |[v]|% + [ DXull? + 3| D} v|%, the above inequality reads

f<A+3f?

with A =21 + 2|[v=2)|2 + 3)|u®||*3 + (4T [[u°[*/>)*.

The inequation 32— f + A > 0 is not satisfied for alf if its discriminentA := 1— 124 is positive. Indeed,
if A >0, then eitherf < (1—+/A)/60r f > (1++/A)/6. In order to have an upper bound f6rwe want to
be sure that we are in the first case.

From now on, we assume that> 0, which is the case if the initial data are small enough.

Denoting byr? the positive number? = (1 — +/A)/6 and introducingf, = [[v"~Y?||2 + || DXu" || +
%||Div”‘1/2||2, we want to prove that if, <r2fork =1, ..., n, then we also havg,, < r.

We thus assume thg, < r?fork=1, ..., n.

Since for alla € 1?(Z?), one hag| D’} a| < 2/<Sy||a|| we can deduce from inequality (19) that

o2 < 2 27 B O 2 02 | D

|
f
<[l 2+ 2v2

32\ yx  n | Y210 n—
fl\ u® DL (o + o)
ot 3/2
<r2 4+ 2V 22— |[uO|7 2 (||t 2| 4 ),
S 2]
thanks to the induction asumption. The inequalty obtained is of the farm?|> — «|v"*%2| — B < 0,

with o = Zﬁj—g»y||u°||3/2r1/2 and g = r? + ra. The study of the functiork? — « X — g yields that one has
necessarily

[V 2] <+ (20)
We also know thanks to Lemma 4 that

1 ,
e B e i P G TP
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so that, thanks to Young’s inequality,
X n 2 1 n 2 1/2 n 1/2 1 n 2 3 X _n 2
e L R R e R G e AR i o

Using inequality (20), we thus obtain
e e R (L e )]

with B = 3||u®||Y2(r 4+ a)Y/2,
From now on, we assume thAt< 1, which is the case if the initial data are small enough.
In that case, we deduce from the above inequality that

HDi”nHHZ + %HDivnH/sz < L

5 (21)

From equations (20) and (21), we obtain therefore

f Lor+ar
n+1\ 1_B r (04

and since we have already proved that eitiier; < r2 or f,.1 > r2 + ~/A/3, we just have to prove that
farr <12+ +/A/3 to be sure that it is smaller thaR. This condition is satisfied if

1 A
e <t

which is the case if the initial data are small enough (for null initial data, this inequality reads’8).
Sincer? < 1/6, the theorem is thus proved, since the conservation of’therm of u” has already been

proved.
We now list the explicit conditions under which the theorem is valid.
3.4. Explicit conditions of validity for Theorem 3
3.4.1. Condition 1
A=21 + 22|+ 3 + (4TH o7 <12
where/ is the invariant given by Proposition 3.

3.4.2. Condition 2
1/2 3/2 1/2
B :=3||u° ( +2v2 0 r1/2> <1,
[u” rw |

wherer? = (1— /1 —12A)/6.
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3.4.3. Condition 3
1 2 1—124
1-B <r " 2\/_\/—” OHg/Zrl/Z) <t
4. Numerical algorithms and results
4.1. Algorithms

We recall that the numerical semi-discrete in time scheme is defined by

iun+1 —u" N a2<Mn-i-l 4 Mn> _ (un+l 4 un>8 vn+1/2
St * 2 2 ! ’

vn+1/2 _ vn—l/Z vn+1/2 4 vn—l/Z
| ————— 92— ) = —d, Ju" %
()i () -
Let us explain how we resolve each equations. In order to reduce the CPU time, let us dentté/ Dy

n+l, ,n n+1/2_ ,n—1/2
W gandw" = % Thus, the scheme becomes
1)nJrl/Z —u"
2l 6t + afvn+1/2 — axvn+1/2vn+l/2’

2w — Zvn—l/Z ) 2
O ———— ) + %" = —a, u"|".
St Y

Thus, we have

(%I + 82 _ a UVH‘]—/Z) vn+1/2 — %un
St o st
2 > 2 1
3, + 90 =—9,|u"|"+ =8, Y2
(St + ) lu"|”+ 57 O
So, in totally discrete form, it reads
2 X X x..n+1/2 n+1/2 2 n
<§I+D+D - (Dov + / )j,k)vj»k =§Mj’k’

2 N\ o2 2 e
(5 08+ D10 ute =~ (Dilu ), + 5 (D" 7).

for2< j < N, —1and 1<k < N,. For a point on the boundary ¢f, we have

2i X X x ,.n+1/2 n+1/2 2i n
(8 I+ DiD* — (Dijv +1/ )j,k)vj,k/ = —ujy,

ot
(S—ZtDiJrDiDi)w;? —(Di )+ 2 = (DL,
forj=1,1<k <N,,and
(%I + D D" — (D" n+1/2)]’k> v;_zjgl/z _ %u’},k’
(2004 D10 Jufe= (DX ), + o (D2 H)
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Figure 1. u and contour ofu| at: (a)t =0.1; (b)# = 1.0; (c)r = 2.0.

for j=N,, 1<k <N,

Therefore, we have for each equation a linear system to solve whichgiv&€ and w”. Finally, we get
un+1 by un+1 — 2vn+1/2 —u" andvn+1/2 by vn+1/2 = 2w" — vn—1/2_
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4.2. Experiments

As for classical nonlinear Schroédinger equation, we take a Gaussian function as initial datum. In order to

verify the hypothesis of smallness of initial datum, we takéx, y) = %62*‘2) Unfortunately, we do not
know an a priori initial datum foo. However, it represents physically the mean flow, that must be null a time
0. The experiment is done on a bpx160 40] x [—40, 40]. The discretization steps are setdio= 0.001,

§x =48y = 1/2. Actually, the constarw, and N, are N, = 480 andN, = 160. We plot hereafter the modulus
of u andv for different times. Moreover, we show the decaylSf norm ofu, the relativeL? norm error, i.e.,

ny,_ 1,0 . . n_ g0
W, and the relative error made on second invarignt.e., . Io’ .

RemarkIn order to have small boundary conditions, we have to take big boxastecause this function
decays very slowly. The mean flowhas only slow decay because if it were strongly decreasing, its Fourier
transform would be regular, which is not the case due to the presence of the symbeir@%ps) in the
associated semi-group.

Figure 1describes the evolution of| with ¢. Likewise, we plot on the same plot lines the contourudf
One has to notice the remarkable behaviour of the modulus Ak expected by the analysis of equation (1),
the dispersion is only in the-direction which we see on the contour figures. At this stage, nonlinear dynamics
cannot be observed an In order to see them, one must go beyond the validity conditions of Theorem 3,
considering for instance large initial data, as we do in section 4.3.

We expect a decay af* norm ofu because the system is dispersive. We get this behaviofigome 2
Figure 3shows how the solution behaves. It is striking that influence propagates to the left and that the trail
left by the nonlinearity which acts as a source term in the second equation of system (6) is parabolic. This is
due to the fact that the linear part of this equation is simply the wave equation in coordinates rotated 45 degrees.
The domain of determination at a poift x, y) is therefore a backward light cone whose intersection with the
plane{r = 0} is a parabolic region. This has been discussed in [18].

Figure 3(e)presents reflexions on boundary= —160. This is due to the homogeneous Dirichlet conditions.
Finally, we show the good result of relative error fof norm and/” invariant (figure 4.

4.3. Large data

In this section, we consider ‘large’ initial data, where the facttGlhas been removed from the expression
of ug. That is, we consider heug(x, y) = exp(—x? — y?). The results of such an experiment are interesting
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Figure3. v at: (a)t =0.1; (b)r =0.5; (c)r =1.0; (d)r = 1.5; (e)r = 2.0.

for two reasons: the numerical scheme we have proposed appears to be stable beyond the conditions stated in

Theorem 3, and the dynamics we observe:ds not purely dispersive as previously, but nonlineafigisre 5
shows.

4.4. Stability with respect to perturbations

In this section, we observe numerically that perturbing the initial conditions in frequency or in space does
not affect significantly the behaviour of the solution.
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Figure 5. Contour of|u| at (a)r = 0.5; (b)r = 1.0; (c)t = 1.5; (d) ¢ = 2.0.
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Figure 6. Perturbation in frequency: (d):|loo; (b) relative error of.2 norm; (c) relative error or".

4.4.1. Perturbations in frequency

We perturb here the initial condition in frequency (i.e., we perturb its Fourier transform). More precisely, the
initial condition we consider here ig(x, y) = exp(—x? — y?)/16- (1 + cog(x)/10).

Figure 6(a)gives the evolution in time of the> norm. It is similar to the one observed in the nonperturbed
case.Figures 6(b)and (c) show that the relative errors made on th&norm and on the invariant” remain
very small.

We now give the contour di:| and the behaviour of at times: = 0.1 andr = 2.0 (figure 7). Here again,
one can observe that the perturbation does not affect the dynamics of the solution.

4.4.2. Perturbation in space

We perturb here the initial condition in space. More precisely, we consigder y) = exp(—x? — y2)/16+
exp(—(x —1)2 — (y — 1)%)/160.
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3 T T T T T T T T T 3

Figure 7. Perturbation in frequency: contour | at (a)¢ = 0.1 and (b)r = 2.0; v at (c)r = 0.1; (d) ¢ = 2.0.

Here again the.* norm keeps the same behaviour as in the unperturbed case, and the relative errors made
on theL? norm and on/” remain very small figure 8.

Figure 9 shows that, as for a perturbation in frequency, the dynamics are not affected by a perturbation in
space of the initial conditions.

5. Conclusion

The scheme we have studied manages to handle the main difficulty, which is the resolution of the heat
equation on the whole real line. As we have shown in the existence theorem, this is due to the peculiar form of
the right-hand side in equation (2), which allows us to #fid>/? in /2(Z?). This function is therefore decaying,
but the expression of its Fourier transform given in the proof of the existence Theorem, shows that this decay is
at most algebraic. This fact is confirmed by the above numerical experiments, and appears to be the principal
difficulty in the computations. Indeed, in order to neglect the boundary terms, we have to work with big boxes,
and the calculus is therefore heavy.
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Figure 8. Perturbation in space: (#):]oo; (b) relative error ofL2 norm; (c) relative error o’ .

As we do not have an existence/uniqueness theorem for the continuous case, we cannot expect for the
moment proving the convergence of our scheme. However, we have proved its stability, and the first two
invariants of the continuous system are well conserved numerically.

Another kind of approach would consist in following the proof of the existence theorem of the continuous
case. In this case, the terﬁpla)z, is approximated by a regularized operator whose syritfpas given by

=1 E 7’]2
P e

where¢ andu denote the dual variables efandy respectively.

The idea would be to perform a Fourier analysis of the regularized version of the second equation of system
(6), and to treat the first equation as here.
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