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Abstract

We derive a new stability criterion for two-fluid interfaces that ensures the
existence of “stable” local solutions that do not break down too fast due to
Kelvin–Helmholtz instabilities. It can be seen both as a two-fluid generalization
of the Rayleigh–Taylor criterion and as a nonlinear version of the Kelvin stability
condition. We show that gravity can control the inertial effects of the shear up to
frequencies that are high enough for the surface tension to play a relevant role. This
explains why surface tension is a necessary condition for well-posedness while
the (low frequency) main dynamics of interfacial waves are unaffected by it. In
order to derive a practical version of this criterion, we work with a nondimension-
alized version of the equations and allow for the possibility of various asymptotic
regimes, such as the shallow water limit. This limit being singular, we have to derive
a new symbolic analysis of the Dirichlet–Neumann operator that includes an infi-
nitely smoothing “tail” accounting for the contribution of the bottom. We then val-
idate our criterion by comparison with experimental data in two important settings:
air–water interfaces and internal waves. The good agreement we observe allows us
to discuss the scenario of wave breaking and the behavior of water-brine interfaces,
and to propose a formula for the maximal amplitude of interfacial waves. We also
show how to rigorously justify two-fluid asymptotic models used for applications
and how to relate some of their properties to Kelvin–Helmholtz instabilities.

Ce travail a bénéficié d’une aide de l’Agence Nationale de la Recherche portant la
référence ANR-08-BLAN-0301-01.
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1. Introduction

1.1. General Setting and Overview of the Results

We are interested, here, in the motion of the interface between two incom-
pressible fluids of different densities ρ+ > ρ−, with vorticity concentrated at
the interface, and at rest at infinity. This problem is sometimes called the Ray-
leigh–Taylor problem; the limit cases ρ+ = ρ− and ρ− = 0 are also known as
the Kelvin–Helmholtz and water-wave problems, respectively (see [9] for a recent
review).

The mathematical analysis of the stability issue of such interfaces has raised
considerable interest. The particular case of the water-wave problem is certainly
the best understood. Following the pioneering works of [11,20,45,48,66], S. Wu
established the well posedness of the water-wave equation for one-dimensional
and two-dimensional surface waves [61,62] in infinite depth and without surface
tension, provided that the Rayleigh–Taylor criterion is satisfied,

(Rayleigh–Taylor) − ∂z P |surface > 0,

where z is the vertical coordinate and P the pressure (she also established that this
condition is satisfied as long as the wave does not self-intersect). It is instructive to
remark that the linearized version of this criterion (around the rest state) is simply
ρ+g > 0, where g is the (vertical) acceleration of gravity—in other words, water
must stand below the interface. Other approaches have also been developed, such
as [39] (finite depth, Eulerian framework), [19,43,54] (fluid droplet in zero gravity,
Lagrangian framework, irrotationality assumption removed), [18] (weak solutions
in the whole space with density discontinuity at the surface), etc. More recently,
various works have given some additional information on the solution. It was
shown in [4,34] that the existence time is uniform with respect to the shallowness
parameter (among others), allowing for the justification of various models used in
coastal oceanography. In another direction, Wu [64,65] and Germain–Masmoudi–
Shatah [26] showed almost global (two-dimensional) and global (three-dimen-
sional) existence results under smallness conditions.

In presence of surface tension, the analysis is technically more difficult, but
there is no striking difference for the behavior of the solution. Local well-posed-
ness remains true and the solution of the water-wave problem with surface tension
converges to the solution of the water-wave problem without surface tension when
the surface tension coefficient goes to zero [6,7,44,67]. It is not known, however,
whether this zero surface tension limit is compatible with the shallow water limit;
the justification proposed in [32,33,53], for instance, of some shallow water models
in the presence of surface tension is relevant for large values of the surface tension
(more precisely, for Bond numbers of order O(1)) but provide an extremely short
existence time when the Bond number is large (small surface tension), which is the
case in coastal oceanography, for instance.

For the Rayleigh–Taylor problem (ρ− > 0) the picture is completely differ-
ent. It is known, at least for one-dimensional interfaces, that, outside the analytic
framework of [59,60] (see also [31] for vortex sheets, where the authors are able to
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obtain an existence time for analytic solutions that almost reaches the time where a
curvature singularity appears), the evolution equations are ill-posed in absence of
surface tension [24,35,36], even in very low regularity (C1+α in [36,42] and chord-
arc in [63])—note that [42,63] deal with the related Kelvin–Helmholtz problem
where ρ+ = ρ−. The reason of this ill-posedness is that the nonlinearity creates
locally a discontinuity of the tangential velocity at the interface that induces Kelvin–
Helmholtz instabilities.

More recently, it has been proved that taking into account the surface tension
restores the local well-posedness of the equations [5,8,14,55,56]. However, the
existence time of the solution provided by these results is very small when the
surface tension is small. The fact that the role of gravity (or gravity itself) is not
considered in these references suggests that these general results can be improved
in the “stable” configuration, where the heavier fluid is placed below the lighter
one. In particular, we would like to explain two physical phenomena

�1 Air–water interface. In coastal areas, for instance, waves propagate over sev-
eral wavelengths (depending on various physical parameters introduced below).
This observation is consistent with the results obtained in [4], where the air den-
sity is neglected (ρ− = 0). If this density, which is small but nonzero, is taken
into account, the existence results of [5,8,55,14] ensure that surface tension
can prevent Kelvin–Helmholtz instabilities, but for times that allow the wave
to propagate over only a few millimeters. We therefore want to understand the
mechanism that controls Kelvin–Helmholtz instabilities for time scales consis-
tent with the observations.

�2 Internal waves. Waves at the interface of two immiscible fluids of possibly very
similar densities have been widely investigated in the physics literature. Waves
at the interface of two layers of water of different densities in the ocean are
also commonly described with this formalism. As for the case of the air–water
interface above, the known results only provide an existence time smaller by
many orders of magnitude than what is observed.

These two phenomena raise an apparent paradox:

�3 The asymptotic models describing waves in coastal areas or internal waves, and
which provide very accurate results, all neglect surface tension. On the other
hand, the analysis of the full equations tells us that surface tension is crucial for
the existence of a solution. In other words, surface tension allows interfacial
waves to exist but does not play any role in their dynamics.

Very recently, some progress has been made to understand �1. It has been proved
in [15,49] that, the surface tension coefficient being kept fixed, the solution of
the two-fluid system converges to the solution of the water-wave problem (with
surface tension) as the density ρ− goes to zero. In [50], the following important
result was proved: the solution of the two-fluid system converges to the solution
of the water-wave equations (without surface tension) when both the density ρ−
and the surface tension go to zero. It is required only that (ρ−)2 � σ 7/3, where σ

is the surface tension coefficient. A corollary of the result presented here is a slight
improvement of this condition, showing that the result holds under the weaker con-
dition (ρ−)2 = o(σ ) as suggested by the linear analysis. However, in physical
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applications, the ratio (ρ−)2/σ cannot be made arbitrarily small, and it would be
interesting to have at our disposal a criterion to check whether a given interfacial
wave will be “stable” (in the sense of “observable on a relevant time scale”) or will
almost instantaneously break down due to Kelvin–Helmholtz instabilities.

The need for such a criterion is also crucial to explain �2. Indeed, the smallness
of the ratio (ρ−)2/σ obviously cannot be invoked to explain the observation of
such phenomena as internal waves since the relative density of the upper fluid is
not small in that case (while σ remains very small), and a better understanding of
the formation of Kelvin–Helmholtz instabilities is required.

A hint of what such a criterion should look like can be obtained by considering
the related problem of the linear stability of two fluid layers moving with constant
horizontal velocities c+ �= c− (with c± ∈ R

d , d = 1, 2). It is known since Kelvin
that small perturbations of the interface are linearly stable if the following criterion
is satisfied (see for instance [13])

(Kelvin) g(ρ+ − ρ−) >
1

4σ

(ρ+ρ−)2

(ρ+ + ρ−)2 c(0)|�c±�|4,

where �c±� = c+−c− and c(0) is a constant taking into account the geometry of the
problem.1 The equivalent of this linear criterion in the water-wave case is the linear
Rayleigh–Taylor criterion already mentioned, namely, ρ+g > 0. In the problem we
investigate here both fluids are at rest at infinity, but there is is a local discontinuity
of the horizontal velocity created by the nonlinear motion of the interfacial waves.
We can therefore expect that a local version of the Kelvin criterion may be derived
to assess the local linear stability of interface perturbations. A natural question is
then, is there a nonlinear generalization of this expected local Kelvin criterion? Or
equivalently, is there a generalization to two-fluid interfaces of the Rayleigh–Taylor
criterion?

The first main result of this paper is to show that such a nonlinear criterion
exists. It can be stated as

�−∂z P± |z=ζ � >
1

4

(ρ+ρ−)2

σ(ρ+ + ρ−)2 c(ζ ) |ω|4∞, (1.1)

where ζ is the interface parametrization, ω = �V ± |z=ζ � is the jump of the horizon-
tal velocity at the interface, and c(ζ ) is a constant that depends on the geometry of
the problem (two layers of finite depth in this paper) and can be estimated quite
precisely.2

The question is now to check whether the criterion (1.1) can explain (for
instance) the observation of the phenomena �1 and �2 mentioned above.

For �1 (air–water interface), it is likely that the relative density ρ− = ρ−/(ρ++
ρ−) is small enough to make the right-hand side of (1.1) smaller than the left-hand

1 c(0) = 1 for the case of two layers of infinite depth considered in [13]; see Remark 23
for an explicit expression in the case of two layers of finite depth.

2 For a flat interface ζ = 0, this constant is the same as in the linear Kelvin criterion.
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side, even though σ is small. This is at least the case if we consider the limit
(ρ−)2/σ → 0 as in [50].

For �2 (internal waves), the relative density ρ− is close to 1/2 and cannot be
used to explain why (1.1) should be satisfied in that case. Therefore, the small-
ness of the discontinuity on the horizontal velocity is the only reason that could
explain �2.

The main idea behind the stability criterion (1.1) is the following explanation
of the apparent paradox �3, which we can state in rough mathematical terms as
follows: the Kelvin–Helmholtz instabilities appear above the frequency threshold
for which surface tension is relevant, while the main (observable) part of the wave
involves low frequencies located below this frequency threshold. Consequently, the
Kelvin–Helmholtz instabilities are regularized by surface tension, while the main
part of the wave is unaffected by it. The role of criterion (1.1) is to ensure that
the frequency threshold mentioned above is high enough. For low frequencies, we
show that gravity can stabilize the inertial effects of the shear. The main task in this
paper is to rigorously prove this scenario.

Remark 1 (Rayleigh–Taylor stability vs. Kelvin–Helmholtz instability). As already
mentioned, surface tension has been shown to regularize the Kelvin–Helmholtz
instabilities (wihch are due to the shear). As a matter of fact, it also stabilizes Ray-
leigh–Taylor instability in the sense that it allows for a local solution, even if the
heavier fluid is placed above the lighter one. Such a solution is an example of what
would be an unstable solution for us; even though the initial value problem is locally
well-posed, it does not satisfy (1.1) and the existence time is very small. In the sta-
ble configuration (heavier fluid below), we said that we use gravity to control the
destabilizing effects of the shear; equivalently, Rayleigh–Taylor stability controls
the Kelvin–Helmholtz instabilities at low frequencies.

Having proved that (1.1) determines the stability of interfacial waves (and con-
structed such solutions to the two-fluid equations), one practical question arises:
how can we have access to the quantities �−∂z P±� and |ω|∞, which we need to
know to determine whether (1.1) is satisfied or not? Indeed, one would like to
use this criterion to assess the stability of some given configuration. For instance,
knowing the depth and density of both fluid layers, is it possible to have a stable
perturbation of the interface of amplitude a and wavelength λ?

It is quite difficult to know �−∂z P±� and |ω|∞ experimentally (see however [28]
for measurements of ω). A useful approach, therefore, is to perform an asymptotic
analysis of the problem. Of particular importance for applications is the shallow
water regime (the wavelength of the perturbation is large compared to the depths
H+ and H− of the fluid layers). In this regime, the pressure satisfies the hydro-
static approximation with fairly good precision, and one therefore has �−∂z P±� ∼
(ρ+ − ρ−)g. It is also possible to show that ω has a typical size of order a

H

√
g′H

(with g′ = (ρ+ − ρ−)g and H = H+ H−
ρ+ H−+ρ− H+ ), a prediction that is consistent

with the measurements of [28], for instance. Plugging these approximations into
(1.1) shows the relevance of the dimensionless parameter ϒ defined as



486 David Lannes

ϒ = (ρ+ρ−)2 a4

H2

(ρ+ + ρ−)g′

4σ
,

and suggests a very simple practical stability criterion in shallow water,

ϒ � 1 : Stable configuration; ϒ 	 1 : Unstable configuration. (1.2)

When ϒ ∼ 1, stability/instability is critical and it is necessary to look at the exact
criterion (1.1).

In order to rigorously prove the relevance of the practical criterion (1.2), one
must be able to handle the shallow water limit in the construction of the stable
solutions allowed by (1.1). Unfortunately, this limit is singular, which complicates
the proof. In particular, it restricts the number of tools at our disposal since stan-
dard symbolic analysis is not adapted to shallow water regimes. Roughly speaking,
symbolic analysis neglects the information coming from the bottom since it is infi-
nitely smoothing (this is the argument used in [1] to prove local well posedness of
the water-wave equations over very exotic bottoms). However, in the shallow limit,
the influence of the bottom is the main factor in the evolution of the wave; though
infinitely smooth, its contribution becomes quantitatively very large. In the water-
wave case, various techniques allow one to bypass symbolic analysis and justify
some shallow water models [4,34]. In the two-fluid case under investigation here,
it is not clear whether these techniques can be adapted. We therefore appealed to a
technical result of independent interest, namely, a symbolic analysis “with tail” of
the Dirichlet–Neumann operator, the tail corresponding to the infinitely smoothing
component of this operator taking into account the influence of the bottom. This
allows us to use some (rudimentary) symbolic analysis without suffering from the
shallow water singularity.

Once this analysis is done, we know that interfacial waves are well behaved
in the shallow water limit when the stability criterion (1.1)—or its practical ver-
sion (1.2)—is satisfied. We then apply this result to the two phenomena �1 and �2
described above. The good agreement with experimental data allows us to confirm
the relevance of one-fluid asymptotic models for air–water interfaces, and to give
the first rigorous justification (on the relevant time scale) of two-fluid asymptotic
models commonly used to describe internal waves. We also indicate how some sin-
gularities of these models can be related to Kelvin–Helmholtz instabilities. Finally,
we discuss three phenomena:

�1 Air–Water interfaces. Simple physical examples show that close to wave break-
ing, it is likely that (1.1) fails to be satisfied for certain configurations. This
would mean that the first singularity observed in wave breaking may not always
be a singularity of the water-wave equations, but sometimes a two-fluid singu-
larity.

�2 The description of water-brine interfaces (as for oceanic internal waves) does
not fall into the range of equations (1.3)–(1.8) because water and brine are not
immiscible. We use the stability criterion (or criteria) derived in this paper to
propose a two-fluid description of the water-brine interface that includes an
artificial surface tension σ . Using comparison with laboratory experiments, we
are able to propose a numerical value for σ .
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�3 Formula for the maximal amplitude of interfacial waves. We have seen that
the practical stability criterion (1.2) can be used to determine the surface ten-
sion; conversely, if the surface tension and other parameters (densities, depth)
are known, it can be used to determine the order of the maximal amplitude
that interfacial waves can reach before being destroyed by Kelvin–Helmholtz
instabilities. The formula obtained this way is

a4 = 4σ H2

(ρ+ρ−)2(ρ+ + ρ−)g′ .

In order to construct a more detailed description of the results described above,
we first need to write the equations and to derive their nondimensionalized version.
This is done in the following two subsections.

1.2. The Equations

We assume that the interface is parametrized by a function ζ(t, X) (X ∈ R
d ) and

denote by Ω+
t and Ω−

t the volume occupied by the lower and upper fluids, respec-
tively, at time t . Choosing the origin of the vertical axis to correspond with the inter-
face between the two fluids at rest, we assume thatΩ+

t (respectivelyΩ−
t ) is bounded

below (respectively above) by a horizontal wall located at z = −H+ (respectively
z = H−). We also denote by �t the interface �t = {(X, z), z = ζ(t, X)} and by
�± the upper and lower boundaries �± = {z = ∓H±}.

n

X ∈ R
d

z

H−

0

H+
Ω+(t)

Ω−(t)
ρ−

ρ+

ζ(t, X)

Finally, we denote by U± the velocity field in Ω±
t ; the horizontal component of

U± is written V ± and its vertical one w±. The pressure is denoted by P±.
For the sake of clarity, it is also convenient to introduce some notation to express

the difference and average of these quantities across the interface.

Notation 1. If A+ and A− are two quantities (real numbers, functions, etc.), the
notations �A±� and 〈A±〉 stand for

�A±� = A+ − A− and 〈A±〉 = A+ + A−

2
.
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We can now state the equations of motion.

– Equations in the fluid layers. In both fluid layers, the velocity field U± and the
pressure P± satisfy the equations

div U±(t, ·) = 0, curl U±(t, ·) = 0, in Ω±
t (t � 0), (1.3)

which express the incompressibility and irrotationality assumptions, and

ρ±(∂t U± + (U± · ∇X,z)U±) = −∇X,z P± − ρ±gez in Ω±
t (t � 0),

(1.4)

which expresses the conservation of momentum (Euler equation).
– Boundary conditions at the rigid bottom and lid. Impermeability of these two

boundaries is classically rendered by

w±(t, ·)|�± = 0, (t � 0). (1.5)

– Boundary conditions at the moving interface. The fact that the interface is a
bounding surface (the fluid particles do not cross it) yields the equations

∂tζ −
√

1 + |∇ζ |2U±
n = 0, (t � 0), (1.6)

where U±
n := U±|�t

· n,n being the upward unit normal vector to the interface
�t . A direct consequence of (1.6) is that there is no jump of the normal compo-
nent of the velocity at the interface. Finally, the continuity of the stress tensor
at the interface gives in our particular case

�P±(t, ·)|�t
� = σk(ζ ), (t � 0), (1.7)

where σ is the surface tension coefficient and k(ζ ) denotes the mean curvature
of the interface,

k(ζ ) = −∇ · ( ∇ζ
√

1 + |∇ζ |2
)
.

It is quite convenient for the mathematical analysis of the equations (1.3)–(1.7)
to transform them into a set of scalar equations on the interface. From the irrota-
tionality assumption, we can write the velocities U± in terms of velocity potentials
Φ±, namely,

U±(t, ·) = ∇X,zΦ
±(t, ·) in Ω±

t (t � 0).

Defining the trace of Φ± at the interface by

ψ±(t, ·) = Φ±(t, ·)|�t
(t � 0),
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we can now reduce the equations (1.3)–(1.7) to a set of equations on ζ and ψ±,
namely,

∂tζ − G+[ζ ]ψ+ = 0, (1.8)

G+[ζ ]ψ+ = G−[ζ ]ψ−, (1.9)

ρ±(∂tψ
±+gζ+ 1

2
|∇ψ±|2− (G±[ζ ]ψ±+∇ζ · ∇ψ±)2

2(1+|∇ζ |2)
)
=−P±

|�t
, (1.10)

�P±(t, ·)|�t
�=σk(ζ ), (1.11)

where G±[ζ ] are the Dirichlet–Neumann operators corresponding to the two fluid
layers and defined (under reasonable assumptions on ζ and ψ±) by

G±[ζ ]ψ± =
√

1 + |∇ζ |2∂nΦ
± |�t

,

where Φ± solve
{
ΔX,zΦ

± = 0 in Ω±
t ,

Φ± |�t
= ψ±, ∂zΦ

± |�± = 0
, (1.12)

and ∂nΦ
±
|�t

stands for the upward normal partial derivative of Φ± at the interface.

We now show3 that it is possible to reduce the two-fluid equations to a set of
two equations on the surface elevation ζ and of the quantity ψ defined as

ψ := ρ+ψ+ − ρ−ψ−,

where ρ± stands for the relative density, ρ± = ρ±
ρ++ρ− (in particular, ρ+ +ρ− = 1

and ρ+ − ρ− is the Atwood number). Defining the operator G[ζ ] by

G[ζ ] = G−[ζ ](ρ+G−[ζ ] − ρ−G+[ζ ])−1G+[ζ ], (1.13)

one can write G+[ζ ]ψ+ = G−[ζ ]ψ− in terms of ζ and ψ only,

G[ζ ]ψ = G+[ζ ]ψ+ = G−[ζ ]ψ− (1.14)

and one can also get ψ± in terms of ζ and ψ ,

ψ± = G±[ζ ]−1 ◦ G[ζ ]ψ. (1.15)

A formulation of the two-fluid equations as a system of two scalar evolution equa-
tions on ζ and ψ can then be given,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tζ − G[ζ ]ψ = 0,

∂tψ + g′ζ 1

2
�ρ±∣∣∇ψ±∣∣2�

−1

2

�ρ±(G±[ζ ]ψ± + ∇ζ · ∇ψ±)2�

1 + |∇ζ |2 = − σ

ρ+ + ρ− k(ζ ),

(1.16)

3 We do not justify the different steps of the derivation here; this will be done in
Section 2.
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where ψ± = G±[ζ ]−1 ◦ G[ζ ]ψ and g′ stands for the reduced gravity,

g′ = (ρ+ − ρ−)g.

Remark 2. In the case ρ− = 0, one has ψ = ψ+ and G[ζ ]ψ = G+[ζ ]ψ+ and
(1.16) reduces to the formulation of the water-wave equations in terms of the surface
elevation ζ and the velocity potential at the surface ψ+ due to Zakharov [68] and
Craig–Sulem [22]. In the case ρ− �= 0, ζ and ψ are the two canonical variables
of the Hamiltonian formulation exhibited by Benjamin and Bridges [10] (see also
[21,38])

1.3. Nondimensionalized Equations

The order of magnitude of the existence time of the solution is our main concern
in this paper. It is therefore crucial to get some information on the size of the differ-
ent quantities appearing in the equation, and in particular of those that play a role
in our stability criterion (1.1). This information can be obtained by experimental
measurements, but it is of course preferable to know them a priori in terms of the
physical characteristics of the flow under consideration, namely,

– The typical size a of the interfacial waves
– The typical wavelength λ of these waves
– The depth H± of the upper and lower fluid layers at rest
– The value of the surface tension coefficient σ
– The densities ρ± of the two fluids

We show in Appendix 6.3 how linear theory can be used to obtain such an
a priori estimate of the order of magnitude of the different unknowns. The best
way to exploit this information is to nondimensionalize the equations, that is, to
perform a linear change of unknowns and variables such that all the unknowns are
now dimensionless and of size O(1) for typical configurations.

Writing (1.16) in such a dimensionless form requires the introduction of various
parameters; the first two are given by

ε = a

H
, μ = H2

λ2 , with H = H+H−

ρ+ H− + ρ−H+ ,

in the water-wave configuration, that is, when ρ− = 0, ε is called the amplitude or
nonlinearity parameter and μ the shallowness parameter. Throughout this article,
μ is assumed to remain bounded, as is ε. For notational convenience, and without
loss of generality, we take

0 � μ � 1, 0 � ε � 1.

The above definition of ε and μ takes into account both fluid layers at the same
time. For a more specific description of each fluid layer, it is convenient to introduce

ε± = a

H± , μ± = (H±)2

λ2 .
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We also need to define the relative depth H± and the Bond number4 Bo as

H± = H+

H
, Bo = (ρ+ + ρ−)g′λ2

σ
.

Remark 3. In full generality, one should allow H+ to be much larger or much
smaller than H− (as in [12] for instance). For the sake of clarity, we assume through-
out this paper that H+ and H− are of the same order (so that ε+ ∼ ε− ∼ ε and
μ+ ∼ μ− ∼ μ). There does not seem to be any obstruction other than technical to
generalizing our method to more general configurations.

The next step is to introduce dimensionless Dirichlet–Neumann operators,

G±
μ [εζ, H±]ψ± =

√
1 + |ε∇ζ |2∂nΦ

±
|z=εζ

,

where Φ± solve

{
(μΔ + ∂2

z )Φ
± = 0 in − H± < ±z < ±εζ,

Φ± |z=εζ = ψ±, ∂zΦ
± |z=∓H± = 0, (1.17)

and ∂nΦ
± |z=εζ stands for the upward conormal derivative of Φ± at the interface

(that is, G+
μ [εζ ]ψ± = ∂zΦ

± |z=εζ − εμ∇ζ · ∇φ± |z=εζ ). The operator G[ζ ] defined
in (1.13) has similarly a dimensionless version given by

Gμ[εζ ] = G−
μ [εζ, H−]

(
ρ+G−

μ [εζ, H−] − ρ−G+
μ [εζ, H+]

)−1
G+
μ [εζ, H+].

(1.18)

We show in Appendix 6.3 that the equations (1.16) can then be written in
dimensionless form as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tζ− 1

μ
Gμ[εζ ]ψ = 0,

∂tψ+ζ+ε
1

2
�ρ±∣∣∇ψ±∣∣2�

−1

2

ε

μ

�ρ±(G±
μ [εζ, H±]ψ±+εμ∇ζ · ∇ψ±)2�

1+ε2μ|∇ζ |2 =− 1

Bo

1

ε
√
μ

k(ε
√
μζ),

(1.19)

with ψ± = G+
μ [εζ, H+]−1 ◦ Gμ[εζ ]ψ .

4 The Bond number measures the ratio of gravity forces over capillary forces. For some
reason, it often appears as the inverse of this quantity in the mathematics literature.
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1.4. Description of the Results and Organization of the Paper

In Section 2 we give some preliminary results that provide a rigorous basis to
the manipulations performed in Section 1.2 and 1.3, above, to derive the equations
(1.16) and (1.19). General notations and definitions are given in Section 2.1 and
the Dirichlet–Neumann operators G±

μ [εζ, H±] are studied in Section 2.2. Their in-
vertibility properties are investigated in (Section 2.2.3); a technical difficulty is that
the inverse of the DN operator takes values in Beppo–Levi spaces (that is, func-
tions with gradient in Sobolev spaces, but not necessarily in L2 since we consider
unbounded domains). The structure of the shape derivatives of the DN operators are
discussed in Section 2.2.4. We are then able to address in Section 2.3 a transmission
problem that is crucial to rigorously deriving the two-fluid equations (1.19), since
it states that the trace of the potential at the upper and lower parts of the interface,
ψ− and ψ+, are fully determined by ζ and ψ = ρ+ψ+ −ρ−ψ−. This allows us to
give a rigorous definition to the operator G = Gμ[εζ ] introduced in (1.18). Since
we want to be able to handle the shallow water limit, we need to give two versions
for (almost) all the estimates given in this section: one that is sharp with respect
to regularity but not optimal with respect to the dependence on μ, and one that
is sharp with respect to μ but not optimal with respect to regularity. For instance,
G±
μ [εζ, H±] has an operator norm of size O(

√
μ) if it is seen, as usual, as a first

order operator; but if we consider it as a second order operator, we get a better
control of size O(μ) on its operator norm (see Remark 5 below).

Section 3 is devoted to the symbolic analysis of the Dirichlet–Neumann oper-
ator G+ = H+G+

μ [εζ, H+]. It is standard [3,39,54,57] that the principal symbol
of G+ can be written in terms of the Laplace–Beltrami associated to the surface.
More precisely, if we define the symbol g(X, ξ) as

g(x, ξ) =
√

|ξ |2 + ε2μ(|∇ζ |2|ξ |2 − (∇ζ · ξ)2),

then the following holds,

∀0 � s � t0, |G+ψ −
√
μ+g(x, D)ψ |Hs+1/2 � M(t0 + 3)|∇ψ |Hs−1/2 , (1.20)

where t0 > d/2 and M(t0 +3) is a constant depending on |ζ |Ht0+3 and the minimal
depth of the lower fluid. Since G+ and g(x, D) are first order operators, this identity
shows that G+ can be replaced by g(x, D) up to a more regular (zero order) oper-
ator. Unfortunately, such a substitution is not possible in the shallow water limit,
since this zero order operator is of size O(1) with respect to μ, while both G+ and
g(x, D) have operator norms of size O(

√
μ). Symbolic analysis induces, therefore,

a singularity of order O(μ−1/2) when the shallow water limit is considered. The
explanation of this behavior is that the shallow water regime corresponds to config-
urations where the bottom plays a very important role; however, the contribution of
the bottom to the Dirichlet–Neumann operator is analytic and therefore neglected
(at any order) by symbolic analysis. In order to handle this difficulty, we propose
a symbolic analysis “with tail” of the DN operator, which takes into account the
infinitely smoothing (but very large) contribution of the bottom. This leads us to
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replace the symbol g(X, ξ) by g(X, ξ)t+(X, ξ), where

t+(X, ξ) = (1 + ε+ζ )

∫ 0

−1

√|ξ |2 + ε2μ(z + 1)2(|∇ζ |2|ξ |2 − (∇ζ · ξ)2)

1 + ε2μ(z + 1)2|∇ζ |2 dz,

(when d = 1, this simplifies into t+(x, ξ) = (1 + ε+ζ )
arctan(ε

√
μ∂xζ )

ε
√
μ∂xζ

|ξ |). We

then show in Theorem 4 that (1.20) can be improved to

∣
∣G+ψ −

√
μ+Op

[
g tanh

(√
μ+t+

)]
ψ
∣
∣

Hs+1/2 � ε
√
μM(t0 + 3)|∇ψ |Hs−1/2 .

The cost in terms of derivatives of ψ is the same as in (1.20), but the behavior
with respect to the parameters ε and μ is much better, since there is a gain of size
O(ε

√
μ). This allows us to handle the shallow water limit. We also give in Section 3

the symbolic analysis (with tail) of (G−)−1G+, (G−)−1G and G(G−)−1∂ j that are
needed for the analysis of the two-fluid equations.

In Section 4, we show that it is possible to quasilinearize the two-fluid equations
(1.19) by differentiating them and writing them in terms of the relevant unknowns.
We first introduce and study in Section 4.1 some new operators that are needed
to write the quasilinearized equations. An important step is a linearization for-
mula for the operator G that is given in Section 4.2; the main step in establishing
this linearization formula is an explicit formula for the derivatives of the mapping
ζ �→ Gμ[εζ ]ψ (shape derivative). This linearization formula also suggests what
the good unknown should be. More precisely, the equations (1.19) differentiated
α-times should not be written in terms of ∂αζ and ∂αψ , but in terms of ζ(α) and
ψ(α) defined as

ζ(α) = ∂αζ, ψ(α) = �ρ±∂αψ±� − �ρ±w±�∂αζ,

where w± is the vertical component of the velocity at the interface in the ± fluid,
while ψ± is as in (1.19). When ρ− = 0, these unknowns coincide, of course, with
the ones used in [34,51] to write the quasilinearized water-wave equations. The
quasilinearized equations are then derived in Section 4.3. Differentiating α times
the second equation of (1.19) and rewriting it in terms of ζ(α) and ψ(α), one gets
(without surface tension)

∂tψ(α) + a∂αζ + ε〈V ±〉 · ∇ψ(α) + ε�V ±� · ∇〈ρ±ψ±
(α)〉 ∼ 0

(the symbol ∼ 0 means that harmless terms are omitted); in this expression, a can
be related to the (dimensionless) jump of the vertical derivative of the pressure at
the interface, and V ± stands for the horizontal velocity at the interface in the fluid
±. In order to write this equation in terms of the good unknowns ζ(α) and ψ(α),
it is necessary to write 〈ρ±ψ±

(α)〉 in terms of �ρ±ψ±
(α)� = ψ(α) and ζ(α). This is

completely trivial in the water-wave case ρ− = 0. The dependence of this term
on ζ(α) is therefore specific to the two-fluid system, and it is responsible for the
Kelvin–Helmholtz instabilities—through the operator E[ζ ] in the quasilinear sys-
tem given in Proposition 8.
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The main existence and stability results are then given in Section 5. We first
state in Section 5.1 several versions of the stability criterion. The first one (see
Section 5.1.1) differs slightly from (1.1) because it also involves the L∞-norm
of first order space-time derivatives of the jump of the horizontal velocity. In
Section 5.1.2, we show how to recover (1.1) when the jump of velocity is non-
zero. The practical criterion (1.2) is then derived in Section 5.1.3. After some
considerations on the conditions we impose on the initial data (see Section 5.2),
we state in Section 5.3 the main results of this paper, which show that “stable”
solutions exist under the criterion given in Section 5.1.1 and 5.1.2 (we give two
versions of the theorem). By stable, we mean that the existence time depends
on the surface tension σ through the stability criterion (5.1) only. In particu-
lar, it is not necessarily small if σ is small. We want to emphasize the fact that
the theorems are given under a nondimensionalized form and that the existence
time is uniform with respect to the parameters ε and μ. In particular, this allows
one to handle the shallow water limit (or other regimes) straightforwardly. Other
kinds of limits (zero density and zero surface tension) are also direct corollaries.
We then prove in Section 5.4 that these stable solutions persist over large times
(that is of size O(1/ε)) if a stronger version of the stability criterion is satis-
fied.

The proofs of the theorems are then given in Section 5.5. The stability criterion
appears in the key Lemma 11, where it is used to control the destabilizing effects
of the shear by the surface tension and gravity terms. As in the water-wave case,
some technical difficulties arise because of the second order surface tension term,
which requires special care in the treatment of the subprincipal terms in the sym-
metrization process. We chose to adapt the technique introduced in [51] (see also
[52] for a synthetic presentation), which is probably not the sharpest one in terms
of regularity (see for instance [1,6,7,17,44,54] for alternative methods) but seems
to be the most robust with respect to the shallow water limit, in particular because
it does not require symbolic analysis. This technique requires that time derivatives
be treated as space derivatives, and this is the reason why this is done throughout
this paper.

Finally, in Section 6 we sketch some applications for the stability criterion
(1.1) and its practical version (1.2). We consider in Section 6.1 the case of air–
water interfaces characterized by a very small density of the upper fluid. We
first confirm in Section 6.1.1 that the density of the air can be neglected in
the asymptotic models used in coastal oceanography to describe the propaga-
tion of waves (we consider here the example of a so called long wave). For
waves close to the breaking point, we show in Section 6.1.2 that this might
not be true anymore and that Kelvin–Helmholtz instabilities may appear. We
therefore suggest that wave breaking may sometimes be a two-fluid singular-
ity rather than a singularity of the water-wave (one-fluid) equations. Links with
physical phenomena such as spilling breakers and white caps are also men-
tioned.

We then consider in Section 6.2 the case of internal waves at the interface of
two fluids of comparable density (stability of the fluid is therefore ensured by a
small shear velocity). We first check that some “stable” configurations reported in
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experimental works do satisfy our stability criterion. We then consider the case of
water-brine interfaces, of interest for the study of oceanographic internal waves.
There is no natural value for the surface tension for such an interface (water and
brine are not immiscible), but investigating the occurrence of Kelvin–Helmholtz
instabilities, thanks to the experiments of [28], we show how to use our stability cri-
terion to propose a value for the artificial surface tension which must be introduced
to use the two-fluid formalism. Finally, we propose a formula for the maximal ampli-
tude that interfacial waves can reach before being destroyed by Kelvin–Helmholtz
instabilities.

We end this section by showing how to rigorously justify the two-fluid
asymptotic models used in applications, and on a time scale consistent with the
observations. We give the details for a shallow-water/shallow-water model and
explain how one of its singularities can be related to Kelvin–Helmholtz instabili-
ties.

1.5. Basic Notations

– We denote by C(λ1, λ2, . . . ) a constant depending on the parameters λ1, λ2, . . .

and whose dependence on the λ j is always assumed to be nondecreasing.
– We denote by X = (X1, . . . , Xd) ∈ R

d the horizontal variables, by z the
vertical one, and by t the time variable.

– We denote by ∂ j (1 � j � d) partial differentiation with respect to X j ; partial
differentiation with respect to t and z is denoted by ∂t and ∂z . - We denote by
∇ and � the standard gradient and Laplace operators in the horizontal coordi-
nates. These operators are denoted by ∇X,z and �X,z when they also take into
account the vertical variable. - We denote by ∇μ = (

√
μ∇T , ∂z)

T , that is, ∇μ

corresponds to ∇X,z with a factor
√
μ in front of each horizontal derivative.

– We denote by � := (1 − �)1/2 and Hs(Rd) (s ∈ R) the usual Sobolev space
Hs(Rd) = {u ∈ S ′(Rd), |u|Hs < ∞}, where |u|Hs = |�su|L2 . We keep this
notation if u is a vector or a matrix with coefficients in Hs(Rd).

– We denote by (·, ·) the standard L2-scalar product.
– The notation a ∨ b stands for max{a, b}.
– We denote by Op(σ ) or σ(x, D) the pseudodifferential operator of symbol

σ(x, ξ),

Op(σ )u(x) = (2π)−d
∫

Rd
ei x ·ξ σ (x, ξ )̂u(ξ)dξ.

2. Preliminary Results

2.1. Notations and Definitions

2.1.1. General Notations Throughout this section, we always assume that the
interface deformation ζ ∈ Ht0+1(Rd) (t0 > d/2) touches neither the bottom nor
the lid. In dimensionless variables, this condition reads

∃h±
min > 0, inf

X∈Rd
(1 ± ε±ζ(X)) � h±

min. (2.1)
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We also denote by Ω± the domains

Ω+ = {(X, z) ∈ R
d+1,−1 < z < ε+ζ(X)}

Ω− = {(X, z) ∈ R
d+1, ε−ζ(X) < z < 1}.

We finally introduce, for notational convenience, a constant M defined as5

M = C
( 1

h±
min

,
H+

H− ,
H−

H+ , |ζ |Ht0+2

)
, (2.2)

as well as

M(s) = C(M, |ζ |Hs ), (2.3)

where we recall that C(·) denotes generically a nondecreasing, positive, function
of its arguments.

2.1.2. Diffeomorphisms It is often convenient to transform boundary value prob-
lems on the fluid domains Ω± into boundary value problems on flat strips S±,
defined as

S+ = {(X, z),−1 < z < 0} and S− = {(X, z), 0 < z < 1},
so that S± correspond to the two fluid domains at rest. Various diffeomorphisms
can be used for such domain transformations. We use here only admissible diffeo-
morphisms in the following sense:

Definition 1. (Admissible diffeomorphisms) Let t0 > d/2 and let ζ ∈ Ht0+2(Rd)

be such that (2.1) is satisfied.
We say that �± : S± → Ω± is an admissible diffeomorphism if

1. �± can be extended to the boundaries in such a way that

�±({z = 0}) = {z = ε±ζ } and �±({z = ∓1}) = {ζ = ∓1}.
2. The coefficients of the Jacobian matrix J�± = dX,z�

± are bounded on S±,
and |J�±|L∞(S±) � M.

3. The determinant | det J�±| is uniformly bounded from below on S± by a non-
negative constant c± such that 1

c± � M.

If Φ± is defined on Ω±, then one can define φ± = Φ± ◦ �± on S±; a direct
application of the chain rule shows that

∇μ±
Φ± ◦ �± = Iμ

±
(J−1

�±)
T (Iμ

±
)−1∇μ±

φ±,

where Iμ
±

is the (d +1)× (d +1) diagonal matrix with entries
√
μ± on the d-first

diagonal coefficients, and 1 on the last one.

5 The dependence on H+/H− and H−/H+ is harmless because we assumed that H+
and H− are of same order (see Remark 3). For more general configurations, a finer analysis
on the dependence on H± of the solution is needed.
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In particular, the (variational formulation of the) equation (∂2
z +μ±�)Φ± = 0

in Ω± is transformed by �± into the (variational formulation of the) following
variable coefficient elliptic equation on S±,

∇μ± · P(�±)∇μ±
φ± = 0 in S±, (2.4)

where

P(�±) = | det J�±|(Iμ
±
)−1 J−1

�±(Iμ
±
)2(J−1

�±)
T (Iμ

±
)−1. (2.5)

It is easy to check (Prop. 2.3 of [4]) that the matrix P(�±) is uniformly coercive
with coercivity constant k(�±). We assume further that

‖P(�±)‖∞ � M and
1

k(�±)
� M. (2.6)

It is also convenient to assume that P(�±) is a Sobolev perturbation of the
identity matrix (this is, in general, a direct consequence of the fact that ζ has
Sobolev regularity) in the sense that

‖�t0+1(Id − P(�±))‖L∞
z L2

X
� M. (2.7)

Let us also mention that we use the notation ∂n for the transformed equations to
denote the upward conormal derivative naturally associated to any elliptic equation.
For instance, the upward conormal derivative associated to (2.4) is

∂nφ
± = ez · P(�±)∇μ±

φ±. (2.8)

We now introduce as in [39] (see also [11]) a very useful class of admissi-
ble diffeomorphisms called regularizing diffeomorphisms. They allow the gain
of half a derivative on ζ in the elliptic estimates necessary to the study the
Dirichlet–Neumann operator.6

Definition 2. (Regularizing diffeomorphisms) Let t0 > d/2, s � 0 and ζ ∈
Ht0+2 ∩ Hs(Rd) be such that (2.1) is satisfied.

We say that an admissible diffeomorphism �± : S± → Ω± is regularizing if
it is of the form �±(X, z) = (X, z + σ±(X, z)), with

‖�s∇μσ±‖L2(S±) + ‖�s−1∂z∇μσ±‖L2(S±) � M(s + 1/2). (2.9)

Note that if �± is regularizing, then one automatically has from (2.5) that

‖�s(P(�±) − Id )‖L2(S±) � M(s + 1/2). (2.10)

Example 1. The simplest example of admissible diffeomorphism is given by

�±(X, z) = (X, ε±(1 ± z)ζ(X) + z).

It satisfies (2.6) and (2.7), but not (2.9) (the right-hand side should be M(s + 1) in
this inequality).

6 With a standard diffeomorphism, one would, for instance, have |hl |Hs+1 instead of
|hl |Hs+1/2 in (2.33).
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Example 2. For small enough δ > 0 (and with χ : R → R a smooth, positive,
compactly supported function such that χ(0) = 1), the functions �± defined as

�±(X, z) = (X, z + σ±(X, z)) with σ±(·, z) = ε±(1 ± z)χ(δz|D|)ζ
are regularizing diffeomorphisms (see [39]) also satisfying (2.6) and (2.7).

2.1.3. Functional Spaces We introduce here two functional spaces that are
closely related to the energy norm. For N ∈ N, the space H N+1

σ (Rd) is the standard
H N+1(Rd) Sobolev space endowed with a norm adapted to the measure of the extra
control (with respect to the H N -norm) provided by the surface tension term,

H N+1
σ (Rd) =

{
u ∈ H N (Rd),

1√
Bo

∇u ∈ H N (Rd)d
}
, (2.11)

with the norm |u|2
H N+1

σ
= |u|2H N + 1

Bo
|∇u|2H N .

Since the velocity potential does not necessary decay at infinity (while the veloc-
ity does), we have to work in Beppo–Levi spaces [23] on open subsets Ω ⊂ R

d+1,
defined for N � 0 as

Ḣ N+1(Ω) = {u ∈ L2
loc(Ω),∇X,zu ∈ H N (Ω)d+1},

endowed with the (semi)-norm ‖u‖Ḣ N+1 = ‖∇u‖H N . We also define similar spaces
over R

d ,

Ḣ s+1/2(Rd) = {u ∈ L2
loc(R

d),∇u ∈ Hs−1/2(Rd)d} (s ∈ R),

endowed with the (semi)-norm |u|Ḣ s+1/2 = |∇u|Hs−1/2 . In order to capture the
shallow-water dynamics, it is convenient to introduce a variant of this space that
depends on the shallowness parameter μ,

Ḣ s+1/2
μ (Rd) = Ḣ s+1/2(Rd) endowed with |u|

Ḣ s+1/2
μ

= |Pu|Hs , (2.12)

where P is the nonhomogeneous Fourier multiplier of order 1/2 defined as

P = |D|
(1 + √

μ|D|)1/2 . (2.13)

2.2. A Few Results on Dirichlet–Neumann Operators

2.2.1. Two Equivalent Definitions If ζ ∈ Ht0+2(Rd) (t0 > d/2) satisfies (2.1),
then it is well known that for all ψ± ∈ Ḣ3/2(Rd), there exists a unique solution
Φ± ∈ Ḣ2(Ω±) to the elliptic boundary value problem

{
(∂2

z + μ±�)Φ± = 0 in Ω±,

Φ±
|z=ε±ζ

= ψ±, ∂zΦ|z=∓1 = 0 (2.14)
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(since the interface is a graph, it is possible to view the trace ofΦ± on the interface as
a function defined on R

d ) so that the following definition of the Dirichlet–Neumann
operators G±

μ±[ε±ζ, 1] makes sense,

G±
μ±[ε±ζ, 1] : Ḣ3/2(Rd) → H1/2(Rd)

ψ± �→ √
1 + |ε±∇ζ |2∂nΦ

±
|z=ε±ζ

,

where Φ± solves (2.14) and ∂n denotes the upwards conormal derivative.

Remark 4. The operators G±
μ [εζ, H±] that appear in the introduction are related

to G±
μ±[ε±ζ, 1] through the scaling law

G±
μ [εζ, H±] = 1

H± G±
μ±[ε±ζ, 1]. (2.15)

Notation 2. For the sake of simplicity, we simply write

G± = G±
μ±[ε±ζ, 1],

when no confusion is possible.

From the discussion in Section 2.1.2, G±ψ± can be equivalently defined as

G±ψ± = ∂nφ
±|z=0

, (2.16)

where ∂n now stands for the upwards conormal derivative associated to the elliptic
operator in the flat strip (see (2.8)) solved by φ±,

{∇μ± · P(�±)∇μ±
φ± = 0 in S±,

φ±|z=0
= ψ±, ∂nφ

±|z=∓1
= 0

(2.17)

(�± being an admissible diffeomorphism in the sense of Definition 1).

2.2.2. Basic Estimates Let t0 > d/2 and ζ ∈ Ht0+2(Rd). If �± is an admissible
diffeomorphism in the sense of Definition 1, then for all ψ± ∈ Ḣ3/2(Rd), there
exists a unique solution φ± ∈ Ḣ2(S±) to (2.17). Moreover, one has (see [39,34]),

∀0 � s � t0 + 1, ‖�s∇μ±
φ±‖L2(S±) � M

√
μ|ψ±|

Ḣ s+1/2
μ

, (2.18)

where M is as in (2.2) and Ḣ s+1/2
μ (Rd) as in (2.12). The reverse inequality also

holds (see Appendix 6.3),
√
μ|ψ±|

Ḣ s+1/2
μ

� M‖�s∇μ±
φ±‖L2(S±). (2.19)

For all ζ ∈ Ht0+2(Rd) (s � 0), (2.16) and (2.18) allow one to extend G± as a
mapping

∀0 � s � t0 + 1, G± : Ḣ s+1/2(Rd) → Hs−1/2(Rd).

Moreover, the following estimates hold (they correspond to the particular case
j = 0 of (2.31)–(2.32) below)

∀0 � s � t0 + 1, |G±ψ |Hs−1/2 � μ3/4 M |Pψ |Hs , (2.20)

∀0 � s � t0 + 1/2, |G±ψ |Hs−1/2 � μM |Pψ |Hs+1/2 . (2.21)
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Remark 5. From the definition (2.13) of P, it follows easily that 1√
μ

G± remains

uniformly bounded as a first order operator as μ → 0. However, the quantity 1
μ

G±

involved in the first equation of (1.19) remains bounded only if we consider G± as
a second order operator. This fact makes the shallow limit singular and requires
some specific attention.

Remark 6. The estimates provided in this section are not the sharpest possible
in terms of regularity (see [2] and [41] for improvements). Working with sharp
estimates would be technically more involved but would not lead to an improve-
ment of the main theorems; for the sake of simplicity, we therefore work with the
nonoptimal estimates given in this section.

It also follows upon integrating by parts in (2.17) that for all ψ1, ψ2 ∈ Ḣ1/2(Rd),
∫

S±
∇μ±

φ±
1 · P(�±)∇μ±

φ±
2 = ±

∫

Rd
ψ1(G±ψ2), (2.22)

where φ±
1 and φ±

2 the (variational) solutions to (2.17) with Dirichlet condition ψ1
and ψ2. This identity is the key ingredient in proving the following estimate (see
Appendix 6.3),

∀0 � s � t0 + 1,
∣
∣(�sG±ψ1,�

sψ2)
∣
∣ � Mμ|ψ1|Ḣ s+1/2

μ
|ψ2|Ḣ s+1/2

μ
, (2.23)

for all ψ1, ψ2 ∈ Ḣ s+1/2(Rd). Finally, we will also need the following commutator
estimate (see Appendix 6.3 for a proof),

∀0 � s � t0 + 1,
∣
∣([�s, G±]ψ1,�

sψ2)
∣
∣ � μM |ψ1|Ḣ s−1/2

μ
|ψ2|Ḣ s+1/2

μ
, (2.24)

and the inequality (see Proposition 3.7 of [4]),
(
v · ∇u, G±u

)
� μM |v|W 1,∞|Pu|22, (2.25)

that holds for all v ∈ W 1,∞(Rd)d and u ∈ Ḣ1/2
μ (Rd).

2.2.3. Invertibility It follows quite easily from (2.22) that G+ (resp. G−) is a sym-
metric, positive (resp. negative) operator. We can also deduce that they are injective
(up to constants of course) so that the inverse (G±)−1 is well defined on the range
of G± and with values in Ḣ1/2(Rd). The next proposition states that (G−)−1 ◦ G+
is well defined and uniformly bounded (with respect to ε and μ) as a family of
operators mapping Ḣ s+1/2

μ (Rd) into itself.

Proposition 1. Let t0 > d/2 and ζ ∈ Ht0+2(Rd) be such that (2.1) is satisfied. For
all 0 � s � t0 + 1, the mapping

(G−)−1 ◦ G+ : Ḣ s+1/2
μ (Rd) → Ḣ s+1/2

μ (Rd)

ψ �→ (G−)−1(G+ψ)

is well defined and one has, for all ψ ∈ Ḣ s+1/2
μ (Rd),

|(G−)−1 ◦ G+ψ |
Ḣ s+1/2

μ
� M |ψ |

Ḣ s+1/2
μ

,
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where M is as defined in (2.2). Moreover, one also has the estimate

∀0 � s � t0 + 1/2, |∇(G−)−1 ◦ G+ψ |Hs � M |∇ψ |Hs .

Remark 7. It is straightforward to check that the proposition still holds if one
switches the + and − signs everywhere.

Remark 8. Let A : Hs+1/2(Rd) �→ Hs−1/2(Rd) be a linear operator such that

∀0 � s � t0 + 1, (�s Aψ1,�
sψ2) � μMA(ψ1)|ψ2|Ḣ s+1/2

μ
,

for some positive constant MA(ψ1). Replacing (2.23) by this inequality everywhere
in the proof of the Proposition shows that (G−)−1 ◦ A : Hs+1/2 → Ḣ s+1/2

μ is well
defined and

∀0 � s � t0 + 1, |(G−)−1 ◦ Aψ |
Ḣ s+1/2

μ
� M MA(ψ).

For instance, one has, for all 1 � j � d,

∀0 � s � t0 + 1, |(G−)−1 ◦ ∂ jψ |
Ḣ s+1/2

μ
� 1

μ
M |(1 + √

μ|D|)1/2ψ |Hs .

Remark 9. With a little more work, it is possible to show (using regularizing diffe-
omorphisms in the proof) that for all s � 0, the mapping (G−)−1 ◦G+ : Ḣ s+1/2

μ →
Ḣ s+1/2

μ is well defined and that

|(G−)−1 ◦ G+ψ |
Ḣ s+1/2

μ
� M(s + 1/2)|ψ |

Ḣ s+1/2
μ

,

with M(s + 1/2) as in (2.3), but since we do not need such a high order estimate
here, we do not prove it.

Proof. Let us prove that (G−)−1G+ψ is well defined in Ḣ1/2(Rd). We first prove
that there exists a unique variational solution Φ− ∈ Ḣ1(Ω−) to the boundary value
problem

{
(∂2

z + μ−�)Φ− = 0 in Ω−,√
1 + |ε−∇ζ |2∂nΦ

−|z=ε−ζ
= G+ψ, ∂zΦ

−|z=1 = 0,
(2.26)

or equivalently (by Section 2.1.2), we seek a unique variational solution φ− ∈
Ḣ1(S−) to

{∇μ− · P(�−)∇μ−
φ− = 0 in S−,

∂nφ
−|z=0

= G+ψ, ∂nφ
−|z=1

= 0,
(2.27)

where �− is an admissible diffeomorphism in the sense of Definition 1 and satis-
fying (2.7).

For all ϕ ∈ C∞(S−) ∩ Ḣ1(S−), one deduces from (2.23) that

(G+ψ, ϕ|z=0) � Mμ|ψ |
Ḣ1/2

μ
|ϕ|z=0 |Ḣ1/2

μ
.
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Since, moreover, |ϕ|z=0 |Ḣ1/2
μ

� μ−1/2‖∇μ−
ϕ‖L2(S−) (this is a variant of the trace

lemma, see the proof of Proposition 3.4 of [4]), one has

(G+ψ, ϕ|z=0) � M
√
μ|ψ |

Ḣ1/2
μ

‖∇μ−
ϕ‖L2(S−).

The linear form ϕ �→ (G+ψ, ϕ|z=0) is thus continuous on Ḣ1(S−); moreover,

∇μ− · P(�−)∇μ−
is obviously coercive on this space, so that existence/unique-

ness of a variational solution to (2.27) follows classically from the Lax-Milgram
theorem.

We can thus define ψ− = φ−|z=0
so that one obviously has G−ψ− = G+ψ

and ψ− = (G−)−1 ◦ G+ψ . Since such a solution is obviously unique, the operator
(G−)−1 ◦ G+ is well defined.

We now turn to proving the estimates given in the statement of the proposi-
tion. Remarking that |(G−)−1 ◦ G+ψ |

Ḣ s+1/2
μ

= |ψ−|
Ḣ s+1/2

μ
, with ψ− = φ−|z=0

as

constructed above, we deduce from (2.19) that

√
μ|(G−)−1 ◦ G+ψ |

Ḣ s+1/2
μ

� M‖�s∇μ−
φ−‖L2(S−). (2.28)

In order to get an estimate on the right-hand side of this inequality, let us apply �s

to the left-hand side of (2.27), multiply it by �sφ− and integrate by parts, to get
∫

S−
P(�−)∇μ−

�sφ− · ∇μ−
�sφ− = −

∫

Rd
�s(G+ψ)�sψ−

+
∫

S−
[�s, P(�−)]∇μ−

φ− · ∇μ−
�sφ−.

We can therefore deduce from the coercivity of P(�−), (2.23) and the Cauchy–
Schwarz inequality that

k(�−)‖�s∇μ−
φ−‖2

L2(S−)
� Mμ|ψ |

Ḣ s+1/2
μ

|ψ−|
Ḣ s+1/2

μ

+‖[�s, P(�−)]∇μ−
φ−‖L2(S−)‖�s∇μ−

φ−‖L2(S−).

Since
√
μ|ψ−|

Ḣ s+1/2
μ

� M‖�s∇μ−
φ−‖L2(S−) by (2.19), one can deduce, recalling

that k(�−) satisfies (2.6), that

‖�s∇μ−
φ−‖L2(S−) � M

√
μ|ψ |

Ḣ s+1/2
μ

+ M‖[�s, P(�−)]∇μ−
φ−‖L2(S−).

Using the classical commutator estimate

∀0 � s � t0 + 1, |[�s, f ]g|2 � | f |Ht0+1 |g|Hs−1,

it is easy to deduce from (2.7) that

‖[�s, P(�−)]∇μ−
φ−‖L2(S−) � M‖�s−1∇μ−

φ−‖2, (2.29)

and therefore

‖�s∇μ−
φ−‖L2(S−) � M

(√
μ|ψ |

Ḣ s+1/2
μ

+ ‖�s−1∇μ−
φ−‖2

)
.
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The first estimate of the proposition follows, therefore, from a continuous induction
on s and (2.28). The second estimate is then a direct consequence of the following
lemma.

Lemma 1. Let A be a linear operator mapping Ḣ s+1/2
μ into itself for all 0 � s �

t0 + 1 and such that ‖A‖
Ḣ s+1/2

μ →Ḣ s+1/2
μ

� M. Then one has

∀0 � s � t0 + 1/2, |∇(Aψ)|Hs � M |∇ψ |Hs .

Proof of the lemma. From the definition of P, one deduces that

|∇(Aψ)|Hs = |(1 + √
μ|D|)1/2PAψ |Hs

� |P(Aψ)|Hs + μ1/4|P(Aψ)|Hs+1/2 .

Using the assumption made on A, we then get

|∇(Aψ)|Hs � M
(|Pψ |Hs + μ1/4|Pψ |Hs+1/2

)

� M
∣
∣ 1 + μ1/4|D|1/2

(1 + √
μ|D|)1/2 |D|ψ∣∣Hs ,

and the result follows from the observation that 1+μ1/4|D|1/2

(1+√
μ|D|)1/2 is uniformly bounded

(as a zero order operator) for μ ∈ (0, 1). ��
��

2.2.4. Shape Derivatives It is known (for example, [39,34]) that for all 0 � s �
t0 + 1 and ψ± ∈ Ḣ s+1/2(Rd), the mapping

Ht0+2(Rd) → Hs−1/2(Rd)

ζ �→ G±ψ± = G±
μ±[ε±ζ, 1]ψ±

is smooth in a neighborhood of any ζ ∈ Ht0+2(Rd) satisfying (2.1). Let us denote
by d j G±(h)ψ± ( j ∈ N

∗,h = (h1, . . . , h j ) ∈ Ht0+2(Rd) j ) its j-th derivative at ζ
and in the direction h = (h1, . . . , h j ). Such derivatives are called shape derivatives.

A first important result is that there exists an exact formula for the first order
shape derivative (Theorem 3.20 of [39]),

dG±(h)ψ± = −εG±(hw±) − ε±μ±∇ · (hV ±), (2.30)

where w± and V ± are the vertical and horizontal velocities at the surface,

w± = 1

1 + ε2μ|∇ζ |2
( 1

H± G±ψ± + εμ∇ζ · ∇ψ±), V ± = ∇ψ± − εw±∇ζ.

Remark 10. Consistently with the notations used in the introduction, V ± and w±
stand for the horizontal and vertical components of the (nondimensionalized) veloc-
ity fields in the two layers, evaluated at the interface.
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Formula (2.30) is not convenient for giving control of the operator norm of the
shape derivatives of G± because it looks more singular than expected (in fact, the
identity εG±[εζ ]w± = −ε±μ±∇ · V ± [1,12] shows that the most singular terms
cancel one another). Using direct methods, however, it is possible to obtain some
estimates. Let us first set some notation.

Notation 3. For all h = (h1, . . . , h j ) ∈ X j (X Banach space), and 1 � l � j , we
write

〈h〉X =
j∏

m=1

|h j |X and 〈ȟl〉X =
j∏

m �=l

|h j |X .

The first estimates are given by (see Proposition 3.3 of [4] or adapt the proof of
(2.33) given in the Appendix)

∀0 � s � t0 + 1, |d j G±(h)ψ |Hs−1/2 � Mε jμ3/4〈h〉Hs∨t0+1 |ψ |
Ḣ s+1/2

μ
, (2.31)

and (see Remark 3.3 of [4] or adapt the proof of (2.34) given in the Appendix)

∀0 � s � t0 + 1/2, |d j G±(h)ψ |Hs−1/2 � Mε jμ〈h〉H (s+1/2)∨t0+1 |ψ |Ḣ s+1
μ

. (2.32)

For small values of s, (2.31) and (2.32) require much more regularity on the h j

terms than on ψ . This is the reason why we also need the following two estimates,
where the s-depending norm in the right-hand side is on one of the h j terms rather
than on ψ± (see Appendix 6.3 for a proof): for all 1 � l � j ,

|d j G±(h)ψ |Hs−1/2 � Mε jμ3/4|hl |Hs+1/2〈ȟl〉Hs∨t0+3/2 |ψ |
Ḣ

s∨t0+1
μ

, (2.33)

for all 0 � s � t0 + 1/2, and

|d j G±(h)ψ |Hs−1/2 � Mε jμ|hl |Hs+1〈ȟl〉H (s+1/2)∨t0+3/2 |ψ |
Ḣ

(s+1/2)∨t0+1
μ

, (2.34)

for all 0 � s � t0.

Remark 11. Formulas (2.31) and (2.33) require less regularity on ψ or h than
(2.32) and (2.34), respectively, but they give a control of size O(μ3/4) while (2.32)
and (2.34) give an O(μ) control. This is reminiscent of the comments made in
Remark 5.

In the same spirit, is also possible to give two generalizations of (2.23) to shape
derivatives (see Appendix 6.3 for a proof). One has

∣
∣(�sd j G±(h)ψ1,�

sψ2)
∣
∣ � Mε jμ|ψ1|Ḣ s+1/2

μ
|ψ2|Ḣ s+1/2

μ
〈h〉Hs∨t0+1 , (2.35)

for all 0 � s � t0 + 1, and, for 1 � l � j ,
∣
∣(�sd j G±(h)ψ1,�

sψ2)
∣
∣ � Mε jμ|hl |Hs+1/2〈ȟl〉Hs∨t0+3/2 |ψ1|Ḣ

s∨t0+1
μ

|ψ2|Ḣ s+1/2
μ

,

(2.36)

for all 0 � s � t0 + 1/2.
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Remark 12. A consequence of these estimates is that one can use Remark 8 to
prove that (G−)−1 ◦d j G+(h) is well defined and give some estimate on its operator
norm. For instance, one gets with (2.36)

|(G−)−1d j G+(h)ψ |
Ḣ s+1/2

μ
� ε j M |hl |Hs+1/2 |ψ |

Ḣ
s∨t0+1
μ

〈ȟl〉Hs∨t0+3/2 .

2.3. A Transmission Problem

Attention is given here to the following transmission problem, whose resolution
ensures that the velocity potentials in both fluid layers can be recovered from the
knowledge of ζ (that is the shape of the interface) and ψ .

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(∂2
z + μ�)Φ+ = 0 for − H+ < z < εζ,

(∂2
z + μ�)Φ− = 0 for εζ < z < H−,(

ρ+Φ+ − ρ−Φ−)
|z=εζ

= ψ,

∂nΦ
+|z=εζ − ∂nΦ

−|z=εζ
= 0, ∂zΦ

±|z=∓H± = 0.

From the discussion in Section 2.1.2, we can equivalently investigate the following
straightened version,

⎧
⎪⎪⎨

⎪⎪⎩

∇μ± · P(�±)∇μ±
φ± = 0 in S±,

ρ+φ+|z=0
− ρ−φ−|z=0

= ψ,
1

H+ ∂nφ
+|z=0

− 1

H− ∂nφ
−|z=0

= 0, ∂nφ
±|z=∓1

= 0,
(2.37)

where ∂n denotes, as usual, the upwards conormal derivative (see (2.8)).
Transmission problems of this kind are usually studied with harmonic analysis

tools and the solution is then given in terms of the single and double layer potentials
(see for instance [25]). Such an approach gives very sharp results in terms of regu-
larity but is not adapted to our problem (influence of the boundaries, asymptotics,
. . .). We thus propose another approach, more elementary, but more robust with
respect to the applications we have in mind.

Proposition 2. Let t0 > d/2, 0 � s � t0 + 1 and ζ ∈ Ht0+2(Rd) be such that
(2.1) is satisfied. Then for all ψ ∈ Ḣ s+1/2(Rd), there exists a unique solution
φ± ∈ Ḣ1(S±) to (2.37) such that �s∇μ±

φ± ∈ L2(S±) and

‖�s∇μ±
φ±‖L2(S±) � M

√
μ|ψ |

Ḣ s+1/2
μ

.

Remark 13. As with Proposition 1 it is possible to extend the result to all s � 0 in
Proposition 2 above, and Lemma 2 and Corollaries 1 and 2 below. The estimates
given in the statement of these results still hold for all s � 0, provided that M is
replaced by M(s + 1/2) in the right-hand-side.

Proof. If the result of the proposition holds true, then, denoting ψ± = φ±|z=0
, one

has

ρ+ψ+ − ρ−ψ− = ψ and
1

H+ G+ψ+ = 1

H− G−ψ−,
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and thus ψ− = H−
H+ (G−)−1G+ψ+ (well defined in Ḣ s+1/2 by Proposition 1) and

ρ+ψ+ − ρ− H−

H+ (G−)−1G+ψ+ = ψ.

We now need the following lemma showing that the operator J [ζ ] mapping ψ+ to
ψ is one-to-one and onto.

Lemma 2. For all 0 � s � t0 + 1, the mapping

J [ζ ] : Ḣ s+1/2
μ (Rd) → Ḣ s+1/2

μ (Rd)

ψ �→ (
ρ+ − ρ− H−

H+ (G−)−1G+)ψ

is one-to-one and onto; moreover, one has

|J [ζ ]−1ψ |
Ḣ s+1/2

μ
� M |ψ |

Ḣ s+1/2
μ

.

Proof. Let us first consider the case s = 0. For all ψ+ ∈ Ḣ1/2
μ (Rd), let ψ− =

H−
H+ (G−)−1 ◦ G+ψ+ ∈ Ḣ1/2

μ (Rd) (as provided by Proposition 1), and let φ± ∈
Ḣ1(S±) be the unique solution of (2.17). Let us now multiply (2.22)+ by 1

H+ ρ+,

(2.22)− by 1
H− ρ− and sum up the two identities to get (with P± = P(�±))

ρ+

H+
∫

S+
P+∇μ+

φ+ · ∇μ+
φ+ + ρ−

H−
∫

S−
P−∇μ−

φ− · ∇μ−
φ−

=
∫

Rd

1

H+ (G+ψ+)J [ζ ]ψ+. (2.38)

Using the coercivity of P± (with coercivity constants k± = k(�±) as in (2.6))
to get a lower bound on the left-hand side, and (2.23) to derive an upper bound for
the right-hand side, one obtains

ρ+

H+ k+‖∇μ+
φ+‖2

L2(S+)
+ρ−

H− k−‖∇μ−
φ−‖2

L2(S−)
� M

H+μ|ψ+|
Ḣ1/2

μ
|J [ζ ]ψ+|

Ḣ1/2
μ

.

Now, since ψ+ = (G+)−1 ◦G−ψ−, we can deduce from Remark 7 that |ψ+|
Ḣ1/2

μ
�

M |ψ−|
Ḣ1/2

μ
; using (2.6) and (2.19) we then deduce

|ψ+|
Ḣ1/2

μ
� M |J [ζ ]ψ+|

Ḣ1/2
μ

.

This tells us that for all 0 � ρ+ � 1 and ρ− = 1−ρ+, J [ζ ] is a closed, one-to-one
operator; it is thus semi-Fredholm. Moreover, since J [ζ ] is clearly invertible (by
a Neumann series expansion) for small enough values of ρ−, we deduce from the
homotopic invariance of the index that it is Fredholm of index zero, and thus invert-
ible (since it is one-to-one). We now turn to proving the Lemma for the general
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case 0 � s � t0 + 1. It is easy to deduce from (2.17) the following generalization
of (2.22),

∫

S±
P±∇μ±

�sφ± · ∇μ±
�sφ± = ±

∫

Rd
(�sG±ψ±)�sψ±

+
∫

S±
[�s, P±]∇μ±

φ± · �s∇μ±
φ±.

Proceeding as for the case s = 0, one gets

ρ+‖�s∇μ+
φ+‖L2(S+) + ρ−‖�s∇μ−

φ−‖L2(S−) � M
√
μ|J [ζ ]ψ+|

Ḣ s+1/2
μ

+M
(
ρ+‖[�s, P+]∇μ+

φ+‖L2(S+) + ρ−‖[�s, P−]∇μ−
φ−‖L2(S−)

)
.

Using (2.29) and a continuous induction as in the proof of Proposition 1, we then
get

ρ+‖�s∇μ+
φ+‖L2(S+) + ρ−‖�s∇μ−

φ−‖L2(S−) � M
√
μ|J [ζ ]ψ+|

Ḣ s+1/2
μ

,

and the result follows from (2.19) as in the case s = 0. ��
Thanks to the lemma (and Proposition 1), one can define ψ+, ψ− ∈ Ḣ s+1/2

μ

by

ψ+ = J [ζ ]−1ψ, ψ− = H−

H+ (G−)−1 ◦ G+ψ+. (2.39)

Taking φ± as the solution to (2.17) with ψ± as above concludes the proof. ��
As a first corollary to Proposition 2, we can prove that the quantities that appear

in the equations (1.19) are well defined in the sense that ∇ψ± can be viewed
as a function of ζ and ψ . Since ∇ψ± corresponds to the horizontal components
of the tangential velocity at the interface, we write this function under the form
∇ψ± = V±

�
[εζ ]ψ .

Corollary 1. Under the assumptions of Proposition 2, and denoting by ψ± the
trace of φ± at the interface {z = 0}, the mappings

V±
�
[εζ ] : Ḣ s+1/2(Rd) → Hs−1/2(Rd)

ψ �→ ∇ψ±

and

w±[εζ ] :
Ḣ s+1/2(Rd) → Hs−1/2(Rd)

ψ �→ 1

1 + ε2μ|∇ζ |2
( 1

H± G±ψ± + εμ∇ζ · ∇ψ±)

are well defined and one has,

∀0 � s � t0 + 1/2, |V±
�
[εζ ]ψ |Hs � M |∇ψ |Hs ,

∀0 � s � t0 + 1, |w±[εζ ]ψ |Hs−1/2 � μ3/4 M |ψ |
Ḣ s+1/2

μ
,

∀0 � s � t0 + 1/2, |w±[εζ ]ψ |Hs−1/2 � μM |ψ |Ḣ s+1
μ

.
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Proof. This is an immediate consequence of (2.39), Lemma 2, Proposition 1 and
Lemma 1 (and of (2.20)–(2.21) for the estimate on w±[εζ ]ψ). ��

A second important corollary to Proposition 2 concerns the operator Gμ[εζ ]
defined in (1.18).

Corollary 2. Under the assumptions of Proposition 2, the mapping

Gμ[εζ ] : Ḣ s+1/2(Rd) → Hs−1/2(Rd)

ψ �→ G−(ρ+ H+G− − ρ−H−G+)−1G+ψ

is well defined for all 0 � s � t0 + 1/2 and one has

∀ψ ∈ Ḣ s+1/2(Rd), |Gμ[εζ ]ψ |Hs � √
μM |∇ψ |Hs .

Proof. Let us check first that (ρ+ H+G− − H−ρ−G+)−1 ◦ G+ is well defined. We
can deduce from the positivity of (ρ+ H+G− − ρ− H−G+) and the identity

(ρ+ H+G− − ρ− H−G+) ◦ (G−)−1 ◦ G+ ◦ J [ζ ]−1 = H+G+

that (ρ+ H+G− − ρ− H−G+)−1 ◦ G+ is well defined and given by the formula

(ρ+ H+G− − ρ− H−G+)−1 ◦ G+ = 1

H+ (G−)−1 ◦ G+ ◦ J [ζ ]−1.

The estimate given in the statement of the corollary is thus a direct consequence of
(2.20) and Lemmas 2 and 1. ��
Remark 14. Proceeding as in the proof of Corollary 2, one can derive several
equivalent expressions for Gμ[εζ ], for instance,

Gμ[εζ ] = 1

H+ G+ ◦ J [ζ ]−1

ρ+Gμ[εζ ] = 1

H+
(
1 + ρ− H−Gμ[εζ ] ◦ (G−)−1)G+.

Remark 15. In the undisturbed case (ζ = 0), it is easy to check by Fourier analysis
that G± = ±G±

μ±[0, 1] = ±√μ±|D| tanh(
√
μ±|D|). It follows therefore that

Gμ[0] = √
μ|D| tanh(

√
μ+|D|) tanh(

√
μ−|D|)

ρ+ tanh(
√
μ−|D|) + ρ− tanh(

√
μ+|D|) .

Some important features of the operator Gμ[εζ ] are gathered in the following
proposition.

Proposition 3. Let t0 > d/2 and ζ ∈ Ht0+2(Rd) satisfying (2.1). Then

1. The operator 1
μ

Gμ[εζ ] is positive and uniformly coercive on Ḣ1/2
μ (Rd),

∀ψ ∈ Ḣ1/2(Rd), |Pψ |22 � M
(
ψ,

1

μ
Gμ[εζ ]ψ).
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2. The bilinear form ( 1
μ

Gμ[εζ ]·, ·) is symmetric on Ḣ1/2
μ × Ḣ1/2

μ ,

∀ψ1, ψ2 ∈ Ḣ1/2(Rd), (Gμ[εζ ]ψ1, ψ2) = (Gμ[εζ ]ψ2, ψ1).

3. For all 0 � s � t0 + 1 and ψ1, ψ2 ∈ Ḣ s+1/2
μ , one has

∣
∣(�sGμ[εζ ]ψ1,�

sψ2)
∣
∣ � μM |ψ1|Ḣ s+1/2

μ
|ψ2|Ḣ s+1/2

μ
.

Proof. Thanks to Remark 14, one has (Gμ[εζ ]ψ,ψ) = 1
H (G+ψ+, J [ζ ]ψ+), with

ψ+ = J [ζ ]−1ψ . It follows therefore from (2.38) and (2.19) that one hasμ|Pψ+| �
M(Gμ[εζ ]ψ,ψ). Since, moreover, |Pψ | � M |Pψ+| by Proposition 1, the first
point of the proposition is proved.

To prove the second point, we proceed as for (2.38) to get

(Gμ[εζ ]ψ1, ψ2)=
ρ+

H+
∫

S+
P+∇μ+

φ+
1 · ∇μ+

φ+
2 + ρ−

H−
∫

S−
P−∇μ−

φ−
1 · ∇μ−

φ−
2 ,

with obvious notations for φ±
j ( j = 1, 2). The symmetry of G follows from the

symmetry of P±.
The last point of the proposition follows from the first equivalent expression of

Gμ[εζ ] given in Remark 14, together with (2.23) and Lemma 2. ��

3. Symbolic Analysis “with tail” of the Dirichlet–Neumann Operator
and Consequences

3.1. Symbolic Analysis of G±

It is known that the principal symbol of the Dirichlet–Neumann operator can
be expressed in terms of the Laplace–Beltrami operator associated to the surface.
More precisely, if G+[ζ ] denotes the Dirichlet–Neumann on the original (without
nondimensionalization) problem (1.12), one has typically

∣
∣G+[ζ ]ψ −

√
|D|2 + (|D|2|∇ζ |2 − (D · ∇ζ )2)ψ

∣
∣

Hs+1/2 � C(s, ζ )|∇ψ |Hs−1/2 ,

(3.1)

where C(s, ζ ) depends on the norm of ζ in some Sobolev space depending on s.
We refer for instance to [39,58] for a proof with PDE tools, to [54] for a more
geometric approach, and to [3] for an interesting paradifferential extension.

The question that interests us here is the way this identity behaves asymptot-
ically in the shallow water regime. Since this regime physically corresponds to
configurations where the effect of the bottom is “felt” at the surface, it is possible
to guess without computation that (3.1) becomes singular in shallow water; indeed,
the influence of the bottom on G+[ζ ] is analytic (by standard elliptic theory) and
thus not taken into account in the symbolic expansion of G+[ζ ]ψ (even at the next
orders).
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In order to make this singular behavior more precise, let us look at the form
taken by (3.1) in the nondimensionalized setting, and in the case ζ = 0. We recall
that in this case, one has G±

μ [0] = ±√μ±|D| tanh(
√
μ±|D|), whose principal

symbol is ±√μ±|D|. It is thus straightforward to check that

|G±
μ [0]ψ ∓

√
μ±|D|ψ |Hs+1/2 � |∇ψ |Hs−1/2 . (3.2)

Since G±
μ [0] and

√
μ±|D| are both of size O(

√
μ±) (as first order operators) while

the residual is of size O(1), the singularity of the symbolic approximation of the
DN operator is of order O(1/

√
μ±) (a similar behavior also arises in semiclassical

analysis). This is the reason why one cannot use standard symbolic analysis in a
shallow water regime (though this is of course legitimate in other regimes, as in
[1,44,55]).

Our purpose here is to show that it is, however, possible to adapt the symbolic
analysis approach to the present case. As said previously, it is necessary to take
into account the information coming from the bottom, that is, to include the smooth
“tail” of the symbol that is neglected in any expansion into homogeneous symbols.
In the flat case, this “tail” corresponds to

(
1− tanh(

√
μ±|D|)). In order to describe

the general case, it is necessary to define the usual principal symbol g(X, ξ) and
another symbol t±(X, ξ) associated to its tail; more precisely, we define

S±(X, ξ) =
√
μ±g(X, ξ) tanh(

√
μ±t±(X, ξ)), (3.3)

with

g(x, ξ) =
√

|ξ |2 + ε2μ(|∇ζ |2|ξ |2 − (∇ζ · ξ)2),

t±(x, ξ) = (1 ± ε±ζ )

∫ 0

−1

√|ξ |2 + ε2μ(z + 1)2(|∇ζ |2|ξ |2 − (∇ζ · ξ)2)

1 + ε2μ(z + 1)2|∇ζ |2 dz.

We can then state the main result of this section.

Theorem 4. Let t0 > d/2 and ζ ∈ Ht0+3(Rd) be such that (2.1) is satisfied. Then
for all 0 � s � t0 and ψ ∈ Ḣ s+1/2(Rd), one has

∣
∣G±ψ ∓ S±(x, D)ψ

∣
∣

Hs+1/2 � εμ3/4 M(t0 + 3)|ψ |
Ḣ s+1/2

μ
.

The following inequality also holds
∣
∣G±ψ ∓ S±(x, D)ψ

∣
∣

Hs � εμM(t0 + 3)|ψ |
Ḣ s+1/2

μ
.

Remark 16. In the case d = 1, one has g(x, ξ) = |ξ | and one can compute explic-

itly t±(x, ξ) = (1 ± ε±ζ )
arctan(ε

√
μ∂xζ )

ε
√
μ∂xζ

|ξ |.

Remark 17. The “tail” 1 − tanh(
√
μ±t±(X, ξ)) in (3.3) accounts for the effects

of the bottom. In particular, it vanishes in infinite depth (take formally μ± = ∞).
Note also that (3.3) provides an exact expression for G± in the undisturbed case
ζ = 0; the explicit computations that can be performed in that case also show that
the hyperbolic tangent is a bottom effect.
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Remark 18. One readily deduces from the theorem the following estimate for the
standard symbolic approximation,

|G±ψ ∓
√
μ±g(x, D)ψ |Hs+1/2 � M(t0 + 3)|∇ψ |Hs−1/2 ,

which is the nondimensionalized version of (3.1) generalizing (3.2) to the nonflat
case. The interest of the new symbolic expansion of Theorem 4 is that it gives a
control of order O(ε

√
μ) of |∇ψ |Hs−1/2 (deduced from the O(εμ3/4) control of

|ψ |
Ḣ s+1/2

μ
); it is therefore more precise in its dependence on μ and ε. Even outside

the shallow water regime (that is, if μ = O(1)), the estimate of the theorem is
more precise than the standard expansion if ε is small. In particular, the formula
is exact in the flat case (ε = 0). Note also that the improvement factor, namely
ε
√
μ = ε±√μ±, is the typical slope of the wave, a quantity that plays an impor-

tant role in many asymptotic expansions. In the second estimate of the theorem, we
have a better control of order O(εμ) but in terms of regularity, it is half-a-derivative
worse (|ψ |

Ḣ s+1/2
μ

instead of |ψ |Ḣ s
μ

).

3.2. Proof of Theorem 4

Since the proof of the result for G− follows exactly the same lines as for G+,
we only do it in the latter case.

We also assume throughout this proof that �(X, z) = (X, z + σ(X, z)) is the
trivial diffeomorphism given in Example 1; in particular, 1 + ∂zσ = 1 + ε+ζ does
not depend on z.

Let us denote by P = P(X, z,∇, ∂z) the elliptic operator

P = ∇μ+ · P(�)∇μ+
.

From the explicit expression of P(�) given in (B.7), we can decompose P into

P = PI + ε+μ+PI I ,

with

PI = 1 + μ+|∇σ |2
1 + ∂zσ

∂2
z − 2μ+∇σ · ∇∂z + μ+(1 + ∂zσ)�,

PI I = 1

ε+
( 1

1 + ∂zσ
∂z(|∇σ |2) − �σ

)
∂z .

The strategy for proving Theorem 4 is the following. Since by definition

G+ψ = ∂nφ|z=0 , with

{
Pφ = 0,
φ|z=0 = ψ, ∂nφ|z=−1 = 0

(recall that ∂n stands for the upward conormal derivative, see (2.8)), we expect
that at leading order, G+ψ ∼ ∂nφapp |z=0 , if φapp solves the same boundary value
problem as φ up to lower order terms. This is the approach used in [3,39] which
leads to the standard symbolic analysis of G+[ζ ]ψ . The difference here is that we
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want the approximation φapp to be nonsingular with respect to μ+. This is this extra
constraint which imposes the presence of the “tail” in the symbolic analysis of the
DN operator.

Since P = PI up to first order terms that are also of size O(μ+), the idea is to
look for an explicit function φapp satisfying PIφapp = 0 (up to lower order terms).
In order to construct such a φapp, we first remark that if we freeze the coefficients
of PI and take the Fourier transform with respect to the horizontal variables, PI

becomes a second order differential equation with respect to z, with characteristic
polynomial

1 + μ+|∇σ |2
1 + ∂zσ

η2 − 2iμ+∇σ · ξη − μ+(1 + ∂zσ)|ξ |2.

The roots of this polynomial are given by

η±(X, z, ξ) = ±
√
μ+a(X, z, ξ) + iμ+b(X, z, ξ),

with

a(X, z, ξ) = 1 + ∂zσ

1 + μ+|∇σ |2
√

|ξ |2 + μ+(|∇σ |2|ξ |2 − (∇σ · ξ)2),

b(X, z, ξ) = 1 + ∂zσ

1 + μ+|∇σ |2 ∇σ · ξ.

We then define φapp as the inverse Fourier transform of the solution of this frozen
coefficient differential operator satisfying the boundary conditions at z = 0 and
z = −1, namely,

φapp(X, z) = �(X, z, D)ψ,

where the symbol of the pseudodifferential operator �(X, z, D) is given by

�(X, z, ξ) = cosh(
√
μ+ ∫ z

−1 a(X, z′, ξ)dz′)
cosh(

√
μ+ ∫ 0

−1 a(X, z′, ξ)dz′)
exp
(

− iμ+
∫ 0

z
b(X, z′, ξ)dz′).

The following lemma quantifies the accuracy of the approximation of φ by φapp.

Lemma 3. The approximation φapp of φ solves

{
Pφapp = ε+μ+h,
φapp |z=0 = ψ, ∂nφapp |z=−1 = 0,

where, for all 0 � s � t0, h satisfies

‖�sh‖2 � M(t0 + 3)|ψ |
Ḣ s+1/2

μ
.
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Proof. One can decompose Pφapp under the form

Pφapp = PIφapp + ε+μ+PI Iφapp. (3.4)

We now analyze the two components of the right-hand-side separately. - Analysis
of PIφapp. From the relations

∇σ · ∇∂zφapp = ∇σ · ∇Op(∂z�)ψ

= Op(∇σ · ∇∂z�)ψ + Op(i(∇σ · ξ)∂z�)ψ,

(1 + ∂zσ)�φapp = −Op
(
(1 + ∂zσ)�|ξ |2)ψ + (1 + ∂zσ)[�,Op(�)]ψ,

we deduce that

PIφapp = Op
(
PI (X, z, iξ, ∂z)�

)
ψ − 2μOp(∇σ · ∇∂z�

)
ψ

+μ(1 + ∂zσ)[�,Op(�)]ψ.

From the definition of �, it is also easy to check that

PI (X, z, iξ, ∂z)� = ε+μ+ 1 + μ+|∇σ |2
1 + ∂zσ

exp
(

− iμ+
∫ 0

z
b
)

×
(

∂za

ε+√μ+
sinh(

√
μ+ ∫ z

−1 a)

cosh(
√
μ+ ∫ 0

−1 a)
+ i

∂zb

ε+
cosh(

√
μ+ ∫ z

−1 a)

cosh(
√
μ+ ∫ 0

−1 a)

)
.

Since, moreover,

(1 + ∂zσ)[�,Op(�)] = Op((1 + ∂zσ)��)) + 2Op(i(1 + ∂zσ)∇� · ξ),
one easily gets that

PIφapp = ε+μ+Op(R1 + R2)ψ + ε+μ+(1 + ∂zσ)Op(
��

ε+ )ψ, (3.5)

with

ε+ R1(X, z, ξ) = 1 + μ+|∇σ |2
1 + ∂zσ

exp
(

iμ+
∫ 0

z
b
)

×
(

∂za
√
μ+

sinh(
√
μ+ ∫ z

−1 a)

cosh(
√
μ+ ∫ 0

−1 a)
+ i∂zb

cosh(
√
μ+ ∫ z

−1 a)

cosh(
√
μ+ ∫ 0

−1 a)

)
,

ε+ R2(X, z, ξ) = 2i(1 + ∂zσ)∇� · ξ − 2∇σ · ∇∂z�.

We now turn to controlling all the components of (3.5):
– Control of Op(R j )ψ , ( j = 1, 2). Let us remark that

Op(R j )ψ = Op(R̃ j ) · ∇ψ† ( j = 1, 2, 3),

with ψ† = exp(c0
√
μ+z|D|)ψ and

R̃ j (X, z, ξ) = −i
R j (X, z, ξ)

|ξ |
ξ

|ξ | exp(−c0

√
μ+z|ξ |),



514 David Lannes

and where c0 > 0 is such that 1+∂zσ

1+μ+|∇σ |2 � 2c0 for all (X, z) ∈ S (and thus

a(X, z, ξ) � 2c0|ξ |). It follows from the definition of R j and c0 that R̃ j is a
pseudo-differential operator of order zero, whose coefficients depend on second
and lower order derivatives of ζ (through σ ). Using Theorem 1 of [40], which
gives precise estimates of the operator norm of pseudo-differential estimates, we
then get that

∀0 � s � t0, ∀z ∈ [−1, 0], |R̃ j (X, z, D) f |Hs � M | f |Hs

(it is easy to check that the possibly singular terms 1/ε+ in the definition of R j are
compensated by the ε+ contained in σ = ε+(z + 1)ζ ). We thus deduce that

‖�sOp(R1 + R2)ψ‖2 � M‖�s∇ψ†‖2,

� M |ψ |
Ḣ s+1/2

μ
, (3.6)

the last inequality following from an easy computation (recall that z � 0), as in
Proposition 2.2 of [4] for instance.

– One can prove along the same lines that

‖�sOp
(
(1 + ∂zσ)

��

ε+
)
ψ‖2 � M(t0 + 3)|ψ |

Ḣ s+1/2
μ

(3.7)

(we have M(t0 +3) rather than M in the right-hand side because �� involves third
order derivatives of ζ ).

From (3.5), (3.6) and (3.7), we get that

PIφapp = ε+μ+h1 with ‖�sh1‖2 � M(t0 + 3)|ψ |
Ḣ s+1/2

μ
. (3.8)

– Analysis of PI Iφapp. From the definition of PI I and φapp, one gets easily

PI Iφapp = Op(R3)ψ, with R3(X, z, ξ) = 1

ε+
( 1

1 + ∂zσ
∂z |∇σ |2 − �σ

)
∂z�.

Proceeding as in the previous point, we get, for all 0 � s � t0,

‖PI Iφapp‖2 � M |ψ |
Ḣ s+1/2

μ
. (3.9)

– End of the proof. The result follows directly from (3.4), (3.8) and (3.9), with
h = h1 + PI Iφapp (it is straightforward to check that φapp satisfies the boundary
conditions). ��

It follows from the lemma that the difference u = φ − φapp solves

{∇μ+ · P(�±)∇μ+
u = −ε+μ+h

u|z=0 = 0, ∂nu|z=−1 = 0.
(3.10)
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The following lemma allows some control on u.

Lemma 4. Let u ∈ Ḣ1(S) and h̃ ∈ L2(S) be such that
{∇μ+ · P(�+)∇μ+

u = h̃,
u|z=0 = 0, ∂nu|z=−1 = 0.

Then, for all 0 � s � t0,

‖�s+1∇μ+
u‖2 � 1√

μ
M‖�s h̃‖2.

Proof. Let us first remark that h̃ = ∇μ+ · g, with g = ( ∫ z
−1 h

)
ez , and we thus

deduce from Lemma 13 that

‖�s∇μ+
u‖2 � M‖�sg‖2 � M‖�s h̃‖2. (3.11)

For 1 � j � d, one remarks further that v = ∂ j u solves
{∇μ+ · P(�+)∇μ+

v = ∇μ+ · g,
u|z=0 = 0, ∂nu|z=−1 = −ez · g|z=−1 ,

with g = −∂ j P(�+)∇μ+
u + 1√

μ+ h̃e j . We thus deduce from (13) that

‖�s∂ j∇μ+
u‖2 � M‖�sg‖2

� M(1 + 1√
μ
)‖�s h̃‖, (3.12)

where we used (3.11) and (B.2) for the second inequality. The lemma is thus
proved. ��
Applying Lemma 4 to (3.10) with h̃ = −ε+μ+h, we get (replacing ε+ and μ+ by
ε and μ since the ratios H+/H− and H−/H+ are controlled by M),

‖�s+1∇μ+
u‖2 � ε

√
μM‖�sh‖2

� ε
√
μM(t0 + 3)|ψ |

Ḣ s+1/2
μ

, (3.13)

where the last inequality follows from Lemma 3.
In order to prove the theorem, let us now remark that

G+ψ − ∂nφapp |z=0 = ∂nu|z=0 = ez · P(�+)∇μ+
u|z=0 .

By Green’s formula, we get, therefore, for all ϕ ∈ L2(Rd),
∫

Rd
�s+1/2(G+ψ − ∂nφapp |z=0

)
ϕ

=
∫

S
P(�+)∇μ+

u · ∇μ+
�s+1/2ϕ† − ε+μ+

∫

S
h�s+1/2ϕ†

=
∫

S
�s+1 P(�+)∇μ+

u · �−1/2∇μ+
ϕ† − ε+μ+

∫

S
�sh�1/2ϕ†,
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where ϕ† is defined as

ϕ†(·, z) = χ(
√
μ+z|D|)ϕ,

(χ being a smooth compactly supported function equal to 1 in a neighborhood of the
origin). Since ‖�−1/2∇μ+

ϕ†‖2 � (μ+)1/4|ϕ|2 and ‖�1/2ϕ†‖2 � (μ+)−1/4|ϕ|2
(see Prop. 2.2 of [4]), we get, therefore,
∫

Rd
�s+1/2(G+ψ − ∂nφapp |z=0

)
ϕ � M

(
μ1/4‖�s+1∇μ+

u‖2 + εμ3/4‖�sh‖2
)|ϕ|2

� εμ3/4 M(t0 + 3)|ψ |
Ḣ s+1/2

μ
|ϕ|2,

the last line being a consequence of (3.13) and Lemma 3. Moreover, since one
computes easily that

∂nφapp |z=0 = ez · P(�+)∇μ+
φapp |z=0

=
√
μ+√|ξ |2 + μ+(|∇ζ |2|ξ |2 − (∇ζ · ξ)2) tanh

( ∫ 0

−1
a
)
,

the first estimate of the theorem follows from a standard duality argument.
For the second estimate, we proceed as above to get

∫

Rd
�s(G+ψ − ∂nφapp |z=0

)
ϕ

=
∫

S
�s+1 P(�+)∇μ+

u · �−1∇μ+
ϕ† − ε+μ+

∫

S
�shϕ†.

Since ‖�−1∇μ+
ϕ†‖2 � √

μ|ϕ|2 and ‖ϕ†‖2 � |ϕ|2, we deduce as above by a
duality argument that

|G+ψ − ∂nφapp |z=0 |Hs � √
μM‖�s+1∇μ+

u‖2 + εμ‖�sh‖2

� εμM(t0 + 3)|ψ |
Ḣ s+1/2

μ
,

where we used Lemma 4 (with h̃ = −ε+μ+h) and Lemma 3 to get the second
inequality. The end of the proof is then exactly as for the first estimate.

3.3. Symbolic Analysis of (G−)−1G+

Theorem 4 shows that Op(S±), with S± as given by (3.3), provides a good
description of G±. It is thus natural to expect that a good symbolic description of
the operator (G−)−1G+ (which exists by Proposition 1) is given by

(G−)−1G+ ∼ Op(
S+

S− ) = Op
(

− H+

H−
tanh(

√
μ+t+)

tanh(
√
μ−t−)

)
,

with t±(X, ξ) as in Theorem 4. The following corollary shows that this is indeed
the case.
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Corollary 3. Let t0 > d/2 and ζ ∈ Ht0+3(Rd) be such that (2.1) is satisfied. Then
for all 0 � s � t0 and ψ ∈ Hs−1/2(Rd), one has, with k = 0, 1,

∣
∣[(G−)−1G+ − Op(

S+

S− )
]
ψ
∣
∣

Ḣ s+1/2
μ

� εμ−k/4 M(t0 + 3)|ψ |Hs−k/2 .

Remark 19. As for the symbolic analysis of G+, it is crucial to take into account the
nonhomogeneous tail of the symbol. A simple look at the flat case shows, indeed,
that one cannot expect an estimate better than O(1/μ3/4) if the principal symbol
(constant equal to −H+/H− here) is used instead of S + /S−. In the case k = 1,
we have the same O(ε

√
μ) improvement as in Theorem 4. Note also that the μ−1/4

in the right-hand side of the estimate given in the corollary is not singular since
it corresponds to the fact that the Ḣ s+1/2

μ -norm (rather than the Hs+1/2-norm) is
considered in the left-hand side. In the case k = 0, there is a further gain of μ1/4

in the estimate, but a loss of half-a-derivative, as in Theorem 4.

Remark 20. Contrary to Proposition 1, for instance, Corollary 3 requires that ψ
belongs to a standard Sobolev space rather than a homogeneous one.

Proof. Denoting by S±(X, ξ) the symbol of the DN operator G± as given by
Theorem 4, we define ψ̃− = Op( S+

S− )ψ. We also denote by φ̃− the solution of
(2.17)− with Dirichlet condition ψ̃− at z = 0. Then, by definition of G−, one has
∂nφ̃

−
|z=0

= G−ψ̃−. If φ− is as in (2.27), the quantity u = φ− − φ̃− therefore solves

{∇μ− · P(�−)∇μ−
u = 0,

∂nu|z=0 = G+ψ − G−ψ̃−, ∂nu|z=−1 = 0.

Proceeding as in the proof of Proposition 1, we get that

∫

S−
P(�−)∇μ−

�su · ∇μ−
�su = −

∫

Rd
�s(G+ψ − G−ψ̃−)�su0

+
∫

S−
[�s, P(�−)]∇μ−

u · ∇μ−
�su,

where u0 stands for u|z=0 . Let us now state the following lemma.

Lemma 5. One has, with k = 0, 1,

∣
∣(�s(G+ψ − G−ψ̃−),�su0

)∣∣ � εμ1−k/4 M(t0 + 3)|ψ |Hs−k/2 |u0|Ḣ s+1/2
μ

.

Proof of the lemma. We first consider the case k = 1. Let us remark7 that

(
�sG+ψ,�su0

) = (Op
( S+

P2

)∗
�sψ,�sP2u0

)+ R1 + R2,

7 We use the same notation P for the operator |D|
(1+√

μ|D|)1/2 and its symbol |ξ |
(1+√

μ|ξ |)1/2 .
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with

R1 = ([�s, G+]ψ,�su0
)

R2 = (�s−1/2ψ,�1/2(G+ − Op(S+))�su0
)
.

Remarking that μ1/4|Pψ |Hs−1 � |ψ |Hs−1/2 , we can use (2.24) and Theorem 4 to
get

|R j | � μM
ε

μ1/4 |ψ |Hs−1/2 |u0|Ḣ s+1/2
μ

( j = 1, 2).

Recalling that ψ̃− = Op(S+/S−)ψ , we write similarly

(
�sG−ψ̃−,�su0

) =
(

Op
( S−

P2

)∗
Op
( S+

S−
)
�sψ,�sP2u0

)
+ R′

1 + R′
2,

with

R′
1 = ([�s, G−]ψ̃−,�su0

)

R′
2 = (�s−1/2ψ̃−,�1/2(G− − Op(S−))�su0

)
,

R′
3 =

(
�1/2

[
�s,Op

( S+

S−
)]

ψ,�−1/2Op
( S−

P2

)
�sP2u0

)
.

Remarking (this is a consequence of Theorem 1 and Corollary 30 of [40]) that
‖Op(S+/S−)‖Hs−1/2→Hs−1/2 � M (0 � s � t0), we get as above that R′

1 and R′
2

satisfy the same estimates as R1 and R2, respectively. Using Theorems 1 and 8 of
[40], we also get that

|[�s,Op(S+/S−)]ψ |H1/2 � εM |ψ |Hs−1/2

|Op(S−/P2)�sP2u0|H−1/2 � μM |P2u0|Hs−1/2 .

Since μ|P2u0|Hs−1/2 � μ3/4|u0|Ḣ s+1/2
μ

, this allows us to conclude that R′
3 satisfies

the same estimate as R j and R′
j ( j = 1, 2).

We thus have
(
�s(G+ψ − G−ψ̃−),�su0

) = R1 + R2 + R′
1 + R′

2 + R′
3

+
(
�1/2

(
Op
( S+

P2

)∗−Op
( S−

P2

)
Op
( S+

S−
))

�sψ,�s−1/2P2u0

)
. (3.14)

We then deduce from the above estimates on the residual terms that
∣
∣(�s(G+ψ − G−ψ̃−),�su0

)∣∣ � |ψ |Hs−1/2 |Pu0|Hs

×
(
εμ3/4 M + μ−1/4

∥
∥
∥Op

( S+

P2

)∗ − Op
( S−

P2

)
Op
( S+

S−
)∥∥
∥

H−1/2→H1/2

)
.

The result follows, therefore, from the observation that

∥
∥
∥Op

( S+

P2

)∗ − Op
( S−

P2

)
Op
( S+

S−
)∥∥
∥

H−1/2→H1/2
� εμM,



A Stability Criterion for Two-Fluid Interfaces and Applications 519

which is a consequence of the composition estimate8 of Theorem 8 of [39] and of
the estimate9 ‖Op( S+

P2 )
∗ − Op( S+

P2 )‖H−1/2→H1/2 � εμM .
We now briefly indicate the modifications to be performed in the case k = 0.

For the estimate of R1, we just replace the control μ1/4|Pψ |Hs−1 � |ψ |Hs−1/2 by
|Pψ |Hs−1 � |ψ |Hs . For R2, we write, rather,

R2 = (�sψ, (G+ − Op(S+))�su0
)
,

and use the Cauchy–Schwarz inequality and the second estimate of Theorem 4. The
same modifications must be done for R′

1 and R′
2, respectively. For R′

3, we write

R′
3 =

(
�
[
�s,Op

( S+

S−
)]

ψ,�−1Op
( S−

P2

)
�sP2u0

)
,

and use the estimates

|[�s,Op(S+/S−)]ψ |H1 � εM |ψ |Hs

|Op(S−/P2)�sP2u0|H−1 � μM |P2u0|Hs−1 � μM |u0|Ḣ s+1/2
μ

.

The control of the last term in (3.14) is modified along the same lines as R′
3 and

the result follows. ��
Thanks to the lemma, one can proceed as in the proof of Proposition 1 to get

(in the case k = 1, the modifications for the case k = 0 are straightforward),

‖�s∇μ−
u‖2 � εM(t0 + 3)

(
μ1/4|ψ |Hs−1/2 + ‖�s−1∇μ−

φ−‖2
)
,

and thus, after a continuous induction on s,

‖�s∇μ−
u‖2 � εμ1/4 M(t0 + 3)|ψ |Hs−1/2 .

The result follows, therefore, from (2.19) and the fact that u0 = (
(G−)−1G+ −

Op(S+/S−)
)
ψ . ��

3.4. Symbolic Analysis of (G−)−1Gμ[εζ ]
The following corollary shows that the asymptotic description of (G−)−1Gμ[εζ ]

that one naturally expects from the definition of Gμ[εζ ] in Corollary 2 and Theorem
4 is correct. In order to state the corollary, it is convenient to introduce the zero-th
order symbol

SJ (X, ξ) = ρ+ − ρ− H−

H+
S+(X, ξ)

S−(X, ξ)
. (3.15)

8 Theorem 8 of [40] deals with commutator rather than composition estimates. However,
the commutator estimates of Theorem 8 follow from a composition estimate, exactly in the
same way as Theorem 7(iii) follows from Theorem 7(i).

9 This estimate on the adjoint is not stated in [39]. However it can classically be derived
with the same techniques as the commutator estimates of Theorem 8 of that reference. See
also Proposition 1.8 of [27] and Chapter 13, §9 of [58].
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Corollary 4. Let t0 > d/2 and ζ ∈ Ht0+3(Rd) be such that (2.1) is satisfied. Then
for all 0 � s � t0 and ψ ∈ Hs−1/2(Rd), one has, with k = 0, 1,

∣
∣
∣
[
(G−)−1Gμ[εζ ] − 1

H+ Op
( S+

S−SJ

)]
ψ

∣
∣
∣

Ḣ s+1/2
μ

� εμ−k/4 M(t0 + 3)|ψ |Hs−k/2 .

Proof. Thanks to Remark 14, we can write

(G−)−1Gμ[εζ ] = 1

H+ (G−)−1G+ J [ζ ]−1.

It is a direct consequence of Corollary 3 that Op(SJ ) provides a good approxima-
tion of J [ζ ]. The following lemma shows a corresponding property for its inverse.
Throughout this proof, we consider only the case k = 1; the modifications that
must be performed in the case k = 0 are absolutely similar to those made in the
proof of Corollary 3.

Lemma 6. Under the assumptions of the corollary, one has, for all 0 � s � t0 and
k = 0, 1,

∣
∣
∣
(

J [ζ ]−1 − Op
( 1

SJ

)
ψ

∣
∣
∣

Ḣ s+1/2
μ

� εμ−k/4 M(t0 + 3)|ψ |Hs−k/2 .

Proof of the lemma. From Lemma 2, we know that

∣
∣(J [ζ ]−1 − Op(

1

SJ
)ψ
∣
∣

Ḣ s+1/2
μ

� M
∣
∣(1 − J [ζ ]Op(

1

SJ
)
)
ψ
∣
∣

Ḣ s+1/2
μ

� M
(∣
∣(1 − Op(SJ )Op(

1

SJ
)
)
ψ
∣
∣

Ḣ s+1/2
μ

+ ∣∣(J [ζ ] − Op(SJ ))Op(
1

SJ
)
)
ψ
∣
∣

Ḣ s+1/2
μ

)

� M(t0 + 3)
( 1

μ1/4

∣
∣(1 − Op(SJ )Op(

1

SJ
)
)
ψ
∣
∣

Hs+1/2 + ε

μ1/4

∣
∣Op(

1

SJ
)ψ
∣
∣

Hs−1/2

)
,

where we used Corollary 3 to derive the last inequality. Since the pseudodifferen-
tial estimates of [39] show that ‖1 − Op(SJ )Op(1/SJ )‖Hs−1/2→Hs+1/2 � εM and
‖Op(1/SJ )‖Hs−1/2→Hs−1/2 � M , the result follows easily. ��

To conclude the proof of the corollary, let us remark that
∣
∣[(G−)−1Gμ[εζ ] −

1
H+ Op

( S+
S−SJ

)]
ψ
∣
∣

Ḣ s+1/2
μ

is bounded from above by

1

H+
∣
∣[(G−)−1G+Op(

1

SJ
) − Op

( S+

S−SJ

)]
ψ
∣
∣

Ḣ s+1/2
μ

+ 1

H+
∣
∣(G−)−1G+(J [ζ ]−1 − Op(

1

SJ
)
)∣∣

Ḣ s+1/2
μ

� 1

H+
∣
∣[(G−)−1G+Op(

1

SJ
) − Op

( S+

S−SJ

)]
ψ
∣
∣

Ḣ s+1/2
μ

+ ε

μ1/4 M(t0 + 3)|ψ |Hs−1/2 ,

where the second inequality comes from Proposition 1 and Lemma 6. It is then
an easy consequence of Corollary 3 and of the pseudodifferential estimates used
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many times in this section that the first component in the right-hand side of the last
equality is also bounded from above by ε

μ1/4 M(t0 + 3)|ψ |Hs−1/2 , which concludes
the proof. ��

3.5. Symbolic Analysis of (ρ+ 1
H− G− − ρ− 1

H+ G+)−1∂ j

For the sake of clarity, we write

G̃=−
(
ρ+ 1

H− G−−ρ− 1

H+ G+) and S̃ =−
(
ρ+ 1

H− S−−ρ− 1

H+ S+). (3.16)

The operator P2 ◦ G̃−1∂ j (1 � j � d) is well defined thanks to Remark 8. It
will be useful to describe it using a pseudodifferential operator, as in the following
corollary.

Corollary 5. Let t0 > d/2 and ζ ∈ Ht0+3(Rd) be such that (2.1) is satisfied. Then
for all 0 � s � t0, k = 0, 1, and f ∈ Hs+1/2(Rd), one has

∣
∣P2 ◦ G̃−1∂ j f − Op

(P2

S̃

)
∂ j f

∣
∣

Hs+k/2 � ε

μ1+k/4 M(t0 + 3)
∣
∣(1 + √

μ|D|)1/2 f
∣
∣

Hs .

Proof. We can write

P2 ◦ G̃−1∂ j f = Op
(P2

S̃

)
∂ j f + R1 + R2,

where, using the notation f̃ = G̃−1∂ j f ,

R1 =
[
1 − Op

(P2

S̃

) ◦ Op
( S̃

P2

)]
P2 f̃ , R2 = Op

(P2

S̃

)[
Op(S̃) − G̃

]
f̃ .

From the composition estimates of [40], we get, with k = 0, 1,

|R1|Hs+k/2 � εM(t0 + 3)|P2 f̃ |Hs−1+k/2 � εμ−k/4 M(t0 + 3)|P f̃ |Hs ,

the last inequality following from the observation that |P f |H1/2 � μ−1/4| f |H1

and |P f |2 � | f |H1 . Since Remark 8 implies that

|P f̃ |Hs � μ−1 M |(1 + √
μ|D|)1/2 f |Hs ,

we deduce that R1 satisfies the bound given in the statement of the corollary.
For R2, we get

|R2|Hs+k/2 � 1

μ
M(t0 + 3)|[Op(S̃) − G̃] f̃ |Hs+k/2

� εμ−k/4 M(t0 + 3)|P f̃ |Hs ,

the second inequality being a consequence of the first (k = 1) and second (k = 0)
points of Theorem 4. One then shows, as for R1, that R2 satisfies the desired esti-
mate. ��
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4. Quasilinearization of the Equations

The goal of this section is to derive a quasilinear system from the two-fluid
equations (1.19). Throughout this section, the operators Gμ[εζ ] and Gμ±[ε±ζ, 1]
are denoted G and G±, respectively, when no confusion is possible.

For all j ∈ N
∗, we also denote by d j G(h)ψ and d j G±(h)ψ (h = (h1, . . . , h j ))

the j th order derivative of the mappings ζ �→ Gμ[εζ ]ψ and ζ �→ G±
μ±[ε±ζ, 1]ψ ,

respectively, in the direction h.
Let us briefly justify, here, the introduction in the following sections of sev-

eral new operators by considering a formal linear analysis. More precisely, the
linearization of the two-fluid equations (1.8)–(1.11) around the constant flow

U± =
(

c±
0

)
, ζ = 0

yields the following system

{
∂tζ + c± · ∇ζ − w± = 0,

∂tψ + g′ζ + �ρ±c± · ∇ψ±� = − σ

ρ+ + ρ− k(ζ ),

with ψ = ρ+ψ+ − ρ−ψ−. The quantities ψ± (and therefore w± since w± =
±|D| tanh(H±|D|)ψ±) can be expressed in terms of ζ ad ψ by solving a linear-
ized version of the transmission problem studied in Section 2.3. This leads to

−w± = ρ− tanh(H+|D|)
ρ− tanh(H+|D|) + ρ+ tanh(H−|D|)�c±� · ∇ζ + G[0]ψ,

where G[0] is the dimensional form of the operator Gμ[0] given in Remark 15. For
the term �ρ±c± · ∇ψ±� that appears in the second equation, we write

�ρ±c± · ∇ψ±� = 〈c±〉 · ∇ψ + �c±� · ∇〈ρ±ψ±〉.
The dependence on ζ is specific to the two-fluid system (that is, it disappears if
ρ− = 0), and is responsible for the Kelvin–Helmholtz instabilities through the
operator e(D) in the resulting set of equations in ζ, ψ ,

{
∂tζ + T (D)ζ − G[0]ψ = 0,

∂tψ + T (D)ψ + (g′ − ·e(D) − σ

ρ+ − ρ−�)ζ = 0, (4.1)

with

T (D) = c+ρ+ tanh(H+|D|) + c−ρ− tanh(H+|D|)
ρ− tanh(H+|D|) + ρ+ tanh(H−|D|) · ∇,

e(D) = ρ+ρ−

ρ− tanh(H+|D|) + ρ+ tanh(H−|D|)
(�c±� · D)2

|D| .
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The diagonal terms in (4.1) are governed by the operator T (D), which can be seen
as a nonlocal transport term; consequently, they play no role in the stability anal-
ysis. Since G[0] is a positive operator, the linear stability of (4.1) depends on the
sign of the stability operator

Ins(D) = g′ − e(D) − σ

ρ+ − ρ−�,

in the sense that stability for all frequencies is obtained if Ins(ξ) > 0 for all ξ ∈ R
d .

Conversely, Kelvin–Helmholtz instability is the mechanism that amplifies the fre-
quencies for which Ins(ξ) < 0.

In the following sections, we quasilinearize the full nonlinear equations, and a
structure similar to (4.1) appears. In particular, the operators T[U ], E and Ins that
are introduced in Section 4.1 below are the natural generalization (in dimension-
less form) of the operators T (D), e(D) and Ins introduced in the linear analysis
above. In order to quasilinearize the equations, we differentiate them several times;
in Section 4.2, we study the action of differential operators on G. The quasilinear
system is then derived in Section 4.3; as for the water-wave equations, the “good
unknown” plays a crucial role.

4.1. Definition and Basic Properties of Some New Operators

We define, first, a linear operator T[U ] of order one,

T[U ] f = ∇ · ( f V +) + ρ− H−G ◦ (G−)−1(∇ · ( f �V ±�)
)
, (4.2)

where V ± and w± are defined using the mappings w±[εζ ] and V±
�
[εζ ] of Corollary

1 as

V ± = V±
�
[εζ ]ψ − εw±∇ζ, w± = w±[εζ ]ψ. (4.3)

In the water-wave case (ρ− = 0), this operator simplifies considerably into
T[U ] f = ∇ · ( f V +). The symbolic analysis of Section 3 allows us to prove that, in
the general case, it behaves roughly the same way in the sense that it is a first order
operator with a skew symmetric principal symbol. Note that it is necessary here
to use a symbolic analysis “with tail” as in the previous section in order to have a
nonsingular dependence on the parameters in the estimates of the proposition.

Proposition 4. Let t0 > d/2 and U = (ζ, ψ), with ζ ∈ Ht0+3(Rd) satisfying (2.1)
and ψ ∈ Ḣ t0+3(Rd). Then

1. For all 0 � s � t0 and f ∈ Hs+1/2(Rd), one has

|T[U ] f |Hs−1/2 � M | f |Hs+1/2 |∇ψ |Ht0+1/2 .

2. For all a = 1 + b, with b ∈ Ht0+1(Rd), and all f ∈ L2(Rd),
(
aT[U ] f, f

)
� M(t0 + 3)(1 + |b|Ht0+1)|∇ψ |Ht0+1 | f |22.



524 David Lannes

3. Let K be a d × d symmetric matrix with entries in Ht0+1(Rd); then for all
f ∈ H1(Rd),

(∇ · K∇T[U ] f, f
)

� M(t0 + 3)|K |Ht0+1 |∇ψ |Ht0+1 | f |2H1 .

4. For all f ∈ Ḣ1/2(Rd), g ∈ H1/2(Rd), one has
(
T[U ]∗ f, g

)
� M |∇ψ |Ht0+2 |P f |2

(|g|2 + μ1/4|g|H1/2
)
.

Proof. In the proofs below, we reduce T[U ] to its second component in (4.2), since
the estimates are much easier to prove for the first component and can therefore be
omitted.

For the first estimate, we write G ◦ (G−)−1∇ · ( f �V ±�) = A + B with

A = G ◦ (G−)−1∇ ·
( μ1/4|D|1/2

1 + μ1/4|D|1/2 ( f �V ±�)
)

B = G ◦ (G−)−1∇ ·
( 1

1 + μ1/4|D|1/2 ( f �V ±�)
)
.

Recalling that G = 1
H

+
G+ ◦ J [ζ ]−1, we use (2.20), Lemma 2 and Remark 8 to

get |A|Hs−1/2 � M | f �V ±�|Hs+1/2 . Proceeding in the same way, but using (2.21)
instead of (2.20), one can check that B can be controlled similarly. Since with
0 � s � t0 one has | f �V ±�|Hs+1/2 � M | f |Hs+1/2 |∇ψ |Ht0+1/2 (from the definition
of V ± and Corollary 1), the result follows.

For the second point of the proposition, we write
(
aG ◦ (G−)−1∇ · ( f �V ±�), f

)
=
(
∇ · ( f �V ±�),Op

( S+

S−SJ

)
(a f )

)

+
(

f �V ±�,∇
[
(G−)−1 ◦ G − Op

( S+

S−SJ

)]
(a f )

)
.

Since the operator f �→ aOp( S+
S−SJ

)∗∇ · ( f �V ±�) is skew symmetric at leading
order, the result for the first term of the right-hand side follows from the pseudo-
differential estimates of [40]. In order to control the second term, we decompose it
into C1 + C2 with

C1 =
(

f �V ±�,
μ1/4|D|1/2∇

1 + μ1/4|D|1/2

(
(G−)−1 ◦ G − Op

( S+

S−SJ

))
(a f )

)
,

C2 =
(

f �V ±�,
∇

1 + μ1/4|D|1/2

(
(G−)−1 ◦ G − Op

( S+

S−SJ

))
(a f )

)
.

From the Cauchy–Schwarz inequality and Corollary 4 (with k = 1), we get |C1| �
M(t0 +3)| f �V ±�|2|a f |2. For C2, we proceed similarly but with k = 0 in Corollary
4 to get that C2 can be controlled as C1, and the result follows.

The proof of the third point being very similar to the second one, we omit it.
For the last point, the term to control is

A = (�V ±� · ∇(G−)−1G f, g
)

= − 1

H+
(
P(G−)−1G+ J [ζ ]−1 f, (1 + √

μ|D|)1/2 ∇
|D| (g�V ±�)

)
.
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It is therefore a consequence of the Cauchy–Schwarz inequality, Proposition 1 and
Lemma 2 that |A| � M |P f |2|(1+√

μ|D|)1/2(g|V ±|)|2, from which one deduces
the result by a standard commutator estimate and Corollary 1. ��
The linearization formula for ∂α(Gμ[εζ ]ψ) (see Proposition 6 below) is quite sim-
ple if given in terms of the “good unknowns” ζ(α) and ψ(α), where ζ(α) and ψ(α)

are defined as

ζ(α) = ∂αζ, (4.4)

ψ(α) = ∂αψ − εw∂αζ, with w = ρ+w+ − ρ−w−, (4.5)

or equivalently, if ψ± = φ±
|z=0

(φ± solving (2.37)),

ψ(α) = ρ+ψ+
(α) − ρ−ψ−

(α), with ψ±
(α) = ∂αψ± − εw±∂αζ.

The principal part of the linearization formula for ∂α(Gμ[εζ ]ψ) is given in terms
of Gψ(α) and T[U ]∂αζ , but to handle the surface tension, it is also necessary to
take into account the subprincipal part (with respect to ψ). In order to describe this
subprincipal part, it is convenient to introduce the following notation,

ζ〈α̌〉 = (ζ(α̌1), . . . , ζ(α̌d+1)), ψ〈α̌〉 = (ψ(α̌1), . . . , ψ(α̌d+1)), (4.6)

where α̌ j ∈ N
d+1 is such that α̌ j + e j = α.

We can now define the operator G(α)ψ〈α̌〉 that arises in the description of the
subprincipal part of ∂α(Gμ[εζ ]ψ),

G(α)ψ〈α̌〉 =
d+1∑

j=1

α j dG(∂ jζ )ψ(α̌ j ). (4.7)

Next, the linearization of the surface tension term shows that

1

ε
√
μ
∂αk(ε

√
μζ) = −∇ · K[ε√μ∇ζ ]∇∂αζ + K(α)[ε√μ∇ζ ]ζ〈α̌〉 + . . .

where the dots stand for derivatives of ζ of order lower or equal to |α| and ζ(α) is
as in (4.6). The positive definite d × d matrix K[∇ζ ] is defined as

K[∇ζ ] = (1 + |∇ζ |2)Id − ∇ζ ⊗ ∇ζ

(1 + |∇ζ |2)3/2 , (4.8)

while the second order operator K(α)[∇ζ ] is given for all F = ( f1, . . . , fd+1)
T by

K(α)[∇ζ ]F = −∇ ·
[ d+1∑

j=1

(
dK(∇∂ jζ )∇ f j + dK(∇ f j )∇∂ jζ

)]
. (4.9)

Finally, we introduce the first order operator E[ζ ] : Ḣ1/2(Rd)d →
H−1/2(Rd)d , which plays an important role for Kelvin–Helmholtz instabilities,

E[ζ ] = ∇ ◦ (ρ+ 1

H− G− − ρ− 1

H+ G+)−1 ◦ ∇T . (4.10)



526 David Lannes

The following proposition gathers some of its main properties.

Proposition 5. Let t0 > d/2 and ζ ∈ Ht0+2(Rd) be such that (2.1) is satisfied.

1. There exists a constant c � M such that for all V ∈ Ḣ1/2(Rd),

0 � μ(E[ζ ]V, V ) � c |(1 + √
μ|D|)1/2V |22;

we denote by e(ζ ) the smallest such constant.
2. Moreover, if ζ is time dependent and satisfies (2.1) uniformly in time, then, for

all F ∈ H1/2(Rd)d

∣
∣([∂t , E[ζ ]]F, F

)∣∣ � ε

μ
M |∂tζ |∞

∣
∣(1 + √

μ|D|)1/2 F
∣
∣2
2.

Proof. With G̃ as in (3.16), we can write (E[ζ ]V, V ) = (
G̃w,w

)
, with w =

G̃−1∇ · V and the positiveness of E[ζ ] follows from the positiveness of G̃. Since
G̃ = − 1

H− G− ◦ J [ζ ], the upper bound follows from Lemma 2 and Remark 8.

For the second point of the proof, we remark that [∂t , G̃−1] = −G̃−1[∂t , G̃]̃G−1,
so that

([∂t , E[ζ ]]F, F
) = −([∂t , G̃]̃G−1∇ · F, G̃−1∇ · F

)
.

Using Proposition 3.6 of [4], we deduce that
∣
∣([∂t , E[ζ ]]F, F

)∣∣ � μM |PG̃−1∇ · F |2,
and the result follows from Remark 8. ��

4.2. Linearization Formulas

We now establish linearization formulas for the operator G. These formulas
play an important role in the quasilinearization of the equations presented in Sec-
tion 4.3. Proposition 6 below gives a linearization formula at leading order; in order
to measure the size of the neglected terms, it is necessary to introduce at this point
the energy E N

σ (U ) defined for all N ∈ N, σ � 0, and U = (ζ, ψ) as

E N
σ (U ) = |∇ψ |2

Ht0+2 +
∑

α∈Nd+1,|α|�N

|∂αζ |2H1
σ

+ |ψ(α)|2Ḣ1/2
μ

. (4.11)

It is convenient to introduce a specific notation for the terms involving only ζ in
this energy, namely,

|ζ |H1,N
σ

=
∑

α∈Nd+1,|α|�N

|∂αζ |H1
σ

(4.12)

(the difference between H1,N
σ and H1+N

σ is that the former allows for time deriva-
tives of ζ ). Another quantity that will be related to the energy through the stability
criterion derived in Section 5 is |ζ |<N+1/2>, defined as

|ζ |<N+1/2> =
∑

α∈Nd+1,|α|=N

∣
∣|D|1/2∂αζ

∣
∣
2. (4.13)
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For all T > 0, we also denote by E N
σ,T the functional space

E N
σ,T ={U ∈ C([0, T ]; H N × Ḣ t0+3(Rd)), sup

0�t�T
E N
σ (U (t))<∞}. (4.14)

We finally denote by mN (U ) any constant of the form

mN (U ) = C
(

M, E N
σ (U ),

1

Bo

)
, (4.15)

with M as in (2.2). We can now give an important linearization formula for G (note
that for d = 1, 2, the condition (4.16) is satisfied with t0 = 3/2 and N � 5).

Proposition 6. Let T > 0, t0 > d/2 and N ∈ N be such that

[(N + 1)/2] � 1 ∨ t0 + 1/2 and N � t0 + 7/2. (4.16)

Furthermore, let U = (ζ, ψ) ∈ E N
σ,T be such that (2.1) is uniformly satisfied on

[0, T ]. Then for all α ∈ N
d+1 with 1 � |α| � N, one has

1

μ
∂α(Gψ) = 1

μ
Gψ(α) + εRα, (|α| � N − 1)

1

μ
∂α(Gψ) = 1

μ
Gψ(α) − εT[U ]∂αζ + 1

μ
G(α)ψ〈α̌〉 + εRα, (|α| = N ),

where the linear operators T[U ] and G(α) are defined in (4.2) and (4.7), while Rα

satisfies the estimate

∀0 � t � T, |Rα(t)|H1
σ

� mN (U (t)).

Proof. Let us denote by φ± the solution of the transmission problem (2.37) pro-
vided by Proposition 2, and let us write ψ± = φ±|z=0

(or equivalently define ψ±
as in (2.39)). For the sake of notational simplicity, we also omit to write the depen-
dence on the time variable when this does not raise any confusion. Consistently
with the notations of Section 2.2.4, we also denote by dG(h)ψ the derivative of the
mapping ζ �→ Gμ[εζ ]ψ in the direction h.

We focus on the most difficult case, namely |α| = N (when |α| � N −1, it is a
consequence of the first estimate of Proposition 4 that εT[U ]∂αζ can be put in the
residual term). The proof relies heavily on the following lemma (note that the last
estimate of the third point is not used in the present proof but will be necessary to
establish Proposition 7).

Lemma 7. Let t0 > d/2 and ζ ∈ Ht0+2(Rd) be such that (2.1) is satisfied.

1. For all ψ ∈ Ḣ1/2(Rd) and h ∈ Ht0+2(Rd), one has

dG(h)ψ = −εG(h�ρ±w±�) − εμT[U ]h.

2. One can replace G± by G or w±[εζ ] in (2.31)–(2.34).
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3. Let r � 0 and δ ∈ N
d+1 be such that r + |δ| � N − 1, with N as in the

Proposition. Then one has

|P∂δψ |Hr+1
σ

� mN (U ) and |P∂δψ |Hr+1 � mN (U )
(
1 + εμ1/4|ζ |<N+1/2>

)
.

Proof of the lemma. 1. Recalling that G = 1
H+ G+ ◦ J [ζ ]−1, where J [ζ ] is as in

Lemma 2, one gets

dG(h) = 1

H+ dG+(h)J [ζ ]−1 − G ◦ d J [ζ ](h) ◦ J [ζ ]−1.

Since one can compute

d J [ζ ](h)=ρ− H−

H+ (G−)−1 ◦ dG−(h) ◦ (G−)−1 ◦ G+−ρ− H−

H+ (G−)−1 ◦ dG+(h),

we get, observing that ψ+ = J [ζ ]−1ψ and ψ− = H−
H+ (G−)−1 ◦ G+ψ+, that

dG(h)ψ = 1

H+ dG+(h)ψ+−ρ−G ◦ (G−)−1(dG−(h)ψ−− H−

H+ dG+(h)ψ+).

We can thus use (2.30) to get

dG(h)ψ =− ε

H+ (1+ρ−H−G ◦ (G−)−1)G+(hw+)+ερ−G(hw−)−εμT[U ]h.

The result is then a consequence of Remark 14.
2. Proceeding as in the first point, it is possible to show that d j G(h) and dw±(h)
can be written in terms of G+, J [ζ ]−1 and their shape derivatives, so that one can
deduce the result from (2.31)–(2.34), Remark 12 and Lemma 2.
3. Let us first prove the estimate on the Hr+1

σ -norm of P∂δψ . Thanks to the assump-
tions made on r and δ, one has

|P∂δψ |Hr+1
σ

�
∑

β∈Nd+1,|β|�N−1

|P∂βψ |H1
σ
.

Since ∂βψ = ψ(β) + εw∂βζ , we get

|P∂δψ |Hr+1
σ

�
∑

β∈Nd+1,|β|�N−1

(|Pψ(β)|H1
σ

+ ε|P(w∂βζ )|H1
σ

)

� max
{

1,
1√
Bo

} ∑

α∈Nd+1,|α|�N

(|Pψ(α)|2
)+ ε|w|Ht0+2 |ζ |H1,N

σ

)
,

where we used the identity |P f |2 � |∇ f |2 to derive the second inequality. Since
w = ρ+w+[ζ ]ψ − ρ−w−[ζ ]ψ , the result follows easily from Corollary 1.

For the estimate in Hr+1-norm, one derives along the same lines the identity

|P∂δψ |Hr+1 �
∑

α∈Nd+1,|α|=N

(|Pψ(α)|2 + ε|P(w∂αζ )|2
)
.
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From the product estimate (which follows directly from Lemma 5.1 of [34] for
instance),

| f g|
Ḣ1/2

μ
� |∇ f |Ht0 |g|2 + | f |∞|g|

Ḣ1/2
μ

, (4.17)

and the observation that |w|∞ � √
μmN (U ) (Corollary 1), we get |P(w∂αζ )|2 �

mN (U )(1 + ε
√
μ|P∂αζ |2). The result then follows easily. ��

Denoting by {∂α, G}ψ the Poisson bracket (with α̌ j as in (4.7))

{∂α, G}ψ =
d+1∑

j=1

α j dG(∂ jζ )∂
α̌ j

ψ,

we can write

∂αGψ = G∂αψ + dG(∂αζ )ψ + G(α)ψ〈α̌〉 + εμRα, (4.18)

with εμRα = ({∂α, G}ψ − G(α)ψ〈α̌〉) + εμR′
α , and where εμR′

α is a sum of terms
of the form

d j G(∂ι1ζ, . . . , ∂ι j
ζ )∂δψ =: A j,δ,ι, (4.19)

where j ∈ N, ι = (ι1, . . . , ι j ) ∈ N
(d+1) j and δ ∈ N

d+1 satisfy

j∑

i=1

|ιi | + |δ| = N , 0 � |δ| � N − 2 and |ιi | < N . (4.20)

We first give some control on the A j,δ,ι (and thus on R′
α). Let l be such that |ιl | =

max1�m� j |ιm |. Let us distinguish four cases:

(i) The case |δ| = j = 1 and ι = ι1 (and thus |ι| = N − 1). One then has
A j,δ,ι = dG(∂ιζ )∂δψ , and we can therefore use the first point of Lemma 7 to get

1

μ
A j,δ,ι = −ε

1√
μ

G(∂ιζ �ρ± 1√
μ
(w±[ζ ]∂δψ)�) − εT[ζ, ∂δψ]∂ιζ.

We can thus deduce from Corollaries 1 and 2, and Proposition 4 that

1

μ
|A j,δ,ι|H1

σ
� εM(t0 + 7/2)|ζ |H1,N

σ
|P∂δψ |

H
t0+5/2
σ

;

since t0 + 7/2 � N , these two estimates, together with the third point of
Lemma 7, yield that

|A j,δ,ι|H1
σ

� εμmN (U ). (4.21)

(ii) The case |δ| � N − 1 ∨ t0 − 3/2 and |ιl | < N − 1. It follows from (2.34)10 that

1

μ
|A j,δ,ι|H1

σ
� εM |∂ιl ζ |

H5/2
σ

∏

m �=l

|∂ιm ζ |
H

1∨t0+5/2
σ

|P∂δψ |
H

1∨t0+3/2
σ

.

10 We still refer to (2.34) if G± is replaced by G, thanks to Lemma 7.ii; we do the same for
all the identities involved in Lemma 7.ii



530 David Lannes

From the assumption that |ιl | < N − 1 and the definition of l, we also get that for
all m �= l, |ιm | � [(N − 2)/2], and thus, from the assumption made on N , we have
|ιm |+ 1 ∨ t0 + 3/2 � N . Using the assumption on δ, we deduce from the last point
of Lemma 7 that (4.21) holds.

(iii) The case |δ| = 0 and |ιl | = N − 1 (we take for simplicity l = 1). Then one
has A j,δ,ι = d2G(∂ι1ζ, ∂ι2ζ )ψ . Inequality (2.33) provides a good control in terms
of regularity, but not with respect to its dependence on μ. We can remark, however,
after differentiating the formula stated in Lemma 7.i, that

d2G(h1, h2)ψ = −ε
√
μdG(h2)(h1�ρ

± 1√
μ
w±�)

−ε
√
μG(h1�ρ

± 1√
μ

dw±(h2)ψ�) − εμdT(h2)h1.

With h j = ∂ι j
ζ , one can use (2.31) to control the first term of the right-hand side,

Corollary 2 and Lemma 7.ii for the second one, and Lemma 7.ii for the last one.
Inequality (4.21) is then satisfied.

(iv) The case |δ| � N − 1 ∨ t0 − 1/2. Using (2.32) and the second point of the
Lemma, we now get

|A j,δ,ι|H1
σ

� Mε jμ

j∏

m=1

|∂ιm ζ |
H

1∨t0+2
σ

|P∂δψ |H2
σ
.

Since, by (4.20), |δ|+2 � N and |ιm | � t0 +2, one can conclude as in the previous
case that (4.21) holds for N as in the statement of the proposition.

We have therefore proved that the residual R′
α satisfies the estimate stated in

the proposition. Remark now that 1
μ
({∂α, G}ψ − G(α)ψ〈α̌〉) is a sum of terms of the

form (with w as in (4.5))

1√
μ

dG(∂ιζ )(
1√
μ
w∂δζ ) (|ι| = 1, ι + δ = α)

that are bounded in H1
σ -norm by εmN (U ) thanks to (2.31) and Corollary 1. We

deduce that Rα satisfies the estimate of the proposition. The fact that (4.18) coin-
cides with the identity given in the proposition is a consequence of the first point
of Lemma 7. ��

We end this section with another linearization formula that describes the way
1/H±G±ψ±

(α) departs from Gψ(α) (when α = 0, both terms are equal). This prop-

osition will be used to express ψ±
(α) in terms of the “good unknowns” ζ and ψ(α)

in the proof of Proposition 8. In this sense, it can be viewed as a generalization of
the transmission problem solved in Proposition 2. The additional term with respect
to the case α = 0 is responsible for the Kelvin–Helmholtz instabilities, as shown
in the next section—of course, in the water-wave case (ρ− = 0), one has G+ = G
and ψ+

(α) = ψ(α) and this destabilizing term disappears.
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Proposition 7. Under the same assumptions as in Proposition 6, one has

1

H± G±ψ±
(α) = r±

α , (|α| � N − 1),

and, when |α| = N,

1

H± G±ψ±
(α) = Gψ(α) − ρ∓εμH∓G ◦ (G∓)−1∇ · (∂αζ �V ±�) + r±

α ;

the residual r±
α satisfies the estimate, with |ζ |<N+1/2> as in (4.13),

ρ±|(G±)−1r±
α |

Ḣ3/2
μ

� mN (U )
(
1 + εμ1/4ρ+ρ−|ζ |<N+1/2>

)
.

Remark 21. A consequence of this proposition is that for all |α| � N ,

ρ±|Pψ±
(α)|2 � mN (U )

(
1 + εμ1/4ρ+ρ−|ζ |<N+1/2>

)
.

Proof. As for the proof of Proposition 6, we focus on that case |α| = N . Applying
∂α to the identity 1

H± G±ψ± = Gψ and using (2.30) and Lemma 7.i we obtain

1

H± G±ψ±
(α) − εμ∇ · (∂αζV ±) = Gψ(α) − εμT[U ]∂αζ + r±

α ,

where r±
α is a sum of terms of the form,

B±
j,δ,ι = d j G(∂ι1ζ, . . . , ∂ι j

ζ )∂δψ − 1

H± d j G±(∂ι1ζ, . . . , ∂ι j
ζ )∂δψ±

with
∑ j

i=1 |ιi | + |δ| = N , 0 � |δ| � N − 1 and |ιi | < N . The formula of the
proposition is obtained after replacing T[U ] by its explicit expression (4.2).

We now must control ρ±(G±)−1 B±
j,δ,ι in Ḣ3/2

μ (Rd). The + case is more dif-
ficult than the − case because ρ− is possibly very small while we always have
ρ+ � 1/2. Therefore, we only show how to control B+

j,δ,ι; moreover, only three
endpoint cases deserve a proof, namely:

(i) The case j = |ι1| = 1 and |δ| = N − 1. One then has

B+
j,δ,ι = dG(∂ι1ζ )∂δψ − 1

H± dG+(∂ι1ζ )∂δψ+,

= 1

H+ dG+(∂ι1ζ )(J−1∂δψ − ∂δψ+) − 1

H+ G+ J−1d J (∂ι1ζ )J−1∂δψ,

where J = J [ζ ] and where we used the identity G = 1
H+ G+ J [ζ ]−1. Since by

(2.39), ψ+ = J [ζ ]−1ψ , we thus get

B+
j,δ,ι = − 1

H+ dG+(∂ι1ζ )J−1[J, ∂δ]J−1ψ − 1

H+ G+ J−1d J (∂ι1ζ )J−1∂δψ

= B1 + B2.
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We now need the following lemma.

Lemma 8. For all δ ∈ N
d+1, |δ| � N − 1, one has

|[J, ∂δ]u|
Ḣ3/2

μ
� ερ−mN (U )(1 + μ1/4|ζ |<N+1/2>).

Proof of the lemma. Recalling that J [ζ ] = ρ+ − ρ− H−
H+ (G−)−1G+, and writ-

ing v = (G−)−1G+u, we get [∂δ, J ]u = ρ− H−
H+ [∂δ, (G−)−1G+] and we observe

moreover that

[∂δ, (G−)−1G+] = −(G−)−1[∂δ, G−]v + (G−)−1[∂δ, G+]u.

Since both terms in the right-hand side can be handled similarly, we just give the
details for the first one. It is a sum of terms of the form

C j,δ′,ι = (G−)−1d j G−(∂ι1ζ, . . . , ∂ι j
ζ )∂δ′

v,

with
∑ j

i=1 |ιi | + |δ′| = |δ| and |δ′| < |δ|. We can control all these terms thanks
to (2.35), (2.36) and Remark 12, except the most singular one (with respect to ζ ),
which corresponds to j = 1, ι1 = δ and δ′ = 0. For this term, we write, using
(2.30),

C1,0,δ = −ε∂δζ(w−[εζ ]v) − ε−μ−(G−)−1∇ · (∂δζ(V−
�
[εζ ]v)).

Using the inequality |∂δζ |
Ḣ3/2

μ
� μ−1/4|ζ |<N+1/2> to control the first term and

Remark 8 to control the second one, we get

|C1,0,δ|Ḣ3/2
μ

� εμ−1/4|ζ |<N+1/2>|w−[εζ ]v|H3/2∨t0

+ε(|∂δζ |H1 + μ1/4|ζ |<N+1/2>)|V−
�
[εζ ]v|H3/2∨t0

� εmN (U )(1 + μ1/4|ζ |<N+1/2>),

where the second inequality is a consequence of Corollary 1. The lemma then
follows easily. ��
Using (12) and the lemma, we get the desired control on B1; for B2 there is no
particular difficulty and we omit the proof.

(ii) The case j = |δ| = 1 and |ι1| = N − 1. One proceeds exactly as in the
proof of Lemma 8.

(iii) The case |δ| = 0, j = 2 and |ι1| = N − 1. One then has

B+
j,δ,ι = d2G(∂ι1ζ, ∂ι2ζ )ψ − 1

H± d2G+(∂ι1ζ, ∂ι2ζ )ψ+,

and the scenario is the same as in case (iii) in the proof of Proposition 6. ��
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4.3. The Quasilinear System

We show in Proposition 8 below that the two-fluid equations (1.19) can be
“quasilinearized”. In these quasilinearized equations, an operator plays a central
role with respect to the formation of Rayleigh–Taylor/Kelvin–Helmholtz instabil-
ities. We thus call it the instability operator.

Definition 3. (Instability operator) Let t0 > d/2, T > 0 and (ζ, ψ) ∈ E N
σ,T

(N � t0 + 2) be such that (2.1) is uniformly satisfied on [0, T ]. The instability
operator Ins[U ] is defined as

Ins[U ] f = a f − ε2μρ+ρ−�V ±� · E[ζ ]( f �V ±�) − 1

Bo
∇ · K[ε√μ∇ζ ]∇ f,

with

a = 1 + ε�ρ±(∂t + εV ± · ∇)w±�.

For notational convenience, we also introduce the matricial operators

A[U ] =
(

0 − 1
μ

G
Ins[U ] 0

)
, B[U ] =

(
εT[U ] 0

0 −εT[U ]∗
)
, (4.22)

and we also define Cα[U ] as

Cα[U ] =
(

0 − 1
μ

G(α)
1

Bo K(α)[ε√μ∇ζ ] 0

)

. (4.23)

We can now state the main result of this section.

Proposition 8. Let T > 0, t0 > d/2 and N be as in Proposition 6. If U = (ζ, ψ) ∈
E N
σ,T satisfies (2.1) uniformly on [0, T ] and solves (1.19), then for all α ∈ N

d+1

with 1 � |α| � N, the couple U(α) = (ζ(α), ψ(α)) solves

∂tU(α) + A[U ]U(α) = ε(Rα, Sα)
T , (|α| < N ),

∂tU(α) + A[U ]U(α) + B[U ]U(α) + Cα[U ]U〈α̌〉 = ε(Rα, Sα)
T , (|α| = N ),

where U〈α̌〉 = (ζ(α), ψ〈α̌〉)T and the residuals Rα and Sα satisfy the estimates

|Rα|H1
σ

+ |Sα|
Ḣ1/2

μ
� mN (U )

(
1 + εμ1/4ρ+ρ−|�V ±�|∞|ζ |<N+1/2>

)
,

uniformly on [0, T ].
Remark 22. The “quasilinear” system we refer to is the system of evolution equa-
tions on (U(α))0�|α|�N (with U(0) = U ) formed by (1.19) for α = 0 and the
equations of the proposition for 1 � |α| � N .
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Proof. Throughout this proof, we denote by φ± the solution of the transmission
problem (2.37) provided by Proposition 2, and write ψ± = φ±|z=0

(or equivalently,
we define ψ± by (2.39)).

The first equation is obtained directly by applying ∂α to the first equation of
(1.19) and using Proposition 6.

For the second equation, we focus on the most difficult case, namely, |α| = N .
We decompose first α = β + γ ∈ N

d+1, with |γ | = 1. Inspired by [34], we apply
first ∂γ to the second equation of (1.19) and use the definition (4.3) of V ± and w±
to get

∂t∂
γ ψ + ∂γ ζ + ε�ρ±V ± · (∇∂γ ψ± − εw±∇∂γ ζ )�

− ε

μ
�ρ±w±∂γ (Gψ)� = − 1

Bo

1

ε
√
μ
∂γ k(ε

√
μζ). (4.24)

We are now going to apply ∂β to this equation. We will thus find many terms of the
form ∂β( f g); in order to check that most of them can be put in the residual term
(that is that11 |∂β( f g)|

Ḣ1/2
μ

� εmN (U )), we rely heavily on the product estimate

(4.17). For the sake of clarity, we also introduce the notation

a ∼ b ⇐⇒ |a−b|
Ḣ1/2

μ
�εmN (U )

(
1+εμ1/4ρ+ρ−|�V ±�|∞|ζ |<N+1/2>

)
. (4.25)

Lemma 9. Under the assumptions of the proposition, and withα = β+γ (|γ | = 1),
the following identities hold:

ε∂β
(
ρ±V ± · (∇∂γ ψ± − εw±∇∂γ ζ )

) ∼ ερ±V ± · ∇ψ±
(α)

+ε2ρ±(V ± · ∇w±)∂αζ

−ε2ρ±V ± · {∂β,w±}∇∂γ ζ,

ε

μ
∂β
(
ρ±w±∂γ (Gψ)

) ∼ ε

μ
ρ±w±∂α(Gψ)

+ ε

μ
ρ±{∂β,w±}∂γ (Gψ),

where {∂β,w±} = ∑d+1
j=1 β j∂ jw

±∂β̌ j
, with β̌ j + e j = β, is the usual Poisson

bracket.

Proof. Let us address the first assertion of the lemma. Since ερ±∂β
(
V ±·(∇∂γ ψ±−

εw±∇∂γ ζ )
)

is a sum of terms of the form Aβ ′,β ′′ = ερ±∂β ′
V ± · ∂β ′′

(∇∂γ ψ± −
εw±∇∂γ ζ ), with β ′ + β ′′ = β, and remarking that

A0,β ∼ ερ±V ± · ∇ψ±
(α) + ε2ρ±(V ± · ∇w±)∂αζ − ε2ρ±V ± · {∂β,w±}∇∂γ ζ,

we are led to prove that Aβ ′,β ′′ ∼ 0 if |β ′′| < N − 1. The most difficult configura-
tion corresponds to β ′′ = 0 or |β ′′| = N − 2, and we thus omit the proof for the

11 The notation A � mN (U ) is used as a shortcut for A(t) � mN (U (t)), for all 0 � t � T .
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intermediate cases. Moreover, since the proof follows the same lines for β ′′ = 0
and |β ′′| = N − 2, we give it only in the latter case. By (4.17), we get

|Aβ ′,β ′′ |
Ḣ1/2

μ
� ερ±|∂β ′

V ±|Ht0+1
(|∂β ′′

g|2 + |∂β ′′
g|

Ḣ1/2
μ

)
,

with g = ∇∂γ ψ± −εw±∇∂γ ζ . Since |β ′| = 1, we deduce easily from Corollary 1
that |∂β ′

V ±|Ht0+1 � mN (U ); moreover, ∂β ′′
g can be put under the form

∂β ′′
g = ∇ψ±

(β ′′+γ )
− ε[∂β ′′

, w±]∇∂γ ζ + ε(∂γ+β ′′
ζ )∇w±.

Since the last two components of the right-hand side are bounded from above in L2

and Ḣ1/2
μ by mN (U ) (this is a consequence of (4.17), Corollary 1 and the identity

| f |
Ḣ1/2

μ
� | f |Ḣ1 ), we have obtained that

|Aβ ′,β ′′ |
Ḣ1/2

μ
� ερ±mN (U )(1 + |∇ψ±

(β ′′+γ )
|2 + |∇ψ±

(β ′′+γ )
|
Ḣ1/2

μ
)

� εmN (U )(1 +
∑

|κ|�N

ρ±|ψ±
(κ)|Ḣ1/2

μ
)

� εmN (U )
(
1 + εμ1/4ρ+ρ−|�V ±�|∞|ζ |<N+1/2>

)
,

where Remark 21 has been used to derive the last inequality.
In order to prove the second assertion of the lemma, we proceed as above to

check that it is sufficient to prove that ε
μ
ρ±∂β ′

w±∂β ′′+γ (Gψ) ∼ 0 if β ′ + β ′′ = β

and |β ′′| < N − 2. We give the proof of the most difficult case, corresponding here
to β ′ = β, β ′′ = 0. Thanks to (4.17), Corollaries 1 and 2 and Lemma 7, it is enough
to prove that

ρ±
√
μ

|∂βw±|
Ḣ1/2

μ
�mN (U )

(
1 + εμ1/4ρ+ρ−|�V ±�|∞|ζ |<N+1/2>

)
. (4.26)

Recalling that w± = w±[ζ ]ψ and differentiating this relation with respect to ∂β

yields, after multiplication by ε (in order to use the convenient notation ∼),

(1 + ε2μ|∇ζ |2) ε√
μ
∂βw± + 2ε2√μ∇∂βζ · (εw±∇ζ )

∼ ε
√
μ+ ∂βG±ψ± + ε2√μ∇ζ · ∂β∇ψ± + ε2√μ∇∂βζ · ∇ψ±.

Since one can deduce from (2.30), (2.31) and (2.33) that

ε
√
μ+ ∂βG±ψ± ∼ ε

√
μ+ G±ψ±

(β) − ε2√μ∇ · (∂βζV ±),

we get the formula (after multiplication by ρ±)

(1 + ε2μ|∇ζ |2)ερ
±

√
μ

∂βw± ∼ ε
√
μ+ G±(ρ±ψ±

(β)) + ε2√μ∇ζ · ∇(ρ±ψ±
(β)).

Dividing this formula by ε, it is then easy to deduce from Remark 21 (and (2.20)
to handle the first term of the right-hand side) that (4.26) holds. ��
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Lemma 9 allows one to put most of the terms of the second equation of ∂β (4.24)
in the residual. However, this is not the case of the Poisson brackets that appear
in both identities of Lemma 9, because they are not uniformly controlled by the
energy, since they require (when evaluated in Ḣ1/2

μ -norm) a control of (N + 1/2)
derivatives of ζ . Using the control of the derivatives of order (N + 1) provided by
|ζ |H1,N

σ
would induce a singularity when the surface tension goes to zero. Fortu-

nately, this singularity disappears when one takes the difference of the expressions
considered in Lemma 9, which is the quantity that appears in ∂β (4.24). Indeed, one
has

−ε2ρ±V ± · {∂β,w±}∇∂γ ζ − ε

μ
ρ±{∂β,w±}∂γ (Gψ)

∼ −ερ±{∂β,w±}(εV ± · ∇∂γ ζ + 1

μ
∂γ (Gψ)

)

∼ 0,

where (2.30) has been used to derive the second identity.
It follows from this analysis that ∂β (4.24) can be written under the form

∂t∂
αψ + ∂αζ + ε�ρ±V ± · (∇ψ±

(α) + ε∂αζ∇w±)�

− ε

μ
�ρ±w±∂α(Gψ)� ∼ − 1

Bo

1

ε
√
μ
∂αk(ε

√
μζ).

Using the first equation, one can replace 1
μ

Gψ by ∂tζ in this expression,

∂tψ(α) + a∂αζ + ε�ρ±V ± · ∇ψ±
(α)� ∼ − 1

Bo

1

ε
√
μ
∂αk(ε

√
μζ),

with a as in Definition 3. We can then use the identity

� f ±g±� = 〈 f ±〉�g±� + � f ±�〈g±〉
to obtain

∂tψ(α)+a∂αζ+ε〈V ±〉 · ∇ψ(α)+ε�V ±� · ∇〈ρ±ψ±
(α)〉 ∼− 1

Bo

∂αk(ε
√
μζ)

ε
√
μ

.

(4.27)

The quantity ∇〈ρ±ψ±
(α)〉 depends on ψ(α) and ∂αζ and on their first order deriva-

tives. This dependence is trivial in the water-wave case since 〈ρ±ψ±
(α)〉 = 1

2ψ(α);
when ρ− �= 0, it is responsible for the Kelvin–Helmholtz instabilities. The follow-
ing lemma makes this dependence precise.

Lemma 10. One has, with E[ζ ] as defined in (4.10),

ε�V ±� · ∇〈ρ±ψ±
(α)〉 ∼ ε

2
�V ±� · ∇[(1 + 2ρ− H−(G−)−1 ◦ G)ψ(α)

]

−ε2μρ+ρ−�V ±� · E[ζ ](�V ±�∂αζ ).
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Proof. From Proposition 7, we get

1

H±ψ±
(α) = (G±)−1Gψ(α)

−ρ∓εμH∓(G±)−1G(G∓)−1∇ · (∂αζ �V ±�) + (G±)−1r±
α ,

We deduce from this expression that

ε�V ±� · ∇〈ρ±ψ±
(α)〉 = ε

2
�V ±� · ∇[(1 + 2ρ−H−(G−)−1 ◦ G)ψ(α)

]

−ε2μρ+ρ−�V ±� · E[ζ ](�V ±�∂αζ ) + ε�V ±�

×∇〈ρ±H±(G±)−1r±
α 〉.

The lemma follows from the fact that ε�V ±� · ∇〈ρ±H±(G±)−1r±
α 〉 ∼ 0, which is

itself a direct consequence of the bounds on r±
α given in Proposition 7. ��

Thanks to the lemma, we can write (4.27) under the form

∂tψ(α) − εT[U ]∗ψ(α) + aζ(α) − ε2μρ+ρ−�V ±� · E[ζ ](ζ(α)�V ±�)

∼ − 1

Bo

1

ε
√
μ
∂αk(ε

√
μζ).

The proposition is thus a direct consequence of the observation that

1

Bo

1

ε
√
μ
∂αk(ε

√
μζ) ∼ − 1

Bo
∇ · K[ε√μ∇ζ ]∇∂αζ + 1

Bo
K(α)[ε√μ∇ζ ]ζ〈α̌〉.

��

5. Main Results

5.1. The Stability Criterion

5.1.1. A First Criterion We state and comment in this section the stability crite-
rion that ensures the existence of a “stable” solution, that is, of a solution that exists
on a time scale consistent with physical observations.

Before stating this criterion, let us recall that e(ζ ) is defined in Proposition 5,
as

e(ζ ) = sup
V ∈H1/2(Rd )d ,V �=0

μ

(
G̃−1∇ · V,∇ · V

)

|(1 + √
μ|D|)1/2V |22

,

with G̃ = ρ− 1
H+ G+ − ρ+ 1

H− G−. We also define c(ζ ) as

c(ζ ) = e(ζ )2(1 + ε2μ|∇ζ |2∞)3/2

and recall that ϒ = (ρ+ρ−)2 a4

H2

(ρ+ + ρ−)g′

4σ
.
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The (nondimensionalized) stability criterion can then be stated as

ϒc(ζ ) max
|α|�1

∣
∣∂α�V ±�

∣
∣4∞ < inf

Rd
a, (5.1)

with a = 1 + ε�ρ±(∂t + εV ± · ∇)w±� and where we recall that ∂α can be either
a time or space derivative.

In order to measure the extent to which this criterion is satisfied, we introduce
the function d(U ) defined as

d(U ) = inf
Rd

a − ϒc(ζ ) max
|α|�1

∣
∣∂α�V ±�

∣
∣4∞; (5.2)

quite intuitively, we expect the solutions to be more “stable” for large values of
d(U ) than for smaller ones.

Remark 23. In the flat case ζ = 0, one can check that

c(0) = sup
x�0

x

(1 + x)(ρ− tanh(H+x) + ρ+ tanh(H−x))
.

In the general case, it is possible to obtain an upper bound on c(ζ ) by tracking
the constants in Proposition 5. The most important information, however, is that
c(ζ ) ∼ 1 for all the possible values of ε and μ.

5.1.2. An Alternative Version We show in Theorem 5 below that (5.1) ensures
the existence of a “stable” solution if the fluid depths do not vanish. If we assume,
moreover, that the jump of the horizontal velocity is not identically zero at t = 0
(which is the general configuration), it is possible to give a more elegant version of
the stability criterion, namely,

ϒc(ζ )
∣
∣�V ±�

∣
∣4∞ < inf

Rd
a. (5.1’)

Consequently, one replaces d(U ) in (5.2) by

d′(U ) = inf
Rd

a − ϒc(ζ )
∣
∣�V ±�

∣
∣4∞. (5.2′)

Remark 24. It is, of course, possible to give a version with dimensions of the sta-
bility criterion (5.1’). Remarking that (ρ+ + ρ−)g′a = �∂z P± |z=ζ �, where P± is
the pressure in the Euler equations (1.4), we obtain

�−∂z P± |z=ζ � >
1

4

(ρ+ρ−)2

σ(ρ+ + ρ−)2 c(ζ ) |ω|4∞,

where ω = �V ± |z=ζ �. This is the criterion stated in (1.1) in the introduction.
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Remark 25. In the water-wave case (ρ− = 0), (5.1) and (5.1’) reduce to the con-
dition infRd a > 0 (or to the Taylor condition −∂z P|z=ζ > 0 in physical variables).
This condition is the same with or without surface tension.12 This condition is usu-
ally not imposed in the literature when surface tension is present;13 the reason it
appears here is that we are interested only in “stable” solutions. In the water-wave
case, this amounts to discarding configurations where the water is above the air;
though there exists a local solution thanks to surface tension, it is obviously not
“stable” in the intuitive meaning of this word.

5.1.3. A Practical Criterion We end this section with the derivation of a “prac-
tical criterion” that can be used in (shallow water) applications to have an a priori
idea of the stability of an interfacial wave if we are given its physical characteristics
(amplitude and wavelength).

The nondimensionalization performed in Appendix 6.3 (and supported by the
experimental data of [28], for instance) is such that V ± is roughly of size one (this
remains true as long as the dynamics does not depart too much from the linear
analysis, which is the case for “stable” waves until their breaking point). It follows
that a is roughly of size one and that a practical criterion can be stated as

ϒ � 1 : Stable configuration; ϒ 	 1 : Unstable configuration. (5.3)

When ϒ ∼ 1, a refined analysis is of course needed and the full criterion (5.1)
should be used.

Remark 26. It seems that the wavelength does not play any role in (5.3). Its con-
tribution is, however, hidden in the assumption that V ± is of size one, which is true
only in shallow water, that is, when H2/λ2 � 1.

5.2. Initial Conditions

The main step in the proof of the existence of stable solutions is to prove that
the energy E N

σ (U ) defined in (4.11), namely,

E N
σ (U ) = |∇ψ |2

Ht0+2 +
∑

α∈Nd+1,|α|�N

|ζ(α)|2H1
σ

+ |ψ(α)|2Ḣ1/2
μ

,

is controlled for positive times by the energy at t = 0. Since E N
σ (U ) involves time

derivatives, we have to specify which sense we give to the initial energy E N
σ (U 0).

If we denote, for all α ∈ N
d+1, α = (α0, α1, . . . , αd) so that ∂α0

t corresponds to
the time derivatives of ∂α , the problem is to choose initial values U 0

(α) for (U(α))|t=0

(with U(α) = (ζ(α), ψ(α))) when α0 > 0, in terms of U 0 and its spacial derivatives.

12 With the convention that (ρ−)2/σ = 0 if ρ− = 0 and σ = 0.
13 But it is of course imposed in the references considering the zero surface tension limit,

for example [6,7,44,50].
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This can be done by a finite induction. When α0 = 0 (no time derivative), we
take, of course,

U 0
(α) = (∂αζ 0, ∂αψ0 − εw0∂αζ 0)T with w0 = �ρ±w±[εζ 0]ψ0�.

Now, let 1 � n � N and assume that U(β) |t=0 = U 0
(β) has been chosen for all

β ∈ N
d+1 with β0 < n. We remark that for all α with α0 = n we have

U(α) |t=0 = (∂tζ(α′), ∂tψ(α′) + ε∂tw∂α′
ζ
)
|t=0

,

with α′ = (α0 − 1, α1, . . . , αd), and we are therefore led to set initial conditions
for ∂tU(α′), which is achieved by using Proposition 8.

The initial energy, which we denote slightly abusively by E N
σ (U 0), is therefore

defined as

E N
σ (U 0) = |∇ψ0|2

Ht0+2 +
∑

α∈Nd+1,|α|�N

|ζ 0
(α)|2H1

σ
+ |ψ0

(α)|2Ḣ1/2
μ

, (5.4)

with U 0
(α) as constructed above.

Remark 27. One proceeds in the same way to give a formulation of the stability
criterion (5.1) or (5.1’) at time t = 0 in terms of U 0 and its spacial derivatives.

5.3. Local Existence of “stable” Solutions

We state here a theorem ensuring that the interfacial waves equations (1.19)
admit “stable” solutions if the depth of both fluid layers does not vanish for the
initial condition, and if the stability criterion (5.1) or (5.1’) is satisfied. By “stable”
solution, we mean two things.

Firstly, the existence time must not shrink to 0 as σ → 0. More precisely, the
existence time is not measured by the size of the surface tension coefficient σ but
by the size of d(U ).

Secondly, the existence time must not vanish for “acceptable” values of the
physical parameters ε and μ, namely 0 � μ � 1 and 0 � ε � 1.

Recalling that the quantity E N (U 0) has been defined in (5.4) and E N
σ,T in (4.14),

we can now state the following theorem (whose proof is given in Section 5.5).

Theorem 5. Let t0 = 3/2, N � 5 and U 0 = (ζ 0, ψ0)T ∈ L2(Rd) × Ḣ1/2(Rd) be
such that E N

σ (U 0) < ∞ and satisfies the nonvanishing depth condition

∃h±
min > 0, inf

X∈Rd
(1 ± ε±ζ 0(X)) � h±

min.

If U 0 satisfies the stability criterion (5.1), then there exists T > 0 and a unique
solution U ∈ E N

σ,T to (1.19) with initial condition U 0. Moreover,

∀t ∈ [0, T ], E N
σ (U (t)) � C(T )
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and the dependence of T on the initial data if of the form

1

T
= C

(
mN (U 0),

1

d(U 0)

)
,

with mN (U 0) and d(U 0) as defined in (4.15) and (5.2), respectively.

If the jump of the horizontal component of the initial velocity is nonzero, one can
replace the stability criterion (5.1) by its alternative version (5.1’), and get the
following theorem.

Theorem. Let t0 = 3/2, N � 5 and U 0 = (ζ 0, ψ0)T ∈ L2(Rd) × Ḣ1/2(Rd) be
such that E N

σ (U 0) < ∞ and satisfies the nonvanishing depth condition

∃h±
min > 0, inf

X∈Rd
(1 ± ε±ζ 0(X)) � h±

min,

together with the condition ω0 = �V 0,±� �= 0. If U 0 satisfies the stability criterion
(5.1’), then the conclusion of Theorem 5 still holds, with T depending on the initial
data through

1

T
= C

(
mN (U 0),

1

d′(U 0)
,
|∂tω

0|∞ + |∇ω0|∞
|ω0|∞

)
.

Remark 28. 1. The existence time also depends implicitly on H±
H∓ ; since we

address here physical configurations where H+ and H− are of the same order,14

this dependence is harmless.
2. There is also an implicit dependence of T on 1/Bo. Since we are not interested

in situations where capillary forces dominate the effect of gravity (for example
droplets), the Bond number is always larger than one and the dependence on
1/Bo is harmless.

3. It is straightforward to deduce from Theorem 5 some convergence results as
ρ− and/or σ go to zero. For instance, convergence to the water-wave equations
without surface tension is obtained whenρ− and σ go to zero withϒ → 0—and
in particular if (ρ−)2/σ → 0, a result established in [50] for a liquid droplet
with rotational effects under the slightly stronger condition (ρ−)2 � σ 7/3. The-
orem 5 shows that it is possible to take the shallow water limit at the same time,
which justifies the use of the standard (one fluid) shallow water models for the
air/water interface (see Section 6.1 for more details).

5.4. Persistence of “stable” Solutions Over Large Times

We have seen in Remark 25 that in the water-wave case without surface tension,
the stability criterion (5.1) reduces to the Rayleigh–Taylor criterion infRd a > 0.
If this condition is satisfied, we know from [4] that the solution U exists for a time

14 As said in the introduction, this assumption is made for the sake of clarity and the method
presented here could be adapted to other configurations.
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scale O(1/ε). When ε ∼ 1, this results coincides with Theorem 5, but when ε � 1,
Theorem 5 is weaker than [4] since it provides an existence time of order O(1) only.

We propose in this section a stronger version of the stability criterion (5.1) (one
can adapt (5.1’) in the same way) that allows us to show that the solution furnished
by Theorem 5 persists over larger times when ε � 1. This stronger criterion can
be stated as

ε−2γ ϒ2c(ζ ) max
|α|�1

∣
∣∂α�V ±�

∣
∣4∞ < inf

Rd
a, with 0 � γ � 1 (5.5)

(in the case γ = 0, (5.5) coincides of course with (5.1)). This leads us to introduce
the following generalization of (5.2)

dγ (U ) = inf
Rd

a − ϒc(ζ ) max
|α|�1

∣
∣∂α�V ±�

∣
∣4∞, (5.6)

which is used in the statement below.

Theorem 6. Let t0 = 3/2, N � 5 and U 0 = (ζ 0, ψ0)T ∈ L2(Rd) × Ḣ1/2(Rd) be
such that E N

σ (U 0) < ∞ and satisfies the nonvanishing depth condition

∃h±
min > 0, inf

X∈Rd
(1 ± ε±ζ 0(X)) � h±

min.

If moreover U 0 satisfies the strong stability criterion (5.5) for some γ ∈ [0, 1],
then there exists T > 0 and a unique solution U ∈ E N

σ,ε−γ T to (1.19) with initial

condition U 0. Moreover,

∀t ∈ [0, ε−γ T ], E N
σ (U (t)) � C(T )

and the dependence of T on the initial data is of the form

1

T
= C(mN (U 0),

1

dγ (U 0)
).

Remark 29. If (5.5) is satisfied with γ = 1, we recover the same time scale as the
one provided by [4] for water waves. We refer to Section 6 for further discussion.

Remark 30. The practical criterion corresponding to (5.5) is obtained by replacing
ϒ by ε−2γ ϒ in (5.3).

5.5. Proof of Theorems 5, 5’ and 6

We give here the proof of Theorems 5 and 6. The proof of Theorem 5’ requires
only minor adaptations with respect to the proof of Theorem 5; we briefly indicate
them in footnotes.
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5.5.1. Preliminary Results We construct below a symmetrizer for the quasilin-
ear system (5.9). It is of crucial importance that the energy norm associated to this
symmetrizer (see (5.10) below) be (uniformly) equivalent to the energy E N

σ (U )

previously introduced in (4.11). A first ingredient is the coercivity property of 1
μ

G

established in Proposition 3. The second ingredient is the following lemma15 which
shows that, up to lower order terms that can be controlled and under the stability
condition (5.1), (Ins[U ]u, u) is uniformly equivalent to |u|2

H1
σ
.

Lemma 11. Let T > 0, t0 > d/2 and U = (ζ, ψ) ∈ E N
σ,T be such that (2.1) and

(5.1) are uniformly satisfied on [0, T ]. Then the following identities hold uniformly
on [0, T ],
1. For all u ∈ H1

σ (R
d), and with m1(U ) as defined in (4.15), one has

(Ins[U ]u, u) � m1(U )|u|2H1
σ
.

2. There exists a numerical constant c2 such that

1

2
d(U )|u|H1

σ
� (Ins[U ]u, u) + a(U )|u|22 + b(U )|u|2H−1/2 ,

with a(U )=ε2ρ+ρ−e(ζ )
∣
∣�V ±�

∣
∣2∞ and b(U )=ε2√μρ+ρ−c2e(ζ )

∣
∣�V ±�

∣
∣2

Ht0+1 ,
and d(U ) as in (5.2).

3. With | · |〈1/2〉 as defined in (4.13), one has

ε2√μρ+ρ− max
|α|�1

∣
∣∂α�V ±�

∣
∣2∞|u|2〈1/2〉 � m1(U )|u|H1

σ
.

Proof. By definition of Ins[U ] (see Definition 3), one has

(Ins[U ]u, u) = (au, u) − ε2μρ+ρ−(E(u�V ±�), u�V ±�) + 1

Bo
(K∇u,∇u).

In order to give some control on the three components of this expression, we need
the following straightforward estimates,

(inf
Rd

a)|u|22 � (au, u) � m1(U )|u|22
1

(1 + ε2μ|∇ζ |2∞)3/2 |∇u|22 � (K[ε√μζ ]∇u,∇u) � |∇u|22,

15 If one replaces (5.1) by (5.1’) then the estimate of the third point holds only for α = 0.
In the case |α| = 1, we must therefore replace the estimate of the lemma by

ε2√
μρ+ρ−e(ζ )

∣
∣∂α�V ±�

∣
∣2∞|u|2〈1/2〉 �

( |∂α�V ±�|∞
|�V ±�|∞

)2
m1(U )|u|H1

σ
.
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and, using Proposition 5,

0 � (E(u�V ±�), u�V ±�) � e(ζ )

μ

∣
∣(1 + √

μ|D|)1/2(u�V ±�)
∣
∣2
2

� e(ζ )√
μ

|�V ±�|2∞
∣
∣|D|1/2u

∣
∣2
2 + e(ζ )

μ
|�V ±�|2∞|u|22 + c2e(ζ )√

μ
|�V ±�|2

Ht0+1 |u|2H−1/2 ,

where we used the estimate

|(1 + μ1/4|D|1/2)(u�V ±�)|2 � √
c2μ

1/4|�V ±�|Ht0+1 |u|H−1/2 + |�V ±�|∞|u|2
+μ1/4|�V ±�|∞

∣
∣|D|1/2u

∣
∣
2 (5.7)

to derive the last inequality (here c2 is a numerical constant).
The upper bound on (Ins[U ]u, u) given in the lemma is a direct consequence of
these inequalities. For the lower bound, note that they also yield

(Ins[U ]u, u) � A − a(U )|u|22 − b(U )|u|2H−1/2 ,

with

A = (inf
Rd

a)|u|22 − √
μa(U )|u|2〈1/2〉 + 1

Bo

|∇u|22
(1 + ε2μ|∇ζ |2∞)3/2

=
∫

Rd

(
(inf

Rd
a) − √

μa(U )|ξ | + 1

Bo

|ξ |2
(1 + ε2μ|∇ζ |2∞)3/2

)
|̂u(ξ)|2dξ.

Basic calculus shows that under the stability condition (5.1), one has 2A �
d(U )|u|2

H1
σ
, and the result follows. Noting that A remains positive if one replaces

|�V ±�|∞ by max|α|�1

∣
∣∂α�V ±�

∣
∣∞ in a(U ), one gets the last point of lemma as the

first one. ��

5.5.2. The Mollified Quasilinear System Let χ : R → R be a smooth, com-
pactly supported function equal to one in a neighborhood of the origin. For all
ι > 0, we denote by J ι the mollifier J ι = χ(ι|D|). Let us consider the following
mollified version of the two-fluid wave equations (1.19),

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tζ − 1

μ
J ιGψ = 0,

∂tψ + J ιζ + ε
1

2
J ι
(
�ρ±∣∣∇ψ±∣∣2� − 1

μ
(1 + ε2μ|∇ζ |2)�ρ±(w±)2�

)

= − 1

Bo

1

ε
√
μ

J ιk(ε
√
μζ).

(5.8)

From standard results on ODEs, (5.8) has a unique maximal solution U ι = (ζ ι, ψι)

with initial data (ζ 0, ψ0) on a time interval [0, T ι
max ). Proceeding exactly as for the

proof of Proposition 8, one can check that for all α ∈ N
d+1, 1 � |α| � N ,
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the quantity U ι
(α) = (ζ ι

(α), ψ
ι
(α)) (with ζ ι

(α) = ∂αζ ι and ψι
(α) = ∂αψι −

ε�ρ±w±[εζ ι]ψι�∂αζ ι) solves16

∂tU(α)+ J ιA[U ]U(α)+ J ιB[U ]U(α)+ J ιCα[U ]U〈α̌〉 =ε(J ιRα, J ιSα+S′
α)

T (5.9)

(as in Proposition 8, the operators B[U ] and Cα[U ] must be removed if |α| < N ),
where Rα and Sα satisfy the same estimates as in Proposition 8, and where S′

α is
given by

S′
α = −(1 − J ι)

[
�ρ±∂tw

±�ζ(α)
]
.

Our strategy is to derive energy estimates for the system of evolution equations on
(U ι

(α))0�|α|�N formed by (5.8) and (5.9). After showing that these energy estimates
do not depend on the mollifying parameter ι, we will construct by compactness a
solution (U(α))0�|α|�N to the limit system corresponding to ι = 0 (that is, J ι = 1)
on a time interval [0, Tσ ]. The component corresponding to α = 0 of this solution
furnishes a solution to (1.19). Without further analysis, one has a priori Tσ → 0
as σ → 0. An energy estimate on the exact equations—as opposed to the mollified
ones—allows us to prove that the existence time can be taken as in the statement of
Theorem 5. We then prove that the solution persists over larger time if the stronger
criterion (5.5) is satisfied.

5.5.3. Symmetrizer and Energy Since d = 1, 2, we can take t0 = 3/2 > d/2
and any N � 5 satisfies the condition (4.16). A symmetrizer for the “quasilinear”
system (5.9)α is given by

S[U ] = S1[U ] + S2
α[U ] + S3[U ],

where S j [U ] (1 � j � 3) are diagonal operators defined as

S1[U ] = diag(Ins[U ], 1

μ
G),

S2
α[U ] = diag(

1

Bo
K(α)[ε√μ∇ζ ], 1

μ
G(α)), (or S2

α[U ] = 0 if |α| < N ),

S3[U ] = diag(a(U ) + b(U )�−1, 0),

where the constants a(U ) and b(U ) are as in Lemma 11.
Multiplying (5.9) by S1[U ] symmetrizes the highest order terms, but since S1[U ]

is a second order operator, the subprincipal terms need to be symmetrized also
(otherwise the commutator term is not controlled by the energy) and this explains
the presence of S2

α[U ]. The S3 component contains two terms of order 0 and −1,
respectively; its role is to ensure that (S[U ]U,U ) controls the energy E N

σ (U ).

16 For the sake of clarity, we write ζ(α) andψ(α) instead of ζ ι
(α)

andψι
(α)

when no confusion
is possible.
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This discussion motivates the introduction of the energies F l
σ (U ), for all 1 �

l � N ,

F l
σ (U ) =

∑

0�|α|�l

Fα
σ (U ), (5.10)

with

Fα
σ (U ) = 1

2

([S1[U ] + S3[U ]]U(α),U(α)

)
(α �= 0),

F0
σ (U ) = |ζ |2H1

σ
+ 1

μ
(ψ, Gμ[0]ψ) (α = 0),

(5.11)

where U(α) = (ζ(α), ψ(α)). This definition raises at least two important remarks:

1. The component S2[U ] does not appear in the energy; the reason is that
(S2[U ]∂tU(α),U(α)) can be controlled by the energy without using the equation
to replace the time derivative by space derivatives. This is made possible by
the fact that the energy controls both space and time derivatives. This method
was introduced to handle surface tension in the water-wave case in [51] (see
also [11]) and can be adapted here with small modifications.

2. The presence of S3(U ) induces nonsymmetric terms. Since these terms are of
lower order, they do not raise any difficulty as far as local existence is con-
cerned. However, they may destroy the stability criterion since they may inter-
fere with the zero order component (namely, a) of Ins[U ]—or at least restrict
its range of validity (very small values of ρ− for instance). This explains why
the zero order term of S3(U ) is treated with special care in the computations
below.

Let us finally remark that, owing to Proposition 3, Lemma 7 and Lemma 11,
the energy F N

σ (U ) is equivalent to E N
σ (U ), as defined in (4.11),

E N
σ (U ) � (M + 2

d(U )
)F N

σ (U ) and F N
σ (U ) � m1(U )E N

σ (U ), (5.12)

with d(U ) as in (5.2).

5.5.4. Energy Estimates For notational simplicity, we write E = E[ζ ], K =
K[ε√μζ ], T = T[U ] etc. We first consider the case α �= 0. Taking the L2-scalar
product of (5.9) with (S1 + S3)U(α) + S2

αU〈α̌〉 yields
(
(S1 + S3)∂tU(α),U(α)

)+ (∂tU(α), S2
αU〈α̌〉

)

+(S3 J ιAU(α),U(α)

)+ (S3 J ιCαU〈α̌〉,U(α)

)+ (J ιCαU〈α̌〉, S2
αU〈α̌〉

)

+((S1 + S3)J ιBU(α),U(α)

)+ (J ιBU(α), S2
αU〈α̌〉

)

= ε
(
J ι(Rα, Sα + S′

α)
T , (S1 + S3)U(α) + S2

αU〈α̌〉
)
,

where we used the fact that
(
J ιAU(α), S1U(α)

) = 0 and
(
J ιAU(α), S2

αU〈α̌〉
) +(

J ιCαU〈α̌〉, S1U(α)

) = 0. By definition of Fα
σ (U ) we get therefore

d

dt

(
Fα

σ (U ) + (U(α), S2
αU〈α̌〉)

)
=

7∑

j=1

A j + B1 + B2, (5.13)
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with

A1 = 1

2

(
(∂t S1 + ∂t S3)U(α),U(α)), A2 = (U(α), ∂t (S2

αU〈α̌〉)
)
,

A3 = −(S3 J ιAU(α),U(α)

)
, A4 = −(S3 J ιCαU〈α̌〉,U(α)

)

A5 = −(J ιCαU〈α̌〉, S2
αU〈α̌〉

)
, A6 = −((S1 + S3)J ιBU(α),U(α)

)
,

A7 = −(J ιBU(α), S2
αU〈α̌〉

)

and

B1 = ε
(
J ι(Rα, Sα)

T , (S1 + S3)U(α) + S2
αU〈α̌〉

)
,

B2 = ε
(
J ι(0, S′

α)
T , S1U(α) + S2

αU〈α̌〉
)
.

We now give some control on the different components of the right-hand side of
(5.13).

– Control of A1. We can decompose A1 = A11 + A12 + A13 + A14 with

A11 = ([∂t , Ins[U ]]ζ(α), ζ(α)), A12 = ( 1
μ
[∂t , G]ψ(α), ψ(α)),

A13 = ((∂t a)ζ(α), ζ(α)), A14 = ((∂t b)�−1/2ζ(α),�
−1/2ζ(α)).

One gets easily that |A1 j | � εmN (U ) for 2 � j � 4 (this is straightforward for
A13 and A14, and a consequence of Proposition 3.6 of [4] for A12). We thus focus
our attention on A11. First, note that

A11 = ((∂ta)ζ(α), ζ(α)) + 1

Bo

([∂t , K]∇ζ(α),∇ζ(α)
)

−2ε2μρ+ρ−(E(ζ(α)�V ±�), ζ(α)∂t�V ±�
)

−ε2μρ+ρ−([∂t , E]ζ(α)�V ±�), ζ(α)�V ±�
)
.

It is straightforward that the first two components are bounded from above by
εmN (U ). To control the other two components of this identity, we use Proposition
5 and (5.7) to obtain

|A11| � εmN (U )
(
1 + ε2√μρ+ρ−|�V ±�|2∞

∣
∣|D|1/2ζ(α)

∣
∣2
2

)

+ε2√μρ+ρ−|�V ±�|∞|∂t�V ±�|∞
∣
∣|D|1/2ζ(α)

∣
∣2
2. (5.14)

Thanks to the third point of Lemma 11, we get17 |A11| � mN (U ).

– Control of A2. From the definition of S2
α and the fact that time derivatives are

allowed in the energy (4.11), it is easy to get that |A2| � εmN (U ).

17 If we assume (5.1’) rather than (5.1), then one has to adapt this estimate as indicated in
footnote (15).
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– Control of A3. From the definition of S3, it follows that

A3 = a(U )
(
J ι 1

μ
Gψ(α), ζ(α)

)+ b(U )
( 1

μ
Gψ(α), J ι�−1ζ(α)

)
.

Owing to (2.23), we get

|A3| � M |Pψ(α)|2
(
a(U )|Pζ(α)|2 + b(U )|Pζ(α)|H−1

)

and therefore, from the definition of a(U ) and b(U ) and Lemma 11, |A3| �
εmN (U ).

– Control of A4. Since one has

A4 = a(U )
(
J ι 1

μ
G(α)ψ〈α̌〉, ζ(α)

)+ b(U )
( 1

μ
G(α)ψ〈α̌〉, J ι�−1ζ(α)

)
.

and because |G(α)ψ〈α̌〉|2 � εmN (U ) (see (2.32) and Lemma 7), we easily get
that |A4| � εmN (U ).

– Control of A5. As for A4, one gets without any difficulty that |A5| � εmN (U ).
– Control of A6. We decompose A6 = A61 + A62 with

A61 = −(S1 J ιBU(α),U(α)

)
and A62 = −(S3 J ιBU(α),U(α)

)
.

We can first remark that

A61 = −ε
(
Ins[U ]J ιTζ(α), ζ(α)

)+ ε
( 1

μ
GJ ιT∗ψ(α), ψ(α)

)
.

We therefore deduce that |A61| � εmN (U ) from the third point of Lemma 11
and the following identities,

∣
∣(Ins[U ]J ιTζ(α), ζ(α)

)∣∣

� mN (U )
(
1+ε2ρ+ρ−√

μ|�V ±�|2W 1,∞|ζ |2〈N+1/2〉
)
, (5.15)

∣
∣( 1

μ
GJ ιT∗ψ(α), ψ(α)

)∣∣ � mN (U ), (5.16)

whose proofs are given in Appendix 6.3. The component A62 is much easier
to handle and one gets readily that |A62| � εmN (U ).

– Control of A7. One can write

A7 = ε
(
Tζ(α),

1

Bo
K(α)ζ〈α̌〉

)− ε
(
T∗ψ(α),

1

μ
G(α)ψ〈α̌〉

)
.

Using the first point of Proposition 4 and the definition of K(α) to control the
first term, and the last point of Proposition 4 and (2.31)–(2.32) to control the
second one, we get that |A7| � εmN (U ).

– Control of B1. Thanks to the bounds established on Rα and Sα in Proposition 8
and to the third point of Lemma 11, there is no pain in getting |B1| � εmN (U ).
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– Control of B2 From the definition of S′
α , (2.23) and (2.32), we get that

|B2| � mN (U )
(
1 + |ζ(α)|H1

)

� (1 + √
Bo)mN (U ).

Gathering all the information coming from the above estimates, we deduce from
(5.13) that for all 1 � |α| � N ,

d

dt

(
Fα

σ (U
ι) + (U ι

(α), S2
αU ι

〈α̌〉)
)

� (1 + √
Bo)mN (U ι). (5.17)

For α = 0, we first rewrite the equations (5.8) under the form
⎧
⎪⎪⎨

⎪⎪⎩

∂tζ − 1

μ
J ιGμ[0]ψ + εJ ιN1(U ) = 0,

∂tψ + J ι
(

1 − 1

Bo
∇ ·
( 1
√

1 + ε2μ|∇ζ |2 ∇ •
))

ζ + εJ ιN2(U ) = 0,
(5.18)

with

N1(U ) = − 1

εμ

(
Gμ[εζ ]ψ − Gμ[0]ψ),

N2(U ) = 1

2

(
�ρ±∣∣∇ψ±∣∣2� − 1

μ
(1 + ε2μ|∇ζ |2)�ρ±(w±)2�

)

+ 1

εBo
∇ · (1 − 1

√
1 + ε2μ|∇ζ |2 )∇ζ.

We then take the L2 product of (5.18) with
((

1 − 1
Bo�

)
ζ, 1

μ
Gμ[0]ψ) to get

d

dt
F0

σ (U ) � ε|N1(U )|H1
σ
|ζ |H1

σ
+ ε|PN2(U )|2|Pψ |2

� εmN (U ), (5.19)

where the control of N1(U ) and N2(U ) does not raise any particular difficulty.
Summing (5.17) and (5.19) over all α ∈ N

d+1, first with |α| � N − 1 and then
with |α| � N (and recalling that S2

α = 0 if |α| < N ), we deduce that

d

dt

(
F N−1

σ (U ι)
)

� (1 + √
Bo)mN (U ι),

d

dt

(
F N

σ (U ι) +
∑

|α|=N

(U ι
(α), S2

αU ι
〈α̌〉)
)

� (1 + √
Bo)mN (U ι),

and therefore, for any constant C,

d

dt
F̃ N

σ (U ι) � (1 + √
Bo)mN (U ι), (5.20)

with F̃ N
σ (U ι) = F N

σ (U ι) + CF N−1
σ (U ι) +∑|α|=N (U ι

(α), S2
αU ι

〈α̌〉).
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Now, it follows from the definition of S2
α that there exists a constant c3(U ι) � M ,

such that

∑

|α|=N

|(U ι
(α), S2

αU ι
〈α̌〉)| � 1

2
F N

σ (U ι) + c3(U
ι)F N−1

σ (U ι).

As long as C � c3(U ι) (and C � M), one has

1

2
F N

σ (U ι) � F̃ N
σ (U ι) � MF N

σ (U ι).

With the help of (5.12), this in turn implies that

E N
σ (U ι) � 2(M + 2

d(U ι)
)F̃ N

σ (U ι); (5.21)

it follows, therefore, from (5.20) that

d

dt
F̃ N

σ (U ι) � (1 + √
Bo)m̃N (U ι), (5.22)

where m̃N (U ι) = C
(
M, F̃ N

σ (U ι),
1

Bo
,

1

d(U ι)

)
.

5.5.5. Construction of a Solution for Times of Order O(1) We deduce classi-
cally from (5.22) that there exists T > 0 as in the statement of the theorem such
that F̃ N

σ (U ι(t)) � C(T, F̃ N
σ (U 0)) for all t ∈ [0, T ∗ (1 + √

Bo)−1] (we proceed
as in Section 5.2 to define the initial energy F̃ N

σ (U 0)).
Since this time interval does not depend on the mollifying parameter ι, we can

use a standard compactness argument (see, for example, [1] for details in a related
context) to construct an exact solution U ∈ E N

σ,T to (1.19)—note that we use (5.21)

to deduce a bound on E N
σ (U ) from the bound on F̃ N

σ (U ).
As said in the introduction, the Bond number Bo is generally very large for

applications and the existence time of the solution constructed in the previous solu-
tion is much shorter than what can be physically observed. This is the reason we
paid considerable attention to obtaining energy estimates independent of Bo. In
fact, the presence of the prefactor (1+√

Bo) in (5.22) comes only from the control
of B2 in Section 5.5.4. Since B2 disappears if the energy estimates of Section 5.5.4
are performed on the exact equations (1.19) rather than the mollified ones, one can
replace (5.22) for the solution U constructed above by

d

dt
F̃ N

σ (U ) � m̃N (U ), (5.23)

from which we deduce that it is possible to extend the time interval of existence to
[0, T ]. We omit the proof of the uniqueness, which is completely standard.
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5.5.6. Proof of Theorem 6 In Section 5.5.4, all the A j (1 � j � 7) and Bk

(1 � k � 2) are bounded from above by εmN (U ), except A1 and B2. Since B2 is a
mollifying error that vanishes for the exact solution, we can focus our attention on
A1, and more specifically on A11, since A1l (2 � l � 4) are bounded from above
by εmN (U ). For A11, we recall that we only have |A11| � mN (U ). More precisely,
(5.14) yields

|A11| � εmN (U ) + ε2√μρ+ρ−e(ζ )|�V ±�|∞|∂t�V ±�|∞
∣
∣|D|1/2ζ(α)

∣
∣2
2.

Using the third point of Lemma 11, the second component of the right-hand side
can be bounded from above by mN (U ) but not by εmN (U ). The stronger stability
criterion (5.5) allows us to improve this estimate, as shown in the lemma below
(whose proof is very similar to the proof of the third point of Lemma 11 and is
therefore omitted).

Lemma 12. Let T > 0, t0 > d/2 and U = (ζ, ψ) ∈ E N
σ,T be such that (2.1) and

(5.5) are uniformly satisfied on [0, T ]. Then one has

ε2√μρ+ρ−e(ζ ) max
|α|�1

∣
∣∂α�V ±�

∣
∣2∞|u|2〈1/2〉 � εγ m1(U )|u|H1

σ
.

Owing to this lemma, we get |A11| � εγ mN (U ) and (5.23) can therefore be
improved to

d

dt
F̃ N

σ (U ) � εγ m̃N (U ),

from which the theorem follows easily.

6. Applications

Physical implications of the stability criterion (5.1) will be investigated in sep-
arate works, but in order to reenforce its relevance, we describe some of them
briefly. We also show how Theorem 5 can be used to give a rigorous justification
to two-fluid asymptotic models.

In the main, there are two different kinds of applications. The first is provided
by air–water interfaces. In this case, stability of interfacial waves is a consequence
of the smallness of ρ− (as in the zero density/zero surface tension limit considered
in [50], for instance). The second application concerns internal waves for which
both densities are comparable and stability is a consequence of the smallness of the
shear velocity at the interface.

6.1. Air–Water Interface in Coastal Oceanography

We are interested here in applying the above theoretical results to typical config-
urations in coastal oceanography (see �1 in the introduction). We want to investigate
two things in particular:
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1. Can we use Theorem 6 to confirm that the standard models used in coastal
oceanography (for example Boussinesq) do not need any correction due to the
presence of the air?

2. Can we still neglect the density of the air near the breaking point?

Before addressing these questions, let us give some numerical values for the
physical parameters involved. The density of the air (at one atmosphere and around
20 Celsius) is ρ− = 1.2 kg m−3. For sea water, the density is ρ+ = 1025 kg m−3.
These values lead to ρ− = 0.001 and ρ+ = 0.999. For the air/water interface, the
surface tension coefficient is σ = 0.073 N m−1, and we take for the acceleration
of gravity g = 9.81 m s−2.

We also assume here that the air layer has the same height H+ = H− = H as
the water layer (this is, of course, not realistic, but as said in the introduction, the
techniques used here could certainly be generalized to, say, an air layer of infinite
depth, and the qualitative behavior should remain the same18).

6.1.1. Validity of the One-Fluid Long Wave Models We are interested in long
waves models for which ε+ ∼ μ+ � 1. It is known [4,20] in the one-fluid case
that these models correctly describe the solutions of the water-wave equations for
times of order O(1/ε).

Let us consider first a typical “long wave” over a depth H+ = H = 5 m,
of wavelength λ = 35 m, and amplitude 0.1 m. As said in Remark 29, in order
to show that taking into account the density of the air does not yield significant
modifications to the standard one-fluid theory, we have to check that the strong
stability criterion (5.5) is satisfied,19 with γ = 1. We rather check that its practical
version (see Remark 30) is satisfied, which is the case since one computes easily
that ε−2ϒ ∼ 4.10−4 � 1. The solutions of the one-fluid and two-fluid models
exist therefore on the same time scale.

We also know from [4] (one-fluid) and [12] (two-fluid) that these solutions are
correctly described by standard long wave models (Boussinesq, KdV, etc.). The
influence of the air density and the surface tension on these models being negligi-
ble (for instance, surface tension induces a modification of the dispersive term of
the KdV model of less than 10−4%), this confirms the relevance of the one-fluid
models (without surface tension) to describe such phenomena.

6.1.2. Kelvin–Helmholtz Instabilities for Breaking Waves and White Caps A
commonly observed value for ε+ near the breaking point of the wave is ε+ ∼ 0.4,
corresponding to an amplitude a = 6 m for a depth H+ = 15 m. One computes
ϒ ∼ 0.27, which is not small enough to give any definitive conclusion on the pres-
ence or absence of Kelvin–Helmholtz instabilities. We therefore have to use the

18 Since ρ− is very small, the influence of H− on the typical length H is negligible. In
our examples, only the third decimal of H is changed if H− is taken equal to +∞.
19 For these values, the Bond number is Bo ∼ 1.7.108. A local well-posedness result rely-

ing only on the extra control furnished by surface tension, see Section 5.5.5 would therefore
give an existence about

√
Boε−1 ∼ 6.105 times smaller than Theorem 6.
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exact criterion (5.1). This requires further experimental work, but it is likely that
for some configurations, Kelvin–Helmholtz instabilities are at the origin of wave
breaking. This might be the case for instance for spilling breakers (as opposed to
plunging breakers). It is not understood which kind of singularity of the water-wave
equations creates such breakers; this might be because it is a two-fluid singular-
ity similar to the “white caps” observed in presence of wind. The occurrence of
these white caps is commonly explained by the linear Kelvin criterion stated in
the introduction. It would be interesting to check whether a nonlinear version of
our nonlinear stability criterion (5.1) with nonzero background explains part of the
discrepancies of this theory (see [13]).

6.2. Internal Waves

Waves at the interface of two immiscible fluids of comparable density are called
internal waves. Waves at the interface of two layers of water of different density
also carry the same name and are often described using the two-fluid formalism
(see the recent review [30]). The stability criterion (5.1) is discussed here in these
two configurations.

6.2.1. The Koop–Butler Experiment We consider a classical experiment by
Koop and Butler [37]. The upper fluid is deionized water (ρ− = 998 kg m−3)
and the lower fluid is Freon TF (ρ+ = 1563 kg m−3). The depths of both layers
in this experiment are H+ = 1.366 cm and H− = 6.948 cm. One gets therefore
ρ+ = 0.610, ρ− = 0.390 and H = 1.989 cm.

The interfacial tension coefficient σ is not provided in [37], but the chemistry
literature suggests that σ = 0.005 N m−1 is a reasonable value. Koop and Butler
observed different interfacial waves of amplitude ranging from a = 0.034 cm to
a = 0.68 cm. The dimensionless parameter ϒ , therefore, satisfies 5.39 × 10−7 �
ϒ � 0.086. According to the practical criterion (5.3), these correspond to stable
configurations. Though the practical version of the strong stability criterion (5.5)
(see Remark 30) is satisfied, we do not discuss large time existence here because
the viscosity of Freon TF should then be taken into account.

6.2.2. The Grue et al. Experiment and Oceanic Internal Waves The con-
figuration studied in [28] is slightly different from the experiment mentioned in
the previous section. Indeed, the authors do not consider two immiscible fluids, but
brine ρ+ = 1022 kg m−3 and water ρ− = 999 kg m−3 (ρ+ = 0.506, ρ− = 0.494).
This configuration is thus closer to what is observed for oceanic internal waves.

The difference with the case of two immiscible fluids is that there is a thin
zone (pycnocline) in which the density is allowed to vary continuously between ρ+
and ρ−. This continuous stratification is known to have a stabilizing role, which is
important for small amplitude interfacial waves.

It seems, therefore, that the physical framework studied in the present article
differs from [28]. However, water-brine interfaces have been described with great
success with models based the two-fluid equations (1.3)–(1.8) (see [30] and refer-
ences therein). It follows from our analysis that surface tension must be included
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in these equations if we want to use them to describe water-brine interfaces. This
surface tension is somehow artificial, so a natural question is to know which value
it should be given.

We propose here to use our analysis and the experiments of [28] to sketch a
method to find a realistic value for σ . The main idea is that its value should be such
that the Kelvin–Helmholtz instabilities predicted by the theoretical analysis should
coincide with those observed in the experiments.

In [28], the depth of the two layers are respectively H+ = 0.62 m and H− =
0.15 m, so that H = 0.243 m.

The authors report a set of measurements (Fig. 7 in [28]) for interfacial waves
of amplitude ranging from a = 0.033 m to a = 0.226 m. Kelvin–Helmholtz insta-
bilities are not observed up to a = 0.184 m but are present for the experiment with
largest amplitude a = 0.226 m. It is therefore reasonable to assume that the critical
amplitude is a = 0.2 m. According to the practical criterion (5.3), this critical value
should correspond to ϒ ∼ 1. We can then use this relation to get σ = 0.095 N m−1;
this value is comparable to the air–water surface tension, but slightly higher, which
is not surprising since the stabilizing effects of the continuous stratification are
taken into account with such a choice. Further investigation is required to check
whether this approach can prove useful in the study of oceanic internal waves.

6.2.3. Formula for the Maximal Amplitude of Interfacial Waves The experi-
ment of [28] cited above suggests that there is a critical amplitude for progressive
waves above which their propagation is made impossible by the appearance of
Kelvin–Helmholtz instability. We propose here a simple formula for this maxi-
mal amplitude. Assuming that the appearance of Kelvin–Helmholtz instabilities
corresponds to ϒ ∼ 1 (which is supported by our mathematical analysis and the
above experimental comparisons), we find

a4 = 4σ H2

(ρ+ρ−)2(ρ+ + ρ−)g′ . (6.1)

For the Koop–Butler experiment, this formula gives a ∼ 1cm, which is larger than
the amplitude of the wave observed. This is in accordance with the fact that these
waves do not exhibit Kelvin–Helmholtz instabilities.

For a wave (air water interface) propagating over a depth H ∼ 10m, we find
a ∼ 7.5m; wave breaking is therefore likely to occur before Kelvin–Helmholtz
instabilities.

6.3. Full Justification of Two-Fluid Asymptotic Models

We can use Theorem 6 to provide a rigorous justification of asymptotic models
for internal waves, on the relevant time scale (to our knowledge, the only rigorous
result so far is a justification of the Benjamin–Ono equations on the too-short time
scale O(Bo−1/2) that can be found in [47]):

Many asymptotic regimes and models exist in the literature ([16,21,46] and ref-
erences therein). Theorem 6 can be used to justify rigorously most of them along
the procedure used in [4] for water-wave models.



A Stability Criterion for Two-Fluid Interfaces and Applications 555

– (Consistency) One proves that any family of smooth enough, uniformly
bounded, solutions to (1.19) existing on the relevant time scale solves the
asymptotic model up to a small residual. This is done for a wide class of
regimes in [12].

– (Convergence) One proves that such exact solutions to the two-fluid equations
(1.19) remain close to exact solutions of the asymptotic model. From the previ-
ous step, this only requires energy estimates on the asymptotic model (generally
much easier than for the full two-fluid equations).

– (Existence) One proves that smooth, uniformly bounded family of solutions to
(1.19) whose existence is assumed in the previous steps exist indeed. As in the
water-wave case, this is the most difficult step. It is here ensured by Theorem 6
if the stability criterion (5.5) is satisfied (which is the case for the stable waves
of the above experimental observations).

Let us for instance implement this procedure in the “shallow-water/shallow-
water” regime characterized by ε ∼ 1, μ � 1. In this regime, the interface eleva-
tion ζ and v = ∇ψ are commonly described [16,21] by the solution (ζ a, va) of
the following system (for notational simplicity, we give it for d = 1, but there is no
additional difficulty to take into account the nonlocal generalization of this system
to the case d = 2 derived in [12] and studied in [29]),

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tζ
a + ∂x

[ h−(ζ a)h+(ζ a)

ρ+h−(ζ a) + ρ−h+(ζ a)
va
]

= 0

∂tv
a + ∂xζ

a + ε
1

2
∂x

[ ρ+h−(ζ a)2 − ρ−h+(ζ a)2

[ρ+h−(ζ a) + ρ−h+(ζ a)]2 (v
a)2
]

= 0

(6.2)

with h−(ζ a) = H−(1 − ε−ζ a) and h+(ζ a) = H+(1 + ε+ζ a). We justify the
approximation furnished by the solutions of this system in the following sense.

Theorem 7. Let U 0 = (ζ 0, ψ0)T be as in the assumptions of Theorem 5, and
assume that (5.1) is satisfied uniformly with respect to μ ∈ (0, 1). Let also v0 =
∂xψ

0 and assume that

inf
Rd

(
1 − ε2ρ+ρ− (H+ + H−)2

[ρ+h−(ζ 0) + ρ−h+(ζ 0)]3 (v
0)2
)
> 0 (6.3)

Then there exists T > 0 such that for all μ ∈ (0, 1):

(i) there exists a unique solution (ζ a, va) ∈ C([0, T ]; H N−1/2(R)2) to (6.2) with
initial condition (ζ 0, v0);

(ii) the solution U provided by Theorem 5 exists on [0, T ]. Moreover, with v =
∂xψ , one has

|(ζ, v) − (ζ a, va)|L∞([0,T ]×Rd ) � μC(U 0).

Remark 31. Condition (6.3) ensures the hyperbolicity of (6.2); it is not present for
the standard one-fluid shallow-water equations. An asymptotic expansion of the
instability operator Ins[U ] shows that the term responsible for the Kelvin–Helm-
holtz instability (the one involving E[ζ ]) contributes to (6.3), which was suspected
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but not rigorously established so far. The shallow-water/shallow-water model (6.2),
however, is certainly too unstable and the analysis performed here on the full Euler
equations shows that the surface tension term should be kept to control high fre-
quency instabilities.

Proof. For the first point, we remark that |ζ 0|H N−1/2 + |v0|H N−1/2 � mN (U ); the
existence of a solution (ζ a, va) ∈ C([0, T ]; H N−1/2(R)2) to (6.2) with initial con-
dition (ζ 0, v0) (with T = T (mN (U ))) is straightforward because the assumption
made in the statement of the theorem insures the hyperbolicity of (6.2), as shown
in Theorem 1 of [29].

Taking a smaller T if necessary, it is possible to assume that the solution of
Theorem 5 exists also on [0, T ]; this theorem ensures also that sup[0,T ] E N

σ (U ) is
uniformly bounded with respect to μ ∈ (0, 1). Thanks to the consistency result
provided by Theorem 4 of [12], this ensures that (ζ, v) solves (6.2) up to a resid-
ual μ(rμ

1 , rμ
2 ), with (rμ

1 , rμ
2 ) uniformly bounded with respect to μ ∈ (0, 1) in

C([0, T ]; H1(R)2). A standard error estimate on the hyperbolic system (6.2) yields
therefore

|(ζ, v) − (ζ a, va)|L∞([0,T ];H1(R)2 � μC(U 0),

and the estimate given in the theorem follows from the continuous embedding
H1(R) ⊂ L∞(R). ��

Appendix A: Nondimensionalization of the Equations

It is quite straightforward to nondimensionalize the space variable X and the
interface deformation ζ using the quantities a, λ, H± and H introduced in Sec-
tion 1.3. We thus define

X̃ = X

λ
, ζ̃ = ζ

a
,

where the tildes are used to denote dimensionless variables or unknowns. The non-
dimensionalization of the time variable t and the velocity potential ψ requires the
knowledge of a reference velocity c. Such a value can be obtained by direct obser-
vation, but it is preferable to have a formula for c in terms of the above quantities.
The best way to have access to such information is through the linear analysis of the
equations. Neglecting all the nonlinear terms in (1.16), one easily gets the system
(see Remark 15 for the expression of G[0])
{
∂tζ − G[0]ψ = 0,
∂tψ + g′ζ = 0,

with G[0] = |D| tanh(H+|D|) tanh(H−|D|)
ρ+ tanh(H−|D|) + ρ− tanh(H+|D|) .

In the shallow water limit, that is, when H± is small compared to the typical wave-
length λ, one has G[0] ∼ −H� (it is possible, but not necessary at this point,
to give a precise meaning to the symbol ∼). The above linearized equation then
reduces to a wave equation of speed c, with

c2 = g′ H+H−

ρ+ H− + ρ−H+ = g′H.
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We then use this velocity to nondimensionalize t and ψ ,

t̃ = t

λ/c
, ψ̃(X̃) = ψ(X)

ψ0
with ψ0 = g′aλ

c
.

(the nondimensionalization of ψ is obtained via the equation ∂tψ + g′ζ = 0).
We now remark that

G±[ζ ]ψ = ψ0

H
G±
μ [εζ̃ , H±]ψ̃ and thus G[ζ ]ψ = ψ0

H
Gμ[εζ̃ ]ψ̃,

where G±
μ and Gμ are as defined in (2.15) and (1.18). Since moreover

∇ψ± = ψ0

λ
∇̃ψ̃±,

it is straightforward to deduce (1.19) from (1.16).

Appendix B: Proof of (2.19), (2.23), (2.33), (2.34), (2.35) and (2.36)

Before proving these identities, we give some remarks of general interest:

– The following classical product estimate holds

∀s � 0 and t0 > d/2, | f g|Hs � | f |Hs∨t0 |g|Hs . (B.1)

– For functions defined on the strip S±, the above formula can be used in the
horizontal directions to obtain

∀s � 0 and t0 > d/2, ‖�s( f g)‖2 � ‖ f ‖L∞
z Hs∨t0 ‖�s g‖2. (B.2)

– For all k ∈ N, we denote by Hs,k(S) the space

Hs,k(S±)={ f ∈ L2(S±), ‖ f ‖Hs,k < ∞}, ‖ f ‖2
Hs,k =

k∑

j=0

‖�s−k∂k
z u‖2

2.

(B.3)

– The space Hs+1/2,1(S±) is continuously embedded in L∞
z Hs(S±) (this is a

variant of the trace lemma),

∀s � 0, ‖ f ‖L∞
z Hs � ‖ f ‖Hs+1/2,1 . (B.4)

Finally, let us state the following lemma, which will be used several times.

Lemma 13. Let t0 > d/2 and u ∈ Ḣ1(S±), g ∈ Hs,1(S±)d+1 be such that
{∇μ± · P(�±)∇μ±

u = ∇μ± · g,
u|z=0 = 0, ∂nu|z=∓1 = −ez · g|z=∓1 .

Then, for all 0 � s � t0 + 1,

‖�s∇μ±
u‖2 � M‖�sg‖2 and ‖∇μ±

u‖Hs,1 � M
(‖�sg‖2+‖�s−1∂zg · ez‖2

)
.
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Proof. The first estimate is a consequence of Proposition 2.4 of [4]. For the sec-
ond estimate, and since μ± is assumed to be bounded, it is enough to prove that
‖�s−1∂2

z u‖2 � M‖g‖Hs,1 . This follows immediately from isolating the compo-

nent ∂2
z u in the equation ∇μ± · P∇μ±

u = ∇μ± · g and using the first estimate to
control the terms involving u. ��

B.1. Proof of (2.19), (2.23) and (2.24)

B.1.1. Proof of (2.19) The case s = 0 being proved in Prop. 3.4 and Eq. (3.3) of
[4], we focus on the case s > 0. Remarking first that |Pψ±|Hs = |P(�sψ±)|2,
we can deduce from (2.19) with s = 0 that

√
μ|Pψ±|Hs � M‖∇μ±

(�sψ±)h‖
� M

(‖∇μ±
((�sψ±)h − �sφ±)‖2 + ‖�s∇μ±

φ±‖2,

where (�sψ±)h stands for the solution to (2.17) with Dirichlet data�sψ±. Remark-
ing that u = (�sψ±)h −�sφ± is as in Lemma 13 with g = [�s, P±]∇μ±

φ±, we
have

‖∇μ±
((�sψ±)h − �sφ±)‖2 � ‖g‖2

� M‖�s−1∇μ±
φ±‖2, (B.5)

where we used the commutator estimate (2.29) to derive the second inequality. The
end of the proof is then straightforward.

B.1.2. Proof of (2.23) Integrating by parts in (2.17), one easily gets
∫

Rd
�sG±ψ1�

sψ2 =
∫

S±
�s(P(�±)∇μ±

φ±
1 ) · �s∇μ±

ψ
†
2 , (B.6)

where φ±
1 denotes the solution to (2.17) with Dirichlet data ψ1, while

ψ
†
2 (·, z) = χ(

√
μ±z|D|)ψ2,

with χ a smooth compactly supported function equal to 1 in a neighborhood of the
origin. One then gets

∣
∣(�sG±ψ1,�

sψ2)
∣
∣ � ‖�s(P(�±)∇μ±

φ±
1 )‖2‖�s∇μ±

ψ
†
2 ‖2.

From (B.2) one gets, for all 0 � s � t0 + 1,

‖�s(P(�±)∇μ±
φ±

1 )‖2 � (1 + ‖P(�±) − Id ‖L∞
z Ht0+1)‖�s∇μ±

φ±
1 ‖2

� M‖�s∇μ±
φ±

1 ‖2,

where the second identity follows from (2.7); (2.23) then follows from (2.18) and
the observation that ‖�s∇μ±

ψ
†
2 ‖2 � √

μ|Pψ2|Hs (Proposition 2.2 of [4]).
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B.1.3. Proof of (2.24) Let us first prove (2.24) in the case 1 � s � t0 + 1. With
the same notations as in Section 6.3, one gets

([�s, G±]ψ1,�
sψ2) =

∫

S±
[�s, P(�±)]∇μ±

ψ
h
1 · �s∇μ±

ψ
†
2

+
∫

S±
P(�±)∇μ±[�sψ

h
1 − (�sψ1)

h] · �s∇μ±
ψ

†
2 .

Using the Cauchy–Schwarz inequality, (2.29) (for the first component of the right-
hand side) and (B.5) (for the second component) we get

∣
∣([�s, G±]ψ1,�

sψ2)
∣
∣ � M‖�s−1∇μ±

ψ
h
1 ‖2‖�s∇μ±

ψ
†
2 ‖2.

Since s − 1 � 0, (2.18) and the observation that ‖�s∇μ±
ψ

†
2 ‖2 � √

μ|Pψ2|Hs

yield the result.
Let us now prove (2.24) for 0 � s � 1. Let us write first that

([�s, G±]ψ1,�
sψ2)

= −(�s[�, G±]�−1ψ1,�
sψ2) + ([�s+1, G±]�−1ψ1,�

sψ2).

Since s + 1 � 1, we can use the computations above to show that the second term
of the right-hand side satisfies the desired estimate. We thus focus on the first term.
Proceeding as above, we write

(�s[�, G±]�−1ψ1,�
sψ2) =

∫

S±
�s[�, P(�±)]∇μ±

(�−1ψ1)
h · �s∇μ±

ψ
†
2

+
∫

S±
�s(P(�±)∇μ±[�(�−1ψ1)

h−ψ
h
1 ]) · �s∇μ±

ψ
†
2 .

Since ‖�s[�, P(�±)]‖Hs,0→L2(S±) + ‖�s
(
P(�±) · )‖Hs,0→L2(S±) � M (recall

that 0 � s � 1), we deduce (proceeding as for (B.5) for the second component)
that

∣
∣(�s[�, G±]�−1ψ1,�

sψ2)
∣
∣ � M‖�s∇μ±

(�−1ψ1)
h‖2‖�s∇μ±

ψ
†
2 ‖2,

and the result follows as for the case s � 1.

B.2. Proof of (2.33), (2.34), (2.35) and (2.36)

Throughout this proof, we assume that �± is a regularizing diffeomorphism of
the form �±(X, z) = (X, z + σ±(X, z)) with σ± as in Example 2. We denote by
d j P±(h) ( j ∈ N) the j th derivative of the mapping ζ �→ P(�±) in the direction
h = (h1, . . . , h j ), and by d jφ(h) the j-th derivative in the direction h of ζ �→ φ,
where φ solves (2.17).
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B.2.1. Proof of (2.33) With the same notations as in Section 6.3, one has

(�s−1/2G±ψ, ϕ) =
∫

S+
�s(P(�±)∇μ±

φ±) · �−1/2∇μ±
ϕ†;

since ‖�−1/2∇μ±
ϕ†‖2 � μ1/4|ϕ|2, it follows after differentiating this identity with

respect to ζ and by a duality argument that for all 0 � s � t0 + 1, one has

|d j G±(h)ψ |Hs−1/2 � μ1/4
∑

‖�sd j1 P±(hI )∇μ±
d j2φ(hI I )‖2,

where the summation is taken over all integers j1 and j2 such that j1 + j2 = j
and on all the j1 and j2-uplets hI and hI I whose coordinates form a permuta-
tion of the coordinates of h. The result follows therefore from the estimate, for all
0 � s � t0 + 1/2 (and using Notation 3),

‖�sd j1 P±(hI )∇μ±
d j2φ(hI I )‖2 � Mε j√μ|hl |Hs+1/2 |ȟl |Hs∨t0+3/2 |Pψ |Hs∨t0+1/2;

the rest of this section is thus devoted to the proof of (B.7). We first state three
lemmas and use them to prove the result, and then we prove the lemmas.

Lemma 14. For all 0 � s � t0 + 1, k ∈ N
∗, h = (h1, . . . , hk) ∈ Hs∨t0+1(Rd)k

and 1 � l � k, one has

‖�sdk P±(h)‖2 � Mεk |hl |Hs+1/2 |ȟl |Hs∨t0+1 .

Lemma 15. For all 0 � s � t0 + 1/2, k ∈ N
∗,h = (h1, . . . , hk) ∈ Ht0+2(Rd)k

and ψ ∈ Ḣ s∨t0+1(Rd). Then dkφ(h) satisfies

‖∇μ±
dkφ(h)‖Hs∨t0+1/2,1 � Mεk√μ|h|Hs∨t0+3/2 |Pψ |Hs∨t0+1/2 .

Lemma 16. Under the assumptions of Lemma 15, one also has

‖�s∇μ±
dkφ(h)‖2 � Mεk√μ|hl |Hs+1/2 |ȟl |Hs∨t0+3/2 |Pψ |Hs∨t0+1/2 .

Let us assume first that hl ∈ hI . Then, from (B.1) and (B.4), one deduces

‖�sd j1 P±(hI )∇μ±
d j2φ(hI I )‖2 � ‖�sd j1 P±(hI )‖2‖∇μ±

d j2φ(hI I )‖Hs∨t0+1/2,1 ,

and (B.7) easily follows from the first two lemmas.
Now, if hl ∈ hI I then we write, rather,

‖�sd j1 P±(hI )∇μ±
d j2φ(hI I )‖2 � ‖d j1 P±(h)‖L∞ Hs∨t0 ‖�s∇μ±

d j2φ(hI I )‖2,

and Lemma 16 gives (B.7) (the bound on ‖dk P±(h)‖L∞ Hs∨t0 being a straightfor-
ward consequence of (B.7) below).

Proof of Lemma 14. Computing explicitly the matrix P(�±) given by (2.5), one
obtains

P(�±) =
⎛

⎝
Idd×d + ∂zσ

± −√
μ∇σ±

−√
μ(∇σ±)T 1 + μ|∇σ±|2

1 + ∂zσ± ;

⎞

⎠ . (B.7)

Since ζ �→ σ± is linear, it is easy to deduce the result from (B.1) and the regular-
izing properties of σ± as given in Example 2. ��
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Proof of Lemma 15. By differentiating (2.17) k times with respect to ζ in the
direction h, one gets

{∇μ± · P(�±)∇μ±
dkφ±(h) = ∇μ± · g,

dkφ±(h)|z=0 = 0, ∂ndkφ±(h)|z=∓1 = −ez · g|z=∓1 ,
(B.8)

where g is a sum of terms of the form

dk1 P±(hI )∇μ±
dk2φ±(hI I ) =: A(hI ,hI I ), (B.9)

where k1, k2 ∈ N, k2 < k, k1 + k2 = k, and hI and hI I are respectively k1 and
k2-uplets whose coordinates form a permutation of the coordinates of h. Since by
Lemma 13 we have

‖∇μ±
dkφ±(h)‖Hs∨t0+1/2,1 � M‖g‖Hs∨t0+1/2,1 ,

we can deduce the result from the fact that

‖A(hI ,hI I )‖Hs∨t0+1/2,1 � Mεk√μ|h|Hs∨t0+3/2 |Pψ |Ht0+1 , (B.10)

which we now turn to prove. From (B.9) and (B.2), one gets

‖A(hI ,hI I )‖Hs∨t0+1/2,1 � ‖∇μ±
dk2φ(hI I )‖Hs∨t0+1/2,1

×(‖dk1 P±(hI )‖L∞
z Hs∨t0+1/2 + ‖∂zdk1 P±(hI )‖L∞

z Ht0 )

and therefore, using (B.7) and the fact that ζ �→ σ±[ζ ] s linear,

‖A(hI ,hI I )‖Hs∨t0+1/2,1 � Mεk1 |hI |Hs∨t0+3/2‖∇μ±
dk2φ(hI I )‖Hs∨t0+1/2,1 .

Since k2 < k, one can deduce (B.10) by a simple induction on k (the case k = 0
being a consequence of (2.18)). ��
Proof of Lemma 16. Proceeding as in the proof of Lemma 15, we can check that
the result follows from

‖�s A(hI ,hI I )‖2 � Mεk√μ|hl |Hs+1/2 |ȟl |Hs∨t0+3/2 |Pψ |Hs∨t0+1/2 , (B.11)

that we now turn to prove. We have to distinguish two cases:

– If hl belongs to hI we use (B.2) and (B.4) to write

‖�s A(hI ,hI I )‖2 � ‖�sdk1 P±(hI )‖2‖∇μ±
dk2φ(hI I )‖L∞

z Hs∨t0

� ‖�sdk1 P±(hI )‖2‖∇μ±
dk2φ(hI I )‖Hs∨t0+1/2,1 ,

and (B.11) follows directly from Lemmas 14 and 15.
– If hl belongs to hI I , we rather write

‖�s A(hI ,hI I )‖2 � ‖dk1 P±(hI )‖L∞
z Hs∨t0 ‖�s∇μ±

dk2φ(hI I )‖2,

and (B.11) follows easily by induction as in the proof of Lemma 15. ��
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B.2.2. Proof of (2.34) With the same notations as in Section 6.3, one has

(�s−1/2G±ψ, ϕ) =
∫

S+
�s+1/2(P(�±)∇μφ±) · �−1∇μϕ†;

since ‖�−1∇μϕ†‖2 � √
μ|ϕ|2, it follows after differentiating this identity with

respect to ζ and by a duality argument that for all 0 � s � t0 + 1, one has

|d j G±(h)ψ |Hs−1/2 � √
μ
∑

‖�s+1/2d j1 P±(hI )∇μ±
d j2φ(hI I )‖2,

where the summation is as in Section 6.3. The result is therefore a direct conse-
quence of (B.7) (with a shift of 1/2 derivative).

B.2.3. Proof of (2.35) We proceed as in Section 6.3 after differentiating (B.6)
with respect to ζ . One thus gets

∣
∣(�sd j G±(h)ψ1,�

sψ2)
∣
∣ � √

μ
∑

‖�sd j1 P±(hI )∇μ±
d j2φ±(hI I )‖2|Pψ2|Hs ,

where the summation is the same as in the previous section. Elliptic estimates on
(B.8) and an induction on j show that

‖�sd j1 P±(hI )∇μ±
d j2φ±(hI I )‖2 � Mε j√μ|h|Hs∨t0+1 |Pψ1|Hs ,

and the result follows.

B.2.4. Proof of (2.36) We proceed as for (2.35) but use (B.7) to control
‖�sd j1 P±(hI )∇μ±

d j2φ±(hI I )‖2.

Appendix C: Proof of (5.15) and (5.16)

C.1. Proof of (5.15)

We prove (5.15) in the case ι = 0 (that is, J ι = 1); the generalization to the
case ι > 0 requires only simple technical modifications and is thus omitted.

By definition of Ins[U ], one has
(
Ins[U ]Tζ(α), ζ(α)

) = −ε2μρ+ρ−(�V ±� · E(�V ±�Tζ(α)), ζ(α)
)

+(aTζ(α), ζ(α)
)− 1

Bo

(∇ · K∇Tζ(α), ζ(α)
)
.

The fact that the second and third terms of this identity are controlled by mN (U )

is a direct consequence of the last two points of Proposition 4. We are thus led to
control the first term. Let us remark first that, by definition of T[U ],
(
�V ±� · E(�V ±�Tζ(α)), ζ(α)

) = (
�V ±� · E(�V ±�∇ · (ζ(α)V +)), ζ(α)

)

+ρ− H−(�V ±� · E(�V ±�G(G−)−1∇ · (ζ(α)�V ±�)), ζ(α)
)

= A1 + A2.
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Owing to (5.7), the inequality (5.15) follows from the estimate

ε2μρ+ρ−(|A1| + |A2|
)

� mN (U )

×
[
1+ε2ρ+ρ−(∣∣(1+μ1/4|D|1/2)F

∣
∣2
2+∣∣(1 + μ1/4|D|1/2)G

∣
∣2
2

)]
, (C.1)

with F = ζ(α)�V ±� and G = ζ(α)∂ j∇�V ±�, which we prove now.

– Control of A1. We decompose further A1 into A1 = A11 + A12 + A13 + A14
with (summing over the repeated index j , denoting F̃ = (1 + μ1/4|D|1/2)F
and with G̃ as in (3.16)),

A11 = ((1+√
μ|D|)1/2(ζ(α)V

+
j ∂ j �V ±�),

∇
|D|PG̃−1∇ · F

)
,

A12 =μ1/4(∂ j [|D|1/2, V +
j ]F,P′G̃−1∇ · F

)
,

A13 =−(V +
j F̃,

(1+√
μ|D|)

(1+μ1/4|D|1/2)

∇∂ j

|D|2 Op(τ )∇ · F̃
)
,

A14 =−(V +
j F̃,

(1+√
μ|D|)

(1+μ1/4|D|1/2)

∇∂ j

|D|2 [P2G̃−1 1

(1+μ1/4|D|1/2)
−Op(τ )]∇ · F̃

)
,

where P′ = |D|
1+μ1/4|D| and the symbol τ is given by (with S± as in (3.3))

τ(X, ξ) = |ξ |2
(1 + √

μ|ξ |)
〈H±〉

(ρ+ H+S− − ρ−H−S+)

1

(1 + μ1/4|ξ |1/2)
.

Using the Cauchy–Schwarz inequality, standard commutator estimates and
Remark 8, we get that A11 and A12 are controlled as in (C.1).

For A13, we remark that O(U ) = V +
j

(1+√
μ|D|)

(1+|μ|1/4|D|1/2)

∇∂ j
|D| Op(τ )∇T is a first order

operator with a skew symmetric principal symbol and that, as a consequence of
the pseudodifferential estimates of [40], one has μ‖O(U ) + O(U )∗‖L2→L2 �
mN (U ). It follows that A13 is also bounded by the right-hand side of (C.1).
For A14, one deduces from the Cauchy–Schwarz inequality that

|A14| � |V +
j F̃ |2

(∣∣[P2G̃−1 1

(1 + μ1/4|D|1/2)
− Op(τ )]∇ · F̃

∣
∣
2

+μ1/4
∣
∣[P2G̃−1 1

(1 + μ1/4|D|1/2)
− Op(τ )]∇ · F̃

∣
∣

H1/2

)
,

and Corollary 5 (with k = 0 for the first term and k = 1 for the second one)
implies that |A14| � 1

μ
mN (U )|F̃ |22, from which (C.1) follows for for A14 and

therefore for A1.

– Control of A2. Let us first rewrite A2 as (with F = ζ(α)�V ±�)

A2 = ρ− 1

H+
(
G+G̃−1∇ · F), �V ±� · ∇G̃−1∇ · F

)
.
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Using (2.25) with u = G̃−1∇ · F and v = �V ±�, and using Remark 8 yields,
with F̃ as above,

|A2| � 1

μ
mN (U )|F̃ |22,

which implies (C.1).

6.4. Proof of (5.16)

As for (5.15), we consider only the case ι = 0 (that is, J ι = Id ). We first write

( 1

μ
GT∗ψ(α), ψ(α)

) = −( 1

μ
V + · ∇ψ(α), Gψ(α)

)

− 1

μ

(
�V ±� · ∇(G−)−1Gψ(α), Gψ(α)

)

= B1 + B2.

For B1, we use the fact that G = 1
H+ G+ ◦ J [ζ ]−1 (see Remark 14) to get

B1 = − 1

μ

(
V + · ∇ J [ζ ]g, G+g

)
,

with g = J [ζ ]−1ψ(α). Since J [ζ ] = ρ+Id − ρ− H−
H+ (G−)−1G+, we deduce that

B1 = −ρ+

μ

(
V + · ∇g, G+g

)− ρ−

μ

H−

H+
(
V + · ∇ g̃, G−g̃

)
,

with g̃ = (G−)−1G+g. It follows therefore from (2.25), Lemma 2 and Proposition
1 that |B1| � mN (U ). For B2, we just write

B2 = 1

μ

(
�V ±� · ∇g�, G−g�

)
,

with g� = (G−)−1Gψ(α). Using (2.25) again, we also get |B2| � mN (U ), and the
proof of (5.16) is complete.
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