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By David Lannes and Fabien Marche

We study here the propagation of long waves in the presence of vorticity.
In the irrotational framework, the Green–Naghdi equations (also called Serre
or fully nonlinear Boussinesq equations) are the standard model for the
propagation of such waves. These equations couple the surface elevation to
the vertically averaged horizontal velocity and are therefore independent of
the vertical variable. In the presence of vorticity, the dependence on the
vertical variable cannot be removed from the vorticity equation but it was
however shown in [1] that the motion of the waves could be described using
an extended Green–Naghdi system. In this paper, we propose an analysis of
these equations, and show that they can be used to get some new insight
into wave–current interactions. We show in particular that solitary waves
may have a drastically different behavior in the presence of vorticity and
show the existence of solitary waves of maximal amplitude with a peak at
their crest, whose angle depends on the vorticity. We also show some simple
numerical validations. Finally, we give some examples of wave–current
interactions with a nontrivial vorticity field and topography effects.

1. Introduction

1.1. General setting

Several models have been derived for the description of nearshore dynamics.
One of the most widely spread is certainly the Nonlinear Shallow Water
(NSW) model which is a nonlinear hyperbolic system coupling the time
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evolution of the surface elevation ζ to the vertically averaged horizontal
component of the velocity v. This system is derived from the free surface
Euler equations by averaging in the vertical direction and neglecting all the
terms of order O(μ), where the shallowness parameter μ is defined as

μ = H 2
0

L2
= (typical depth)2

(horizontal length scale)2
.

The NSW equations are however not fully satisfactory because they
neglect all the dispersive effects that play a very important role in many
situations, and in particular during the shoaling phase. These dispersive
terms are of order O(μ) and are therefore neglected by the NSW equations.
Keeping them in the equations, and neglecting only the O(μ2) terms,
one obtains a more accurate—but mathematically and numerically more
complicated—set of equations known as the Serre [2, 3], or Green–Naghdi
[4, 5], or fully nonlinear Boussinesq [6] equations. We refer to these models
here as the Green–Naghdi (GN) equations. Contrary to the weakly nonlin-
ear Boussinesq models that go back to Boussinesq himself, no smallness
assumption is made on the size of the surface perturbations. We refer to
[7] for a rigorous derivation and a mathematical justification (in the sense
that their solutions remain close to the exact solution of the free surface
Euler equations) of all these models. If the numerical approximation of
various Boussinesq-type equations has attracted a lot of attention for the last
20 years (see, for instance, among the recent studies [8–16]), it is mostly
recently that discrete formulations for the GN equations have been proposed.
Denoting by d the horizontal dimension, we can refer for instance, in the
case d = 1, to [17–19] for hybrid Finite-Volume (FV) and Finite-Difference
(FD) discretizations, [20–22] for discontinuous-Galerkin (dG) formulations,
[23] for a compact FV approach, [24] for a Finite-Element (FE) approach
on flat bottom or [25] for an hybrid FV–FE formulation. There is even
less studies in the case d = 2, see [26–28]. These equations have also been
adapted to handle wave breaking by adding an artificial viscous term to the
momentum equation (see, for instance, [29–32]) or by locally switching to
the NSW equations in the vicinity of broken waves and using shock captur-
ing schemes [33–35]. We refer to [17] for a recent review on these aspects.

The GN and more generally most of the Boussinesq-type models rely
on the assumption that the flow is irrotational or almost irrotational. Such
an assumption is satisfied in most configurations but may fail in the surf
zone where wave breaking can create vorticity currents (rip currents) or
in presence of some underlying current. The difficulty to describe wave
motion in the presence of vorticity is that the dynamics of the flow is in
general genuinely (d + 1)-dimensional while in the irrotational framework
the dynamics is only d-dimensional (vertical averaging has been used to
remove the vertical variable).
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It is shown in [36] that the GN equations can describe rotational flows
with purely vertical vorticity. In horizontal dimension d = 1, it is shown in
[37] that vorticity is responsible for the presence of an additional term in
the momentum equation, which is coupled to the standard vorticity equation
(see also [38, 39] for a related approach).

Following the original approach by Green and Naghdi [4], several authors
[40–42] assumed a polynomial structure of the velocity profile and solved
the mass and momentum equations projected on such a basis of functions.
This approach is compatible with the presence of vorticity. An interesting
and recent refinement for a better treatment of the surf zone consists in
coupling this approach with shallow water asymptotics [43].

We follow in this paper another approach initially developed in [1] where
it is shown that additional terms are necessary in the momentum equation
in the presence of vorticity. Contrary to other approaches, these additional
terms are determined through the resolution of d-dimensional evolution
equations and do not require the resolution of the (d + 1)-dimensional
vorticity equation. The procedure is reminiscent of turbulence theory with
the difference that no artificial closure is needed here: based on the controls
on the solutions of the full Euler equations established in [44], one can
show that the cascade of equations is finite at the precision of the model
(we also point out the related work [45] where a physical modeling of the
closure is used instead to handle turbulent bores). The resulting equations
are an extended GN system with additional advection-like equations for the
vorticity related terms.

This paper is concerned with the horizontal one-dimensional case d = 1.
Its first goal is to show that this approach can be used to get some
new insight into wave–current interactions; we show for instance that the
behavior of solitary waves can be drastically different in the presence of
vorticity, leading to extremal peaked solitary waves with an angle at the
crest that depends on the vorticity. The second goal of this paper is to
propose a simple numerical scheme to numerically solve these extended
GN equations and to highlight that despite the fact that these equations
of motion are purely d-dimensional, they can be used to reconstruct the
internal velocity field, even in the presence of nontrivial vorticity and
topography.

1.2. The models

In the case where the horizontal dimension d is equal to one and following
[18], the irrotational GN equations can be formulated as

{
∂t h + ∂x (hv) = 0,

(1 + T)[∂t (hv) + ∂x (hv2)] + gh∂xζ + hQ1(v) = 0,
(1)
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Figure 1. Main notations.

where we recall that ζ is the elevation of the wave with respect to the rest
level and that v is the vertically averaged horizontal velocity, while g stands
for the acceleration of gravity and h is the total water height

h = H0 + ζ − b,

where {z = H0 − b(x)} is a parameterization of the bottom (see Figure 1).
Finally, the linear operator T = T[h, b] and the quadratic form Q1(·) =
Q1[h, b](·) are defined by

T[h, b]w = hT [h, b]

(
1

h
w

)
, (2)

T [h, b]w = − 1

3h
∂x

(
h3∂xw

)+ 1

2h

(
∂x

(
h2w∂x b

)− h2∂xw∂x b
)+ w(∂x b)2, (3)

Q1[h, b](v) = 2

3h
∂x

(
h3(∂xv)2

)+ h(∂xv)2∂x b + 1

2h
∂x

(
h2v2∂2

x b
)+ v2∂2

x b∂x b.

(4)

This formulation does not require the computation of any third-order
derivative, allowing for more robust numerical computations, especially
when the waves become steeper. Note also that if one removes the operator
T and the nonlinearity Q1 from the second equation in (1), the model
reduces to the standard NSW equations; these two terms accounts therefore
for the O(μ) dispersive and nonlinear terms specific to the GN equations.

One of the main features of the GN model is that it allows the description
of (d + 1)-dimensional waves (d being the horizontal dimension) by a set
of d-dimensional equations (independent on the vertical variable z), hereby
leading to considerable gains in mathematical simplicity and computational
time. The d-dimensional nature of the flow is due to the fact that the
flow is assumed to be irrotational; indeed, the velocity field U in the fluid
domain then derives from a scalar velocity potential � (i.e., U = ∇X,z�)
and as remarked by Zakharov [46] and Craig–Sulem [47] the free surface
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(d + 1)-dimensional Euler equations can then be reduced to an Hamiltonian
system coupling the surface elevation ζ to ψ , the trace at the surface of
the velocity potential. Both ζ and ψ depend only on time and on the
(d-dimensional) horizontal variable X . The GN equation being obtained by
an asymptotic expansion in terms of the shallowness parameter μ of the free
surface Euler equations (see [7, 48] for a full mathematical justification of
this approximation), it is no surprise that they are also d-dimensional.

In presence of vorticity, the situation is drastically different since the
dynamics of the vorticity ω = curl U is in general fully (d + 1)-dimensional.
The Zakharov–Craig–Sulem formulation has recently been generalized in
[44] to the rotational case; this generalization, also formally Hamiltonian,
couples the evolution of ζ and ψ as in the irrotational case,1 but this
evolution is now also coupled to the evolution of the vorticity field which
depends in general on all the space variables. One should therefore expect
that generalizations of the GN equations in presence of vorticity have a full
(d + 1)-dimensional dependence in the space variables, hereby implying a
considerable increase of computational time. It has been shown recently in
[1] that this is not the case. In the case of a constant vorticity, that is, when

curl U = (0, ω, 0)T with ω(t, x, z) = ω0 = cst,

this is not surprising because there is no z dependence coming from the
equation on the vorticity. The vorticity field however induces a shear which,
together with the dispersive effects, make the horizontal velocity depart from
its vertical average. Because of this effect, the GN equations (1) must be
replaced2 by⎧⎪⎨
⎪⎩
∂t h + ∂x (hv̄) = 0,

(1 + T)
[
∂t (hv) + ∂x (hv2)

]+ gh∂xζ + hQ1(v)

+ ∂x

(
1
12 h3ω2

0

)+ hC(ω0h, v) = 0,
(5)

with C(ω0h, v) obtained by taking v� = ω0h in the following expression:

C(v�, v) = − 1

6h
∂x

(
2h3v�∂2

xv + ∂x (h3v�)∂xv
)
. (6)

1Note however that in presence of vorticity, the velocity field U does not derive from a scalar
potential, and that an alternative definition is needed for ψ . Namely, it is defined such that ∇ψ is
the projection onto (horizontal) gradient vector field of the horizontal component of the tangential
velocity at the surface.
2The model (5) actually holds under a rather weak smallness assumption on the topography. More
precisely, it is assumed that εβμ3/2 = O(μ2), where

ε = asurf

H0
= Amplitude of the waves

typical depth
, β = abott

H0
= Amplitude of the bottom variations

typical depth
.

In full generality, an additional topography term is needed, see (1.27) in [1].
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For the case of a general vorticity, that is, when (in horizontal dimension
d = 1),

curl U = (0, ω, 0)T with ω(t, x, z) = ∂zu − ∂xw

(and U = (u, 0, w)T ), the vorticity ω satisfies the transport equation

∂tω + (u∂x + w∂z)ω = 0, (7)

in which the z dependence cannot be removed. The fact that one can how-
ever derive z-independent GN type models in this framework is therefore
more surprising. The one-dimensional GN system in the presence of a
general vorticity is then given3 by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂t h + ∂x (hv̄) = 0,

(1 + T)
[
∂t (hv) + ∂x (hv2)

]+ gh∂xζ + hQ1(v) + ∂x E + hC(v�, v) = 0,

∂tv
� + v∂xv

� + v�∂x v = 0,

∂t E + v∂x E + 3E∂xv + ∂x F = 0,

∂t F + v∂x F + 4F∂xv = 0.

(8)

Let us briefly comment on this model (we refer to [1] for more details). Due
to the presence of the vorticity, there is a vertical dependence of the velocity
field inside the fluid domain that may interact nonlinearly with the vertical
dependence coming from the dispersive terms. After vertical averaging, this
interaction is responsible for the term hC(v�, v) in the momentum equation;
it is given by (6). The difference with the case of a constant vorticity is
that v� is now defined as a second-order momentum of the vorticity induced
shear velocity,

v� = 12

h3

∫ ζ

−H0+b
(z + H0 − b)2v∗

sh with v∗
sh = −

∫ ζ

z
ω + 1

h

∫ ζ

−H0+b
ω.

(9)

Even though v� is defined in terms of ω, it is not necessary to solve the
(1 + 1)-dimensional vorticity equation (7) to compute it; indeed, it is shown
in [1] that it can be determined from its initial value by solving the third
equation of (8).

Similarly, the term ∂x ( 1
12 h3ω2

0) that appears in (5) is now replaced by
∂x E , where E is a second-order tensor (represented by a function here
since we are in dimension 1) describing the self-quadratic interaction of the
vorticity induced shear inside the fluid domain,

E =
∫ ζ

−H0+b
(v∗

sh)2. (10)

3The same smallness assumption as for (5) is made on the topography.
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Here again, one wants to be able to compute E without appealing to the
vorticity equation (7). The strategy adopted in [1] is inspired by an analogy
with turbulence theory and recent works on roll waves and hydraulic
jumps [49, 50]. The tensor E is viewed as a “Reynolds” tensor where
the “averaging” is in the present case the vertical integration. Looking for
an equation on E , one obtains a cascade of equations involving tensors
of increasing order; but unlike turbulence theory, there is no need for
an artificial closure of the cascade. Indeed, it can be proved that the
contribution of the fourth order and higher tensors are below the overall
O(μ2) precision of the model and can therefore be neglected. The last two
equations in (8) furnish this finite cascade of equations on the second-order
tensor E and the third-order tensor F (here again represented by a function
in dimension 1) defined as

F =
∫ ζ

−H0+b
(v∗

sh)3. (11)

The generalization of (8) to two-dimensional surfaces is also given in [1] but
our focus is here on the analysis of some properties of (8) as well as the
development of a numerical code to compute its solutions.

Remark 1. As explained above, the model (8) is precise up to O(μ2)
terms; lowering the precision to O(μ3/2), one can work with the simpler
model⎧⎪⎨

⎪⎩
∂t h + ∂x (hv̄) = 0,

(1 + T)
[
∂t (hv) + ∂x (hv2)

]+ gh∂xζ + hQ1(v) + ∂x E = 0,

∂t E + v∂x E + 3E∂xv = 0.

(12)

Remark 2. Keeping the precision O(μ2), a simplified model can also
be obtained in the situation where F is initially almost equal to zero (this
is the case when the vorticity is constant or in the situation considered
in Section 5.5 for instance). Removing F from (8), one then obtains the
reduced model⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t h + ∂x (hv̄) = 0,

(1 + T)
[
∂t (hv) + ∂x (hv2)

]+ gh∂xζ + hQ1(v) + ∂x E + hC(v, v�) = 0,

∂tv
� + v∂xv

� + v�∂xv = 0,

∂t E + v∂x E + 3E∂xv = 0.

(13)

1.3. Organization of the paper

In Section 2, we study the existence of solitary waves for the GN system
with vorticity (8). We show in Section 2.1 that the existence of smooth
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solitary waves can be reformulated as an Ordinary Differential Equation
(ODE) problem. The existence of solutions is then established in Section 2.2
where we also comment on the qualitative differences with the irrotational
case. For instance, while there are solitary waves of arbitrary amplitude
for the standard GN equations, there are configurations with nontrivial
vorticities for which solitary waves cannot exceed a critical amplitude.
Solitary waves of critical amplitude are then studied in Section 2.3 where
we show that these extremal solitary waves have a peak at their crest, whose
angle depends on the vorticity.

We then present in Section 3 the numerical scheme we propose to
solve (8). After a simple renormalization of the system using the mass
conservation equation, we present in Section 3.1 a simple splitting scheme
inspired by previous works on the standard GN equations. This splitting
involves a conservative propagation step and a dispersive correction step.
The conservative step is studied in Section 3.2; as in the irrotational case, it
is of hyperbolic type but because of the extra unknowns due to the vorticity,
its structure is more complicated. In particular, there are now three wave
speeds (instead of two in the irrotational case). A corresponding FV scheme
is proposed, for which higher order extensions are constructed. The study
of the dispersive step being similar to the irrotational case, we just briefly
recall the main points in Section 3.3.

Section 4 is then devoted to the numerical validation of this scheme.
The different kinds of smooth solitary waves predicted in Section 2 are
numerically observed in Section 4.1 and used to evaluate the convergence
rate. We also observe numerically in Section 4.2 the existence of the
extremal peaked solitary waves exhibited in Section 2.3. We provide in
Section 4.3 a numerical simulation involving a nonflat topography; we use
this example to show that the vorticity may play a considerable role on the
shoaling of waves.

Finally, we detail in Section 5 how the system of equations (8) can be
used to describe the dynamics of the (d + 1) velocity field U = (u, w)T

at any time, up to a O(μ
3
2 ) accuracy, and show how the previous

discrete formulation of Section 3 may be easily modified to perform the
corresponding velocity reconstructions. This process is illustrated by two
prospective examples of wave–current interactions, involving a nontrivial
vorticity field and topography effects.

2. Solitary waves

We investigate here the existence of solitary waves for the GN equations
with vorticity (8). We show in Section 2.1 that smooth solitary waves must
satisfy a second-order ODE. This ODE is solved in Section 2.1, while
extremal peaked solutions are studied in Section 2.3.
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2.1. Derivation of the ODE for the shape of the solitary waves

Our purpose here is to show that smooth solitary waves, if they exist, must
satisfy a second-order ODE. We consider here flat bottoms (i.e., b = 0), and
the system (8) can therefore be written⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζt + (hv)x = 0,

vt + g∂xζ + v∂xv + 1

h
Ex − 1

6h

[
2h3v�vxx + (h3v�)xvx

]
x

= 1

3

1

h

[
h3
(
vxt + vvxx − v2

x

) ]
x

v
�
t + (vv�)x = 0,(
E

h3

)
t

+ v

(
E

h3

)
x

+ 1

h3
Fx = 0,(

F

h4

)
t

+ v

(
F

h4

)
x

= 0,

(14)
with h = H0 + ζ . We look for solitary waves solutions to (14), that is,
solutions of the form

(ζ, v, v�, E, F)(t, x) = (ζ , v, v�, E, F)(x − ct)

for some constant c ∈ R, and with ζ and v vanishing at infinity, over a
current that might not vanish at infinity, that is, we assume that

lim±∞(ζ , v) = 0 and lim±∞(v�, E, F) = (
v�∞, E∞, F∞

)
for some constants E∞, F∞, v

�
∞. Such solutions should satisfy (for the sake

of clarity, we do not underline the functions in the expressions below)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[−(c − v)h]x = 0,

−(c − v)vx + g∂xζ + Ex

h
− 1

6h

[
2h3v�vxx + (h3v�)xvx

]
x

= − 1

3h

[
h3
(
(c − v)vxx + v2

x

) ]
x[

(c − v)v�
]

x
= 0,

−(c − v)

(
E

h3

)
x

+ 1

h3
Fx = 0,

(c − v)

(
F

h4

)
x

= 0.

(15)

Integrating the first equation, and using the fact that ζ and v vanish at
infinity, one readily deduces

(c − v)h = cH0. (16)
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Multiplying the second equation by h and integrating in x , we therefore
get

− cH0v + g

2

(
h2 − H 2

0

)+ (E − E∞) − 1

6

(
2h3v�vxx + (h3v�)xvx

)
= −1

3

(
h2cH0vxx + h3v2

x

)
, (17)

and we need to determine v� and E . Let us proceed first with v�. From the
third equation in (15), we have

(c − v)v� = cv�∞,

which, together with (16), yields

v� = h

H0
v�∞. (18)

We now turn to derive an expression for E . From the last equation, we get
that

F = h4

H 4
0

F∞. (19)

Together with (16), this allows one to rewrite the fourth equation as

−cH0

(
E

h3

)
x

+ 4
F∞
H 4

0

hhx = 0,

and therefore

E = E∞ +
(

h3

H 3
0

− 1

)
E∞ + 2

F∞
c

(
h2 − H 2

0

)
h3

H 5
0

. (20)

Plugging (18) and (20) into (17), we obtain

−cH0v + g

2

(
h2 − H 2

0

) +
(

h3

H 3
0

− 1

)
E∞ + 2

F∞
c

(
h2 − H 2

0

)
h3

H 5
0

− h2

3H0
v�∞

[
h2vx

]
x

= −1

3

(
h2cH0vxx + h3v2

x

)
.

Since (16) implies that h2vx = cH0hx and v = c h−H0
h , we deduce further

that

−c2 H0
h − H0

h
+ g

2

(
h2 − H 2

0

) +
(

h3

H 3
0

− 1

)
E∞ + 2

F∞
c

(
h2 − H 2

0

)
h3

H 5
0

−1

3
cv�∞h2hxx = −c2

3
H 2

0 h

[
1

h
hx

]
x

.
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This leads us to the following definition of a (smooth) solitary wave:

DEFINITION 1. A solitary wave of speed c for (14) is a mapping

(t, x) ∈ R
2 �→ (ζ , v, v�, E, F)(x − ct)

such that there exists h ∈ C2(R) and E∞ > 0, v�∞ ∈ R and F∞ ∈ R such
that

ζ = h − H0, v = c
h − H0

h
, v� = h

H0
v�∞, (21)

E = h3

H 3
0

E∞ + 2
F∞
c

(
h2 − H 2

0

)
h3

H 5
0

, F = h4

H 4
0

F∞ (22)

and h solves the ODE

1

3
c
(
cH 2

0 − v�∞h2
)

hxx = h − H0

2h

(
2c2 H0 − gh(h + H0)

)
(23)

−
(

h3

H 3
0

− 1

)
E∞ − 2

F∞
c

(
h2 − H 2

0

)
h3

H 5
0

+ c2

3
H 2

0

h2
x

h

on R and satisfies lim±∞ h = H0. The function h is called the profile of the
solitary wave.

2.2. Existence of smooth solitary waves

We first consider here the case where F∞ = 0 and prove the existence of
solitary waves in the sense of Definition 1.

PROPOSITION 1. Let E∞ > 0, v�∞ ∈ R and F∞ = 0. Let also hmax >

H0.

(i). Up to translations, there can be at most two solitary waves of
maximal height hmax for (14); if they exist, they have opposite speed
±c, with

c =
(

ghmax + hmax(hmax + 2H0)

H 3
0

E∞

)1/2

.

(ii). The solitary wave of speed c (respectively, −c) exists if and only if
the following condition holds:

c
(
cH 2

0 − v�∞h2
max

)
> 0 (respectively, − c

(− cH 2
0 − v�∞h2

max

)
> 0).

The profile of the solitary wave then attains its maximal value at
a unique point xmax and it is symmetric with respect to the axis
x = xmax and decaying on the half-line x > xmax.
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Proof:

Step 1. We derive here an expression for h2
x in terms of h. For later

investigations, we deal with the general case F∞ ∈ R here.
Multiplying the differential equation (23) by hx and dividing by
h2, we get

−c2

3
H 2

0

h3
x

h3
+ c2 H 2

0

3h2
hxx hx −1

3
cv�∞hxx hx

= h − H0

2h3

(
2c2 H0 − gh(h + H0)

)
hx

−
(

h3

H 3
0

− 1

)
hx

h2
E∞ − 2

F∞
c

(
h2 − H 2

0

)
H 5

0

hhx .

After integrating in x , this yields

1

6
c
(
cH 2

0 − v�∞h2)
h2

x

h2
= c2

2

1

h2
(h − H0)2 − 1

2
g

1

h
(h − H0)2

− 1

2H 3
0

1

h
(h − H0)2(h + 2H0)E∞ − F∞

2c

(
h2 − H 2

0

)2

H 5
0

(the integration constant has been chosen to respect the constraint
that ζ and its derivatives vanish at infinity), or equivalently

c

3

(
cH 2

0 − v�∞h2
)
h2

x = (h − H0)2
(

c2 − gh − h(h + 2H0)

H 3
0

E∞

− h2(h + H0)2

H 5
0

F∞
c

)
. (24)

Step 2. Expressions for the velocity and qualitative analysis. By defini-
tion, if h is the profile of a solitary wave then it is a C2-function
and its derivative must vanish at its maximum. The formula (24)
then provides directly the only two (recall that F∞ is assumed to
be zero here) possible values for the speed c.
Since the function h �→ gh + h(h+2H0)

H 3
0

is strictly increasing on

R
+, we also deduce from (24) that hx cannot vanish at another

point, and therefore that the maximum of h is attained at a
unique point xmax, and further, that h has to be monotonous
on both sides of xmax. The fact that it is decaying on x >
xmax follows from the condition that h → H0 < hmax at infinity.
Finally, the fact that h is symmetric with respect to xmax follows
from the simple observation that if h solves (23) for x ≥ xmax

with boundary conditions h(xmax) = hmax and hx (xmax) = 0 then
x �→ h(2xmax − x) furnishes a solution for x ≤ xmax.
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Step 3. Existence of a solitary wave of speed c = c or c = −c. If
cH 2

0 − v
�
∞h2

max �= 0, then the Cauchy–Lipschitz theorem furnishes
a local solution with boundary condition h(xmax) = hmax and
hx (xmax) = 0. If moreover c(cH 2

0 − v
�
∞h2

max) > 0, then it is easy
to deduce from (23) that this local solution satisfies h′′(xmax) < 0
and therefore that the solution attains a local maximum at
xmax. Proceeding as in Step 2, one gets that this local solution
is symmetric with respect to xmax and decaying on x > xmax.
Moreover, one always has h > H0; indeed, if one had h(x0) = H0

for some x0 ∈ R, then one would have hx (x0) = 0 by (24),
and by uniqueness, one would have h ≡ H0, which is absurd.
Therefore, h decays to some limit as x → ∞, and this limit is
necessarily H0 by (24). The identity (24) also shows that hx

remains bounded, so that no blow up of h nor hx can occur and
the solution of the ODE (23) is global.

Step 4. Nonexistence of a solitary wave of speed c = c or c = −c. If
c(cH 2

0 − v
�
∞h2

max) < 0, then it is easy to deduce from (24) that
no solitary wave can exist. The only case left to investigate is
therefore the critical case cH 2

0 − v
�
∞h2

max = 0. In this case, one
gets from (23) that

c2

3
H 2

0

h′(xmax)

h(xmax)
= hmax − H0

2hmax

(
ghmax(hmax + H0) − 2c2 H0

)

+
(

h3
max

H 3
0

− 1

)
E∞>0,

which contradicts the assumption that h is a C1-function attaining
its maximum at xmax. �

Remark 3. If in addition to the assumption F∞ = 0 we take E∞ =
v
�
∞ = 0 in the statement of Proposition 1, then one has v� = E = F = 0 in

Definition 1 so that the solitary waves are the same as in the irrotational
setting for which it is well known that explicit solitary waves exist. More
precisely, for any maximal amplitude hmax > H0, there exists two (up to
translations) solitary waves of speed c = ±√

ghmax and with the same
profile h+ = h− given by the resolution of (23) and which can in this
particular case be computed explicitly,

h(x) = H0 + εH0

(
sech

( x

λ

))2
with λ = 2√

3

√
1 + ε

ε
H0, (25)

and where we denoted hmax = H0(1 + ε).

Remark 4. If in addition to the assumption F∞ = 0 we take v
�
∞ = 0

but consider the case E∞ > 0, the situation is qualitatively the same as in
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E∞=5 m3.s−2

Irrotational Green−Naghdi

Figure 2. Influence of E∞ on the solitary wave profile for H0 = 1 m, hmax = 2 m, v�∞ =
0, F∞ = 0.

Remark 3: for any maximal amplitude hmax = H0(1 + ε) > H0, there exists
two solitary waves of same shape and of opposite speed c = ±c. The only
difference is that the speed c is larger than in the irrotational case,

c =
(

ghmax + hmax(hmax + 2H0)

H 3
0

E∞

)1/2

, (26)

and that the solitary waves becomes narrower as E∞ increases (this follows
easily from the comparison principle for ODEs), see Figure 2.

Remark 5. If we assume that F∞ = 0 but E∞ > 0 and v�∞ > 0 (the case
v
�
∞ < 0 can be treated in a similar way) in the statement of Proposition 1

then there are two major qualitative changes with respect to the situation
considered in Remark 4. The first one is that right-going solitary waves do
not exist for any maximal amplitude hmax > H0. Indeed, the criterion given
in the second point of the proposition is always satisfied for the left-going
solitary wave, but requires for the right-going one that

cH 2
0 − v�∞h2

max > 0

or equivalently, using the explicit expression of c given in Proposition 1,(
gH0 + (h̃ + 2)

E∞
H0

)
>
(
v�∞
)2

h̃3 with h̃ = hmax

H0
.

In the case where v�∞ > 0, the criterion given in the statement of Proposition
1 for the existence of solitary waves can therefore be restated as: left-going
solitary waves always exist, but right-going solitary waves exist if and only
if hmax < hcrit where the critical height hcrit is given by hcrit = H0h̃crit with
h̃crit the only positive root of the polynomial

P(X ) = (
v�∞
)2

X3 −
(

gH0 + (X + 2)
E∞
H0

)
.

The second qualitative change with respect to the situation previously
considered is that the shape of the two solitary waves of speed c = ±c are
not the same since the ODE in Definition 1 does no longer depend on c
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Figure 3. Influence of v�∞ > 0 on the profiles for H0 = 1 m, E∞ = 1 m3.s−2 and F∞ = 0.
(a) Right-going solitary waves of nearly critical amplitudes for v�∞ = 1 m.s−1 and therefore
hcrit ≈ 2.42 m. (b) Left-going solitary waves for the same amplitudes. (c) Right-going
solitary waves for hmax = 2 m and increasing values of v�∞. (d) Left-going solitary waves
for hmax = 2 m and increasing values of v�∞.

through c2 only. We refer to Figure 3 for an illustration of this behavior, in
which we show the right- and left-going waves profiles for increasing values
of hmax in the vicinity of hcrit, for v�∞ = 1 m.s−1. We also highlight the
influence of increasing values of v�∞ on the left-going waves profiles for a
given value of hmax.

We recall that we assumed in Proposition 1 that F∞ = 0. Let us now give
a brief discussion about the general case E∞ > 0, v�∞ > 0, and F∞ > 0 (one
can treat the case v�∞ < 0 and/or F∞ < 0 in a similar way). The presence
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of F∞ �= 0 implies that the possible speeds for solitary waves of maximal
amplitude hmax are found by solving the third-order polynomial

X3 + pX + q with p = −
(

ghmax + hmax(hmax + 2H0)
E∞
H 3

0

)
, (27)

q = −h2
max(hmax + H0)2 F∞

H 5
0

(28)

(this is a simple consequence of (24)). Defining as previously ε by

hmax

H0
= 1 + ε,

the discriminant � = −(4p3 + 27q2) of this polynomial is always positive
provided that the following smallness condition holds for F∞

F2
∞ <

27

4

H 5
0

(1 + ε)(2 + ε)4

(
g + (3 + ε)

E∞
H 2

0

)3

(29)

(this condition is satisfied for all realistic configurations). The polynomial
(27) has then three distinct roots. Since the coefficient of X2 is equal to
zero, the sum of the three roots is necessarily equal to zero; moreover, their
product has the sign of −q, and therefore the sign of F∞. If F∞ > 0, then
one has one positive root 0 < c+ and two negative roots −c−,2 < −c−,1 < 0.
There are therefore possibly two left-going solitary waves, and a right-going
one. The right-going wave is subject to the same constraint hmax < hcrit as
in the case E∞ > 0, v�∞ > 0, and F∞ = 0. In addition, (24) shows that the
function

ϕc : h �→ c2 − h − ε2μh(h + 2)E∞ − ε3μ3/2h2(h + 1)2 F∞
c

(30)

must be positive for all H0 ≤ h < hmax. We can now state the following
proposition where for the sake of simplicity, we considered only the case
v
�
∞ > 0 and F∞ > 0. The cases where these quantities are negative can be

treated similarly.

PROPOSITION 2. Let E∞ > 0, v�∞ > 0, and F∞ > 0. Let also hmax =
H0(1 + ε) with ε > 0 and assume that (29) is satisfied.

(i). Up to translations, there can be at most three solitary waves of
maximal height hmax for (14) and corresponding speeds −c−,2 <
−c−,1 < 0 < c+ given by the roots of (27).
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Figure 4. Influence of F∞ on the solitary waves profiles. (a) Shape of the left- and
right-going solitary waves, and comparison with the usual Green–Naghdi solitary wave, for
H0 = 1 m, hmax = 2 m, E∞ = 1 m3.s−2, v∞ = 1 m.s−1, F∞ = 1 m4.s−3. (b) Influence of the
value of F∞ on the left-going wave’s profile. (c) Influence of the value of F∞ on the
right-going wave’s profile.

(ii). The solitary wave of speed c+ exists if and only if the following
conditions hold:

c+ H 2
0 − v�∞h2

max > 0 and ∀h ∈ [H0, hmax), ϕc+(h) > 0,
(31)

where ϕc is as defined in (30).
(iii). The solitary wave of speed c−, j ( j = 1, 2) exists if and only ϕ−c−, j >

0 on [H0, hmax).

Remark 6. Though there could be in principle a third solitary wave
arising in the case F∞ > 0, we could not exhibit any configuration where
this is the case because the condition ϕ−c−,1 > 0 on [H0, hmax) is never
fulfilled. In practice, there are as in the case F∞ = 0 one left-going and
one right-going solitary wave, of different shape and of respective speed
−c−,2 and c+. The profiles of the corresponding solitary waves are shown
in Figure 4. Note that smaller values of F∞ have to be taken to obtain
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the profiles of the left-going waves (Figure 4b) to fulfill the condition
ϕ−c−,2 > 0 on [H0, hmax). Note also that additional solitary waves profiles
can be observed, for both the constant vorticity model (5) and the general
model (8), in Section 4.

2.3. Existence of peaked solitary waves

As seen in the previous section, when E∞ > 0, v�∞ > 0, and F∞ = 0,
solitary waves have speed ±c, with

c = c(hmax) =
(

ghmax + hmax(hmax + 2H0)

H 3
0

E∞

)1/2

and the maximal amplitude hmax of the right-going solitary wave cannot
exceed a critical value hcrit corresponding to the only positive root of the
equation

c(hcrit)H 2
0 − v�∞h2

crit = 0.

Figure 3 suggests that the shape of the solitary waves tend to form an angle
at their crest as their amplitude become close to the maximal amplitude.
A byproduct of the analysis of the previous section is that there cannot
exist any smooth solitary wave of maximal amplitude hcrit. However, we
show here that it is possible to obtain a peaked solitary wave of maximal
amplitude in the following sense:

DEFINITION 2. A peaked solitary wave of speed c, centered at x0 ∈ R, for
(14), is a mapping

(t, x) ∈ R
2 �→ (ζ , v, v�, E, F)(x − ct − x0)

such that there exists h ∈ C(R), with h|
R+ ∈ C2([0,∞)), h|

R− ∈ C2((−∞, 0]),

and E∞ > 0, v�∞ ∈ R and F∞ ∈ R such that

ζ = h − H0, v = c
h − H0

h
, v� = h

H0
v�∞, (32)

E = h3

H 3
0

E∞ + 2
F∞
c

(
h2 − H 2

0

)
h3

H 5
0

, F = h4

H 4
0

F∞, (33)

and such that h solves the ODE (23) on R
+ and R

−, and satisfies
lim±∞ h = H0.

The proposition below proves the existence of peaked solitary waves in
the case F∞ = 0. Such a property could also be established for F∞ �= 0
(according to Proposition 2 there is also a critical maximal wave in some
cases when F∞ �= 0), but the proof would be more technical and since no
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Figure 5. Influence of v�∞ > 0 on the peaked solitary waves profiles for H0 = 1 m, E∞ =
1 m3.s−2, and F∞ = 0.

new phenomena arises in this case, we decide not to treat it. Some examples
of peaked solitary waves are plotted in Figure 5, on which we highlight the
influence of the value of v�∞ > 0 on the critical amplitude hcrit.

PROPOSITION 3. Let E∞ > 0, v�∞ > 0, and F∞ = 0. For all x0 ∈ R, there
exists a unique peaked solitary wave centered at x0 of critical maximal
amplitude hcrit and speed c = c(hcrit). It is even, decaying on both sides of
the crest, and its angle at the crest is 2θ , with

tan θ =
(

3

2

E∞
cH 3

0 v
�
∞

(hcrit − H0)2

(
1 + (v�∞)2

E∞

h2
crit

H0

))−1/2

.

Proof: We focus here on the case x ≥ 0; the case of negative values of
x can be treated similarly. Without loss of generality, we also assume that
x0 = 0. By definition of hcrit, one can write, for all h,

cH 2
0 − v�∞h2 = −v�∞(h − hcrit)(h + hcrit),

and

c2 − gh − h(h + 2H0)

H 3
0

E∞ = − E∞
H 3

0

(h − hcrit)

(
h + (v�∞)2

E∞

h3
crit

H0

)
.

One can therefore rewrite (24) under the form

c

3
v�∞(h − hcrit)(h + hcrit)h

2
x = E∞

H 3
0

(h − H0)2(h − hcrit)

(
h + (v�∞)2

E∞

h3
crit

H0

)

or equivalently

c

3
v�∞(h + hcrit)h

2
x = E∞

H 3
0

(h − H0)2

(
h + (v�∞)2

E∞

h3
crit

H0

)
.
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Since hcrit is by definition the maximal value of h and since h cannot reach
the value H0 (otherwise it would be identically equal to H0), this ODE is
equivalent to

hx = −
⎛
⎝3

E∞
cH 3

0 v
�
∞

(h − H0)2
h + (v�∞)2

E∞
h3

crit
H0

h + hcrit

⎞
⎠

1/2

.

Existence of a local solution is therefore given by the standard Cauchy–
Lipschitz theorem; the fact that the solution is global and tends to H0 at
infinity is then easily established as in Step 3 of the proof of Proposition
1 When evaluated at the origin (i.e., replacing h by hcrit) in the above
formula. �

3. Numerical method

We introduce now a simple numerical method to approximate the solutions
of system (8) and illustrate the propagation of some of the various wave
profiles exhibited in Section 2. This approach is inspired by some of
our previous works [18,19, 26] and we give some details about the new
ingredients introduced to account for the specificities of (8).

3.1. Splitting

To build our numerical method, denoting E = h2 Ẽ , F = h3 F̃ and using the
mass conservation equation, we rewrite system (8) in the equivalent form:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ht + (hv̄)x = 0,
(1 + T)

(
(hv)t + (hv2)x

)+ ghζx + (h2 Ẽ)x + hQ1(v) + hC(v, v�) = 0,
v
�
t + (vv�)x = 0,

Ẽt + (v Ẽ)x + 3F̃hx + h F̃x = 0,
F̃t + (v F̃)x = 0.

(34)

Then, in the spirit of [18, 19, 26], we decompose the solution operator S(·)
associated to the formulation (34), at each time step by the second-order
splitting scheme

S(δt ) = S1(δt/2)S2(δt )S1(δt/2), (35)

where S1 and S2 are, respectively, associated to the transport part and
dispersive perturbation of the GN equations (34). More precisely:
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� S1(t) is the solution operator associated to the conservative propagation
step ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ht + (hv)x = 0,

(hv)t + (hv2)x + ghζx + (h2 Ẽ)x = 0,

v
�
t + (vv�)x = 0,

Ẽt + (v Ẽ)x = 0,

F̃t + (v F̃)x = 0.

(36)

� S2(t) is the solution operator associated to the dispersive correction,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ht = 0,

(hv)t − ghζx − (h2 Ẽ)x + (1 + T)−1
[
ghζx + (h2 Ẽ)x

+ hQ1(v) + hC(v, v�)
] = 0,

v
�
t = 0,

Ẽt + 3F̃hx + h F̃x = 0,

F̃t = 0.

(37)

As detailed in the next subsection, S1(t) is discretized using an FV
approach, and we use an FD approach for S2(t).

Remark 7. The proposed splitting scheme is classically of second-
order accuracy in time, and it is shown in [18] that the corresponding
semidiscretized dispersion relation approaches the exact dispersion relation
of the GN at order 2 in time. Of course, other approaches can be used, like
the unsplitted approaches proposed in [20] or [25, 51] for instance.

We use the following notations in the following:

� The numerical one-dimensional domain � is uniformly divided into Nx

cells (Ci )1≤i≤Nx such that Ci = [xi− 1
2
, xi+ 1

2
], where (xi+ 1

2
)0≤i≤Nx are the

Nx + 1 nodes of the regular grid. We denote by xi the center of Ci ,
� We denote by δx the cell size (constant in this work) and by δt the chosen

time step (to be specified according to a relevant Courant-Friedrichs-Lewy
(CFL)-like condition),

� We denote by w̄i
n the averaged value of an arbitrary quantity w on the i th

cell Ci at time tn = nδt .

3.2. Discretization of the conservative step

We focus on the discretization of system (36) which can be written in
compact form as follows:

∂tW + ∂xF(W) = S(W, b), (38)
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with W = (h, hv, v�, Ẽ, F̃) and

F(W) = (hv, hv2 + p(h, Ẽ), vv�, v Ẽ, v F̃), S(W, b) = (0, −ghbx , 0, 0, 0),

with p(h, Ẽ) = g

2
h2 + h2 Ẽ . Neglecting the bottom variations, the study

of the associated algebra shows that the system is hyperbolic with the
following eigenvalues:

λ1 = v −
√

gh + 3hẼ, λ2 = v +
√

gh + 3hẼ, λ3 = λ4 = λ5 = v. (39)

3.2.1. First-order FV discretization of the homogeneous system. We first
study a first-order conservative spatial discretization of the homogeneous
system associated with (38):

W̄n+1
i − W̄n

i + δt

δx

(
F
(
W̄n

i , W̄n
i+1

)− F
(
W̄n

i−1, W̄n
i

) ) = 0, (40)

where (u, v) �→ F(u, v) is a numerical flux function consistent with the
physical flux w �→ F(w). For the numerical validations shown in Section
4, and considering the three waves structure of the algebra, we have
implemented an Harten-Lax-van Leer-Contact (HLLC)-type Riemann solver,
see, for instance, [52, 53].

3.2.2. Discretization of the topography and high-order extension. The
discretization of the topography source term occurring in (38) is done fol-
lowing the well-balanced approach for the Saint-Venant equations described
in [54], allowing to preserve the motionless steady states corresponding to

ζ = 0, v = 0, v� = 0, E = 0, F = 0. (41)

Note that one of the main properties of this approach is that whenever the
initial solver satisfies some classical stability properties, it yields a simple
and fast well-balanced scheme that preserves the positivity of the water
height.

As shown in previous studies [18–20, 26], the use of high-order schemes
is mandatory for the study of dispersive water waves, to avoid as much
as possible to pollute the dispersive properties of the model with some
dispersive truncation errors associated with second-order schemes. Based on
discrete FV cell averaging W̄n

i at time tn = nδt we use in this work third
and fifth-order accuracy Weighted Essentially Non-Oscillatory (WENO)
reconstructions, following [55], together with the weight splitting method
[56].
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3.3. Spatial discretization of S2(·), time discretization,
and boundary conditions

Following the approach developed in [18], system (37) is discretized using
fourth-order FDs. The resulting matrix, for the discretization of the linear
operator T is the same as in [18]. As far as time discretization is concerned,
we choose to use explicit methods. The systems corresponding to S1 and
S2 are integrated in time using third or fourth-order SSP–Runge–Kutta
scheme [57]. For the sake of simplicity, we only use periodic and Neumann
boundary conditions here, adapting the ghost-cells methods detailed in [18].

Remark 8. The whole numerical strategy can be straightforwardly applied
to the constant vorticity model (5), the medium amplitude equations (12),
and the reduced model with F = 0 (13), adapting the approximate Riemann
solvers to the corresponding hyperbolic part.

4. Numerical validation

In this section, we use the analysis of solitary waves performed in Section 2
to validate our numerical scheme. Various kinds of smooth solitary waves
exhibited in Section 2 are numerically observed in Section 4.1 and used
to evaluate the convergence rate. As shown in Section 4.2, our code
is accurate enough to capture also the extremal peaked solitary waves
exhibited in Section 2.3. We then treat in Section 4.3 an example with
a nontrivial topography which allows us to show that vorticity may have
a considerable influence on the shoaling phase. The specified convergence
rates are obtained using a discrete L2-error.

4.1. Solitary waves propagation

In the next test cases of this subsection, we consider H0 = 1 and we
compute the propagation of several solitary waves in a computational
domain of 200 m long. We consider several set of values for the wave
amplitude εH0 and the triplet (E∞, v�∞, F∞), allowing to cover the various
configurations detailed in Section 2. Unless stated otherwise, we use
WENO3 reconstructions, an SSP-RK3 scheme, and we set the CFL number
to 0.8.

4.1.1. Constant vorticity model. We consider here the GN model (5) with
constant vorticity. We consequently have

curl U = (0, ω, 0)T with ω(t, x, z) = ω0 = cst.
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Figure 6. Propagation of a right-going solitary wave solution for the constant vorticity
model—ε = 0.2 and ω0 = 0.3 s−1: initial profile (on the left) and snapshots at different
locations along the channel (on the right). The solitary wave solution of the classical
Green–Naghdi equations is plotted in black solid line at t = 0 s.

The analysis of solitary waves solutions is provided in Proposition 1.
Indeed, the GN model with constant vorticity can be obtained from the gen-
eral equations (8), setting E = 1

12 h3ω2
0, v

� = hω0, F = 0, and consequently
neglecting the equations on Ẽ and v� which are equivalent to the continuity
equation. Solitary wave solutions for (5) belong to the situation depicted
in Remark 5. In the present test case, we set ω0 = 0.3 s−1 and we study
the propagation of a solitary wave of relative amplitude ε = 0.2, initially
centered at x0 = 25 m. The initial water height h0(x) = h(0, x) is computed
as a solution of Equation (24) and the corresponding velocity is initialized
as

v0(x) = c

(
1 − H0

h0(x)

)
,

where c is obtained from (26)

c2 = ghmax + hmax(hmax + 2H0)

12
ω2

0. (42)

Remark 9. From Proposition 1, we observe that with the choice ω0 > 0,
we have existence of right-going solitary waves (propagating at speed c > 0)
for all amplitudes a. On the contrary, the existence of left-going waves is
ruled by the additional compatibility condition

cH0 − ω0h2
max > 0.

We only focus here on the right-going wave, and we show in Figure 6
the corresponding profile h0, together with the usual profile for the classical
GN equations. We also compute the propagation of this solitary wave on the
time interval ]0, T ], with T = 50 s and show the corresponding profiles at
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Figure 7. Case E∞ > 0, v∞ > 0, F∞ = 0—Right-going wave with ε = 0.3: initial profile
(on the left) and snapshots at different locations along the channel (on the right).

several locations along the channel. For these pictures, we set δx = 0.125
m. Performing a numerical convergence analysis, we compute the L2 errors
at T = 3 s for ζ and hv on a sequence of refined meshes and we observe
mean orders of convergence, obtained with linear regressions, of 3.26 and
3.3, respectively, for ζ and hv.

4.1.2. General vorticity model—Case E∞ > 0, v�∞ > 0, F∞ = 0. In this
second case, we consider the propagation of a solitary wave for nonconstant
vorticity in the case F∞ = 0. The third-order term F remains uniformly
equal to 0 during the propagation, and we can therefore consider the reduced
model (13). The existence of solitary waves solutions is still ruled by
Proposition 1. There are two solitary waves of opposite velocities given by
(26), but with different profiles. We choose here E∞ = 0.2 m3.s−2, v

�
∞ =

1.6 m.s−1 and again, we set successively ε = 0.2 and ε = 0.3. Such choices
ensure the existence of both left- and right-going waves, leading to the
profiles shown in the left of Figures 7 and 8, respectively, for the right- and
the left-going waves in the case ε = 0.3. The right-going wave is initially
centered at x = 20 m and the left-going wave at x = 170 m. Again, we also
plot the classical solitary wave profile of same amplitude for comparison
purpose. The time evolutions of both right- and left-going waves are shown
in the right of Figures 7 and 8. For these computations, we have set
δx = 0.07 m. We observe the preservation of the initial profiles, together
with a very low numerical dissipation for the considered time interval.

Again, we perform a numerical convergence analysis on a sequence
of refined meshes for both cases. In the case ε = 0.2, we observe some
convergence rates of 2.9 for hv and 2.88 for ζ, Ẽ , and v�. Similar results are
obtained in the case ε = 0.3, with slightly decreased rates. We also obtain a
very similar behavior for the left-going wave.
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Figure 8. Case E∞ > 0, v∞ > 0, F∞ = 0—Left-going wave with ε = 0.3: initial profile
(on the left) and snapshots at different locations along the channel (on the right).
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Figure 9. Case E∞ > 0, v∞ > 0, F∞ > 0—Right-going wave with ε = 0.5. Initial profile
(on the left) and snapshots at different locations along the channel (on the right).

4.1.3. General vorticity model—Case E∞ > 0, v�∞ > 0, F∞ > 0. We now
focus on the case F∞ > 0 and consider the general vorticity model (8).
The existence of solitary wave solutions is now ruled by Proposition 2
and we have existence of two solitary waves, provided that conditions
(31) are fulfilled. We also recall that the waves’ speeds are now obtained
as the minimum and maximum roots of the third-order polynomial (27).
We consider the following set of parameters: E∞ = 1/12 m3.s−2, v

�
∞ =

1 m.s−1, F∞ = 1/12 m4.s−3, and ε = 0.5, ensuring the existence of both
left- and right-going waves and leading to the following wave speeds:

c− ≈ −3.852 m.s−1 and c+ ≈ 3.93 m.s−1.

The corresponding profiles for ζ are shown in Figures 9 and 10, together
with some snapshots of the corresponding time evolutions. For these
computations, we set δx = 0.05 m. The corresponding convergence analysis
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Figure 10. Case E∞ > 0, v∞ > 0, F∞ > 0—Left-going wave with ε = 0.5: initial profile
(on the left) and snapshots at different locations along the channel (on the right).

is performed and we obtain convergence rates of 2.72 for both v�, F̃, Ẽ , and
ζ and 2.78 for hv. We obtain the same behavior for the left-going wave.

Remark 10. As observed in the previous test cases, convergence rates
classically seem to decrease with respect to the wave amplitude. Also, note
that when F∞ �= 0, we observe a slight increase of the L2-errors for Ẽ when
compared with the values obtained for v�, F̃ , and ζ , and the corresponding
convergence rates are slightly deteriorated. This phenomenon may be related
to the naive FD approximation of the nonlinear and nonconservative terms
occurring in the corresponding source terms.

4.2. Peaked solitary waves

Let us now briefly illustrate the propagation of peaked solitary waves,
exhibited in Proposition 3. The numerical simulation of such waves with
singularities is a difficult problem as the solution is not smooth. Indeed,
the damping introduced by the numerical methods rapidly smooth out the
peak and thereby deform and delay the wave. These issues may be avoided
by locally refining the mesh and/or increasing the scheme’s accuracy in the
vicinity of the wave’s crest. The development of a more involved discrete
formulation allowing for h/p-adaptivity, based on the recently introduced
dG method for the GN equations [20], is left for future work.

To achieve this, we consider the simplified case F∞ = 0, neglecting the
third-order tensor F , and still set H0 = 1 m. Choosing the following values
v
�
∞ = 3 m.s−1 and E∞ = 9/12 m3.s−2, we set the relative amplitude to be

very close to the critical case. In this particular configuration, we have
existence of a right-propagating wave only for hmax < hcrit = 1.1045 m.
Consequently, we consider here a wave of amplitude 0.1044 m, initially cen-
tered at x = 11 m. We show the corresponding initial profile on the left side



28 D. Lannes and F. Marche

6 7 8 9 10 11 12 13 14 15 16

1

1.1

h 
(m

)

x (m)

Wave profile

peakon
classical wave

6 8 10 12 14 16 18 20 22 24 26
0.9

1

1.1

h 
(m

)

t=0s

Time evolution

6 8 10 12 14 16 18 20 22 24 26
0.9

1

1.1

t=1.5s

h 
(m

)

6 8 10 12 14 16 18 20 22 24 26
0.9

1

1.1

t=3s

h 
(m

)

x (m)

Figure 11. Case E∞ > 0, v∞ > 0, F∞ = 0—Right-going peaked wave with ε = 0.1044.
We also show in black solid line the shape of the solitary wave for the irrotational
Green–Naghdi equations.

of Figure 11. The corresponding propagation is shown on the right side. For
this simulation, to minimize the numerical diffusion in the vicinity of the
singularity we increase the numerical resolution, setting δx = 2.5 × 10−3 m
and use WENO5 reconstructions with an SSP–RK4 time marching scheme.

4.3. Influence of vorticity on wave shoaling

In the following test case, we assess the topography terms discretization, and
aim at giving a brief insight into the important study of the impact of the
vorticity on wave shoaling. We still consider a 200-m channel with H0 = 1
m but now, the topography is varying and defined as follows:

b(x) = H0

10

(
1 + tanh

(
x − x1

λ

))
,

with λ = 20 m, and x1 = 100 m. We follow successively the propagation of
three solitary waves over this uneven bottom. The first one is a classical
solitary wave (E∞ = v�∞ = F∞ = 0) associated with the irrotational GN
equations. In this case, the model (34) and the associated numerical
approach reduces to the extensively validated framework of [17–19]. This
wave may therefore be used as a reference solution to highlight the influence
of the additional vorticity terms.

The second and third ones are solitary wave solutions of (34) defined
with F∞ = 0 and (E∞, v

�
∞), respectively, set to (8.33 × 10−2,−1) and

(0.18,−1.5). The corresponding celerities are given by c0 ≈ 3.43 m.s−1 for
the irrotational wave and, respectively, c0 ≈ 3.47 m.s−1 and c0 ≈ 3.53 m.s−1

for the second and third vorticity waves. The corresponding initial profiles
are shown in Figure 12-left.

We also show in Figure 13 some snapshots of the waves evolution along
the channel, and particularly as the waves propagates over the smooth step
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Figure 12. Influence of vorticity on wave shoaling: initial wave profiles (t = 0 s) on the
left and propagated profiles at t = 35 s on the right. In the legend, “Wave 1” refers to the
irrotational solitary wave, while “Wave 2” and “Wave 3,” respectively, refers to the cases
(E∞ = 8.33 10−2, v�∞ = −1) and (E∞ = 0.18, v�∞ = −1.5).

located in the vicinity of x1. The computation is performed with δx = 0.1
m. We can observe the increasing influence of the vorticity on the waves
shoaling processes, as the waves amplitude increase with respect to the
vorticity magnitude, as well as on the stretching area at the rear of the
waves and on the mean level at the front. A zoom on the profiles at t = 35 s
is shown in Figure 13-right. Of course, extensive studies are still needed to
systematically analyze and accurately quantify this influence.

5. Evolution of the velocity field inside the fluid domain

In the previous numerical computations, we computed the surface elevation
ζ , the average velocity v as well as v�, E , and F from their initial value
through the resolution of the one-dimensional equations (8). We show here
how this system of equations can be used to describe the dynamics of the
(1 + 1)-dimensional velocity field U = (v,w) and of the surface elevation in
terms of their initial value U 0 and ζ 0.

5.1. The initial condition

Denoting by v0 the vertical average of the horizontal velocity at t = 0 and
by v∗,0 its fluctuation, one can write

⎧⎪⎨
⎪⎩
v0 = v0 + v�,0,

w0 = −∂x

(
(H0 + z − b)v0

)− ∂x

∫ z

−H0+b
v�,0;

(43)
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Figure 13. Influence of vorticity on wave shoaling: evolution of the waves profiles along
the channel at times t = 20, 30, and 35 s.

the expression for w0 is deduced from the expression for v0 thanks to the
incompressibility condition and the nonpenetration condition at the bottom.
We also recall that the initial vorticity ω0 is defined as

ω0 = ∂zu
0 − ∂xw

0.

We consider here initial conditions that correspond to shallow water
configurations (i.e., μ = H 2

0 /L2 � 1). Denoting by v0
sh the shear velocity

induced by the vorticity field ω0 and by v
�,0
sh its fluctuation around its

vertical mean value,

v
�,0
sh = −

∫ ζ 0

z
ω0 + 1

h0

∫ ζ 0

−H0+b

∫ ζ 0

z
ω0 (h0 = H0 + ζ 0 − b), (44)
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it is shown in [1], equation (2.30), that up to O(μ3/2) terms, one has

v∗,0 = v
�,0
sh + T ∗v0, (45)

where T ∗v0 accounts for the fluctuations due to dispersion and is given by

T �v0 = −1

2

(
(z + H0 − b)2 − 1

3
(h0)2

)
∂2

xv

+
(

z − ζ 0 + 1

2
h0

) (
∂x b∂xv

0 + ∂x

(
v0∂x b

))
.

Since our main goal here is to comment on the effects of the vorticity on
the propagation of waves, it is convenient to consider an initial vorticity
field ω0 and to construct the corresponding approximate velocity field U 0

given by (43), (44), and (45).

5.2. Reconstruction methodology

Let us now briefly recall the procedure described in [1] to recover U at all
times from ζ 0 and U 0. It is of course sufficient to compute U on each level
line θ ∈ [0, 1], that is,

vθ (t, x) = v(t, x,−H0 + b(x) + θh(t, x)),

wθ (t, x) = w(t, x,−H0 + b(x) + θh(t, x)).

Remark 11. One can also define the vorticity on the level lines by
ωθ (t, x) = ω(t, x,−H0 + b(x) + θh(t, x)). It can be computed in terms of vθ
and wθ by the formula

ωθ = 1

h
∂θvθ − ∂xwθ + ∂x (b + θh)

h
∂θwθ .

It is shown in [1] that the velocity fields conserves its initial structure
(43)–(45) and that one has

vθ = v + v�sh,θ + T �
θ v, (46)

wθ = −∂x

(
h(θv + Qθ +

∫ θ

0
T �
θ ′vdθ ′)

)
+ ∂x (−H0 + b + θh)vθ , (47)

with

T �
θ v = −1

2

(
θ2 − 1

3

)
h2∂2

xv +
(
θ − 1

2

)
h (∂x b∂xv + ∂x (∂x bv)) .
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The computation of the different quantities involved in these expressions
must be performed as follows:

(1) From the initial datas ζ 0, v0, and v
�,0
sh , compute the initial values

E0, F0, and v�,0 from their definitions (9), (10), and (11).
(2) Compute ζ, v, v�, E , and F on the time interval [0, T ] by solving the

GN equations (8).
(3) Compute the quantities qθ and Qθ on the same time interval by

solving

∂tqθ + ∂x (vqθ ) = 0, ∂t Qθ + ∂x (vQθ ) = 0

with initial conditions q0
θ = ∂θv

�,0
sh,θ and Q0

θ (x) = ∫ θ
0 v

�,0
sh,θ ′dθ ′, where

we use the notation v�,0sh,θ (x) = v
�,0
sh (t, x,−H0 + b(x) + θh0(t, x)).

(4) Compute v�sh,θ by solving on [0, T ] the equation

∂tv
�
sh,θ + ∂x

(
v�sh,θ (v + 1

2
v�sh,θ )

)
= 1

h
∂x E + qθ

h
∂x (hQθ ),

with initial data v�,0sh,θ .
(5) Use (46) and (47) to get vθ and wθ .

5.3. Implementation hints

From a practical point of view, we aim at computing the velocity field U on
some given Nz level lines along the vertical layer of fluid. We introduce the
discrete increments

θ j = δz + ( j − 1)δz

H0
, 1 ≤ j ≤ Nz, with δz = H0

Nz
,

such that, for some given time t and horizontal coordinate x , the j th level
line is located at the vertical coordinate z = −H0 + b(x) + θ j h(t, x).

To compute the velocity field on each of these level lines, we supplement
the GN model with general vorticity (34) with a set of equations describing
the time evolution of the auxiliary quantities qθ j , Qθ j , and v�θ j

:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t h + ∂x (hv̄) = 0,

(1 + T)
[
∂t (hv) + ∂x (hv2)

]+ gh∂xζ + hQ1(v) + ∂x (h2 Ẽ) + hC(v, v�) = 0,

∂tv
� + ∂x (vṽ�) = 0,

∂t Ẽ + (v Ẽ)x + 3F̃∂x h + h∂x F̃ = 0,

∂t F̃ + ∂x (v F̃) = 0,

∂tqθ j + ∂x (vqθ j) = 0, 1 ≤ j ≤ Nz,

∂t Qθ j + ∂x (vQθ j) = 0, 1 ≤ j ≤ Nz,

∂tv
�
θ j

+ ∂x

(
v�θ j

(v + 1

2
v�θ j

)

)
= 1

h
∂x (h2 Ẽ) + qθ j

h
∂x (hQθ j ), 1 ≤ j ≤ Nz.

(48)

Considering the numerical method introduced in Section 3, the easiest way
to account for these additional equations, from a discrete point of view, is
to incorporate the auxiliary quantities qθ j , Qθ j , and v�θ j

into our splitting
approach, and into the approximate Riemann solver for the transport part of
the equations.

Remark 12. As these new equations are decoupled from the equations
on mass and momentum, we choose to keep the simple three-wave
structure of the approximate HLLC Riemann solver. Such a choice may
appear as surprising for the quantities v�θ j

, considering the particular form
of the associated nonlinear evolution equations. However, our numerical
investigations have shown that considering each scalar equations separately,
the corresponding wave speeds associated with the values of v + 1

2v
�
θ j

at
interfaces are very close to v (which is in accordance with the vorticity
scaling studied here, see [1]), and always lie between the considered external
wave speed estimates.

To simplify the notations, let us consider the case of one level line,
located at the vertical coordinate z = −H0 + b(x) + θh(t, x), with θ ∈]0, 1],
and denote by qθ , Qθ , and v�θ the associated quantities. The splitting scheme
(36)-(37) is modified as follows:

� S1(t) is the solution operator associated to the conservative propagation
step, which may be written in the following conservative form:

∂tWθ + ∂xF(Wθ ) = S(Wθ , b), (49)

with Wθ = T (h, hv, v�, Ẽ, F̃, qθ , Qθ , v
�
θ ),

F(Wθ ) = T

(
hv, hv2 + p(h, Ẽ), vv�, v Ẽ, v F̃, vqθ , vQθ , v

�
θ

(
v + 1

2
v�θ

))
,

and S(Wθ , b) = T (0, −ghbx , 0, 0, 0, 0, 0, 0).
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� S2(t) is the solution operator associated to the dispersive correction,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t h = 0,

∂t (hv) − gh∂xζ − ∂x (h2 Ẽ)

+ (1 + T)−1
[
gh∂xζ + ∂x (h2 Ẽ) + hQ1(v) + hC(v, v�)

] = 0,

∂tv
� = 0,

∂t Ẽ + 3F̃∂x h + h∂x F̃ = 0,

∂t F̃ = 0,

∂tqθ = 0,

∂t Qθ = 0,

∂tv
�
θ − 1

h
∂x (h2 Ẽ) − qθ

h
∂x (hQθ ) = 0.

(50)

Note that when compared with (37), the second step is only modified with
the introduction of a source term in the equation on v�θ .

5.4. A solitary wave propagating in a constant vorticity field

To illustrate the previous reconstructions, we show here the velocity fields
associated with some of the new solitary wave solutions exhibited in
Section 2.1. We choose the simplest case of a constant vorticity field,
described by model (5) and we set

curl U = (0, ω, 0)T with ω(t, x, z) = ω0.

Using (44), we obtain the initial horizontal shear velocity field

v
�,0
sh (x, z) = −ω0(ζ 0 − z) + ω0

2
h0,

and the initial velocities field v0
θ et w0

θ are obtained with straightforward
computations using (46) and (47). This initial velocities is shown in Figure
14 for the values ω0 = 0.3 s−1 and ω0 = 1.5 s−1. For comparison purpose,
we also show the velocity field corresponding to the irrotational solitary
wave of similar amplitude. We can observe the vertical decreasing of the
velocity’s horizontal component magnitude for the rotational solitary wave,
while this is left unchanged for the irrotational wave.
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Figure 14. Velocity fields in solitary waves with constant vorticity: influence of the
vorticity magnitude.

5.5. A solitary wave arriving in a vorticity region

We consider now an initial vorticity field with vertical and horizontal
dependencies, defined as follows:

ω0(x, z) = −2πω cos

(
2π
ζ − z

H0

)
exp

(
− (x − x1)2

λ2

)
(51)

with ω = ε
√

gH0

λ
(this scaling of the vorticity corresponds to the regime

studied in [1, 44] where the GN models with vorticity have been derived
and justified).

With this definition, we observe that the vorticity vanishes as x → ±∞.
In addition, its strongest variations of amplitude along the horizontal
dimension are located near some point of abscissa x1.

In the following, we aim at qualitatively observing the behavior of an
irrotational solitary wave arriving from afar (where the vorticity is therefore
negligible). We consider a channel of 50 m long, set H0 = 1 m, x1 = 25 m
and take as initial surface elevation the profile of an irrotational solitary
wave (25) centered at x0 = 12.5 m with ε = 0.25. We highlight that x0 is
chosen far enough from x1 to ensure that the vorticity in initially negligible
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Figure 15. A solitary wave arriving on a vorticity region: snapshot of the free surface
profile at times t = 0, 2, 3, 4, 4.5, and 5 s. The velocity fields structures are plotted with
black arrows and the corresponding vorticity is shown according to the left colorbar.

in the vicinity of the solitary wave. The choice (51) for the initial vorticity
field leads to the following initial horizontal shear velocity:

v
�,0
sh (x, z) = ωH0

⎡
⎣sin

(
2π
ζ 0 − z

H0

)
− H0

2π

1 − cos
(

2π h0

H0

)
h0

⎤
⎦ exp

(
− (x − x1)2

λ2

)
,
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Figure 16. Initial values for ζ, v and E, F, v� for the configuration of Section 5.5 with
H0 = 1 m and ε = 0.25.

so that the full initial velocity field can again be constructed4 through (43),
see Figure 15. We now follow the procedure described in the previous
sections. From simple computations, one gets

v�,0 = 2H 2
0ω

π3(h0)3

[
(h0)2π2(1 + 2c2) − 3H 2

0 s2
]

exp

(
− (x − x1)2

λ2

)
,

E0 = 3H 2
0ω

2

2π2h0

[
H0h0π (s2 − c2)sc − 2H 2

0 s4 + π2(h0)2
]

exp

(
−2

(x − x1)2

λ2

)
,

F0 = 3H 4
0ω

3

2π3(h0)2
s2
[
4π2(h0)2(1 − 2c2)c2 − 9πH0h0(1 − 2c2)cs

+12H 2
0 (1 − c2)2 − 5π2(h0)2

]
exp

(
−3

(x − x1)2

λ2

)
,

where we used the notations s = sin(π ζ 0

H0
) and c = cos(π ζ 0

H0
). These func-

tions are shown in Figure 16. Note in particular that the function F almost
identically vanishes (its sup norm does not exceed 2 × 10−9), and it is there-
fore possible to work with the reduced model (13). For the computation,
we set Nx = 500, leading to δx = 0.1 m, and Nz = 30. The corresponding
results are shown in Figure 15, where we plot the free surfaces at several
times during the propagation, together with the reconstructed velocity fields
and the corresponding vorticity. We can observe the impact of the current
on the initial velocity field and the free surface profile, and that the initial
vorticity area is slightly dragged along and stretched as the wave propagates.

4The two integrals in the expression for w0 can be computed explicitly,∫ z

−H0

v
∗,0
sh = ωH2

0 6π

[
cos

(
2π
ζ − z

H0

)
− cos

(
2π

h0

H0

)
− z + H0

h0

(
1 − cos

(
2π

h0

H0

))]

× exp

(−(x − x1)2

λ2

)∫ z

−H0

T �v0 = − 1

6
(z + H0)

(
(z + H0)2 − (h0)2

)
∂2

x v
0.
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Figure 17. Influence of vorticity on shoaling: snapshot of the free surface profile at times
t = 0, 2, 3, 4, 4.5, and 5 s. The velocity fields structures are plotted with black arrows and
the corresponding vorticity is shown according to the left colorbar.

5.6. Influence of vorticity on shoaling

We consider here the same configuration as in Section 5.5 but with the
vorticity region now located in an area where the topography varies. More



Nonlinear Wave–Current Interactions in Shallow Water 39

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

x (m)

ζ
v
E
v

0 5 10 15 20 25 30 35 40
−3

−2

−1

0

1
x 10

−3

x (m)

F

Figure 18. Initial values for ζ, v and E, F, v� for the configuration of Section 5.6 with
H0 = 1 m and ε = 0.25.

precisely, instead of a flat bottom (b = 0) we now consider a bottom
parameterized by z = −H0 + b(x), with

b(x) = H0

6

(
1 + tanh

(
x − x1

λ

))
.

One could derive as in Section 5.5 explicit expressions for the initial values
of E, F , and v�, but they can also easily be numerically computed; they are
represented in Figure 17. Note that in this configuration, F is still small (of
order 10−3) but not as much as in the previous configuration with a flat
bottom. For this kind of configurations, it is therefore suitable to work with
the full system (8). We show the corresponding results for the velocity fields
in Figure 18.
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