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Abstract This paper addresses the floating body problem which consists in studying
the interaction of surface water waves with a floating body. We propose a new formu-
lation of the water waves problem that can easily be generalized in order to take into
account the presence of a floating body. The resulting equations have a compressible–
incompressible structure in which the interior pressure exerted by the fluid on the
floating body is a Lagrange multiplier that can be determined through the resolution
of a d-dimensional elliptic equation, where d is the horizontal dimension. In the case
where the object is freely floating, we decompose the hydrodynamic force and torque
exerted by the fluid on the solid in order to exhibit an added mass effect; in the one
dimensional case d = 1, the computations can be carried out explicitly. We also show
that this approach in which the interior pressure appears as a Lagrange multiplier can
be implemented on reduced asymptotic models such as the nonlinear shallow water
equations and the Boussinesq equations; we also show that it can be transposed to the
discrete version of these reduced models and propose simple numerical schemes in
the one dimensional case. We finally present several numerical computations based
on these numerical schemes; in order to validate these computations we exhibit an
explicit ODE that describes the motion of the solid in some particular configurations
such as the return to equilibrium problem in which an object is dropped from a non-
equilibrium position in a fluid which is initially at rest; a byproduct is the proof that
the damping mechanism is a nonlinear effect.
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List of symbols

d Horizontal dimension
X = (x, y) Horizontal variable if d = 2; X = x if d = 1
z Vertical variable z
∇ Gradient operator with respect to the horizontal variables
∇⊥ = (−∂y, ∂x )

T Orthogonal horizontal gradient operator
∇X,z Full gradient operator
d Horizontal dimension, d = 1, 2
fe Restriction of the function f to the exterior region E(t)
fi Restriction of the function f to the interior region I(t)
〈 f 〉 The average part of f , see Notation 5
f ∗ The oscillating part of f , see Notation 5
Var( f ) The variance of f , see Notation 9
A = (Ah, Av) Ah and Av are the horizontal and vertical components of A
A⊥
h Given by (−A2, A1) if Ah = (A1, A2)

A The trace of A on the surface of the fluid
α Ratio δt/δx of the time step and cell size
�(t) Horizontal projection of the contact line
�

( j)
I Elementary potential, see Definition 3

�I Vectors whose components are the elementary potentials
�

( j)
I

ζ Surface elevation
ζw Parametrization of the bottom of the solid
� Rotation matrix, see (28)
ν Unit normal vector to the d-dimensional curve �(t)
ω = (ωh, ωv) Angular velocity
ω Angular velocity in dimension d = 1
�(t) Domain occupied by the fluid at time t
aFS Acceleration of the free surface, see (18)
aNH Non-hydrostatic acceleration, see (15)
A[ζ ] Average mapping, see Prop. 1
b z = −h0 + b(X) is the bottom parametrization
C(t) Domain occupied by the solid at time t
E(t) Exterior region at time t
Ffluid Force exerted by the fluid on the solid, see (31)
F[h,�I ]Si Force-torque generated by Si, see Definition 4
˜F[h, rG ]Si Force-torque generated by Si if d = 1, see §3.2.2
G = (XG , zG) Position of the center of mass
G[ζ ] Dirichlet–Neumann operator, see Definition 1
h(t, X) Water depth h = h0 + ζ(t, X) − b(X)

h0 Reference water depth at rest
H1/2(I), ˜H1/2(I) Sobolev spaces on the bounded domain I, see Definition 5
Ḣ s(Rd), Ḣ1(�) Beppo–Levi spaces, see (12)
I(t) Interior region at time t
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i0 Inertia coefficient if d = 1
I(t) Inertia matrix of the solid, see (27)
m Mass of the solid
M(t) Mass-inertia matrix of the solid, see Definition 4
M0 Mass-inertia matrix of the solid when d = 1
Ma[h,�I ] Added mass-inertia matrix of the solid, see Definition 4
˜Ma[h, rG ] Added mass-inertia matrix if d = 1, see §3.2.2
N Non unit upward normal vector at the surface N = (−∇ζ, 1)

Nw Non unit upward normal vector on the wetted surface
Nb Non unit upward normal vector at the bottom Nb = (−∇b, 1)

P Pressure field
P I

i , P
II
i , P III

i Decomposition of the interior pressure, see Prop. 4
P IV

i Additional pressure for vertical walls, see Prop. 10
Patm Atmospheric pressure (constant)
PNH Non-hydrostatic pressure, see (11)
q Horizontal discharge when d = 1
Q Horizontal discharge
Q[rG ] Quadratic source term for the interior pressure, see §3.1
rG Position with respect to the center of mass, see (24)
R[h, Q] Reynolds tensor, see (14)
R[ζ ] Reconstruction mapping, see Prop. 1
U Velocity field for the fluid
UC = (VC, wC) Velocity field for the solid
UG = (VG , wG) Velocity of the center of mass
Uw Velocity of the solid on the wetted surface
Uw,τ See §3.1
V Horizontal component of the velocity field
V Vertically averaged horizontal velocity, see (13)
w Vertical component of the velocity field
x±(t) Boundaries of the interior region in dimension d = 1

1 Introduction

1.1 General Setting

Krylov published in 1898 a method to compute the hydrodynamic loads for ship
motions in waves, assuming that the presence of the ship did not perturb the waves,
but the floating body problem was probably formulated by Fritz John in two celebrated
papers [28,29]. It consists in studying the motion of the mechanical system formed
by a fluid and a partially immersed solid C(t). The fluid is delimited above by a free
surface, and is assumed to be incompressible and in irrotational motion, while the
solid C(t) can have a prescribed motion or can be freely floating. In the latter case,
the motion of the solid is governed by Newton’s laws in which the gravity force (and
possibly other external forces) is complemented by the force and torque exerted by
the liquid on the solid.
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This is a complex problem in which two free boundary problems are involved. The
first one is the standard water waves problem consisting in describing the evolution
of the surface of the fluid when it is in contact with the air. The second free boundary
problem comes from the fact that the wetted surface ∂wC(t), i.e. the portion of the
boundary of the solid in contact with the fluid, depends on time. For these reasons,
Fritz John considered a much simplified problem. Expressing the velocity U in the
fluid domain � in terms of a velocity potential �,

U = ∇X,z� and X,z� = 0 in �, and ∂n� = 0 at the bottom,

he made the following assumptions

• A linear model for the evolution of the free surface waves is considered in the
exterior domain (i.e. where the surface of the fluid is not in contact with the solid),
namely

{

∂tζ − (∂z�)|z=0 = 0,

∂t�|z=0 + gζ = 0,

where g is the gravity and ζ the parametrization of the free surface above the rest
state z = 0.

• The motion of the solid is assumed to be of small amplitude.
• The variations of the wetted surface ∂wC(t) with time are neglected.

On the interior domain (i.e. under the structure), the continuity of the normal velocity
across ∂wC, yields the additional condition

∂n� = Uw · n

where Uw is the velocity of the solid on the wetted surface and n the upward unit
normal vector; when the solid is in forced motion, this is a known function of time,
and when the solid is freely floating it must be deduced from the Newton’s laws that
govern the motion of the solid. In the latter case, it is necessary to know the pressure
exerted by the fluid on the bottom of the boat (called the interior pressure P i); this is
done in [28] using the linearized Bernoulli equation,

− P i − Patm

ρ
= (∂t�)|z=ζw

+ gζw,

where Patm is the atmospheric pressure, and ζw the parametrization of the bottom of
the solid.

Finally, some transition (or coupling) conditions are needed at the contact line that
separates the interior and exterior domains. In [28], these conditions are not stated
clearly and not completely correct; as we shall see, this is mainly because the velocity
potential � is not the appropriate quantity to express such transition conditions—
indeed, the surface of the fluid makes an angle at the contact line (in dimension d = 2,
and a wedge if d = 3) and the potential is singular. In [29], it is further assumed
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that the motion in time is harmonic at some given frequency, so that the full problem
reduces to a spectral problem, in which the main difficulty becomes the analysis and/or
numerical computation of the associated Green functions.

Fritz John’s approach of the floating body problem, though oversimplified in many
aspects (it misses in particular the nonlinear effects, the evolution of the wetted surface,
etc.), is still used and studied a lot, both theoretically and numerically. It has been
slightly generalized to include second order effects [38] (though still neglecting the
time variations of the wetted surface) and is still the principal method used in the
extensive literature devoted to floating structures such as wave power devices for
instance [35,37]; it is also the basis of softwares like WAMIT, widely used to compute
the motion of offshore structures in waves.

More recently, the nonlinear effects in the floating body problem have been taken
into account in various numerical studies, mostly based on boundary element methods
for the resolution of the potential equation (see for instance the review [12]). The
nonlinear aspect of the underlying hydrodynamics is taken into account by a nonlinear
boundary element method (see [21,23] for instance), and the hydrodynamic forces on
the wetted surface can be computed at each time (see for instance [30]), which allows
the description of the evolution of the contact line. These methods require the resolution
of boundary integral equations and have a big computational cost. This is also the case
of the CFD approach based on the numerical resolution of the full Navier–Stokes
equations (see [40] and references therein).

All these methods have in common that they require the resolution of a (d + 1)-
dimensional elliptic problem in the fluid domain (d is the horizontal dimension), or
a boundary integral equation, in order to compute the interior pressure P i through
Bernoulli’s equation as explained above; moreover, the presence of the time derivative
of the velocity potential in this expression yields considerable stability issues in the
numerical simulations [30].

In this paper, we propose a different approach than the one initiated by F. John and
in particular, we no longer seek to recover the interior pressure P i through Bernoulli’s
equation. More precisely, we propose a new formulation of the full (nonlinear) floating
body problem in which

• The transition conditions at the contact line can be expressed in a simple way and
the evolution law for the contact line can be derived.

• The problem is stated as a d-dimensional compressible–incompressible model in
which the interior pressure P i is found as the Lagrange multiplier associated to
the constraint that the surface of the fluid coincides with the boundary of the solid
under the floating body (i.e. ζ = ζw).

The interest of this formulation, itself based on a new formulation of the standard water
waves equations in terms of (ζ, Q), where Q is the horizontal discharge, is that the
dimensionality of the elliptic equation one has to solve to find P i is reduced: it is now
a simple d-dimensional elliptic equation (as opposed to the d + 1 elliptic equation on
the potential one has to solve in the approach described above). Replacing P i by the
solution of this elliptic equation, one can moreover eliminate the constraint ζ = ζw in
the interior region, exactly in the same way as the incompressible Euler equations can
be transformed into an unconstrained quasilinear evolution equation on the velocity.
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Note also that the compressible–incompressible structure mentioned above is typical
of congested flows that appear in several contexts such as two-phase flows [5,7,43],
traffic jams [3], formation of crowds [13], granular flows [36,42], compressible-low
Mach coupling in gaz dynamics [41], etc.

We also want in this paper to take advantage, with this new formulation of the
floating body problem, of the progresses that have been made in recent years in the
mathematical study of the motion of a rigid body C(t) totally immersed in an incom-
pressible perfect fluid confined to a domain �. This is also a problem that has attracted
a lot of attention, starting with the works of d’Alembert, Kelvin and Kirchhoff. The
equations governing the motion are provided by the Euler equations for the dynamics
of the fluid in the region �\C(t) outside the solid, often (but not necessarily) comple-
mented with an irrotationality assumption. The existence and uniqueness of classical
solutions to this problem has been proved in [24,39,44]; in [19] the authors used the
added mass effect to prove that the regularity of the motion of the solid is limited
only by the regularity of the boundary of the solid. Roughly speaking, the added mass
effect consists in the fact that some components of the hydrodynamics force and torque
applied on the solid act as if the mass-inertia matrix in Newton’s law were modified
by the addition of a positive matrix. This is because a rigid body has to accelerate not
only itself but also the fluid around it. Exploiting this effect is necessary for a sharp
mathematical analysis of the equations [18,19] and plays also a crucial role for the
stability of numerical simulations in many fluid–structure interaction problems [9].
This added-mass effect can be quite complex however, since it depends strongly on
the location of the solid with respect to the boundaries of the fluid domain [18]; in the
case a floating body considered here, the analysis is complicated by the fact that the
boundary of the fluid domain is a free surface, which moreover intersects the surface
of the body. The second goal of the paper is therefore to

• Exhibit the added-mass effect in our compressible–incompressible formulation of
the floating body problem

• Take advantage of the simplicity of the elliptic equation on the interior pressure
P i to get a simple expression of the mass-inertia matrix (which becomes explicit
if the horizontal dimension is one).

Of course, the resulting formulation of the floating body problem remains quite
complex. From the mathematical viewpoint, proving a local well-posedness result is
a very challenging issue since, not speaking of the coupling with the solid motion, it
requires several results on the water waves equations that are important open prob-
lems. For instance, the regularity of the surface on the whole domain is not expected
to be better than Lipschitz because there is an angle/wedge at the contact line,1 there
is no result on the mixed initial-boundary value problem for the water waves equa-
tions, etc. The numerical simulation of the full water waves equations is also quite
demanding. For these reasons, and with the goal of being able to study numerically
real wave–structure interactions, and in particular nonlinear effects (efforts on off-
shore platforms in extreme events, wave energy converters, etc.), one is led to derive

1 At the day, the best result in terms of low regularity for the surface elevation in the water waves equations
is H3/2+d/2−ε(Rd ), for some ε > 0 explicit [1].
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simplified asymptotic models. We shall consider here the case of shallow water con-
figurations for which the asymptotics of the water-waves equations (without floating
body) is now well understood [2,25,33]. There are however only a few references that
extend the resulting asymptotic models in the presence of a floating body. In [31] the
authors used a Boussinesq model to describe the flow under the free surface, while
solving the potential equation for � under the floating body (from which the interior
pressure P i is recovered along the lines described above). Closer to our approach, [27]
and [17] propose a system of two Boussinesq systems (one under the structure, and
the other one under the free surface), and the interior pressure is numerically solved
so that these two sets of equations are compatible; the formulation used in these refer-
ences does not however allow to write a simple explicit elliptic equation on the interior
pressure as in the approach we propose here. The third goal of this paper is therefore

• To use the strategy explained above (in the case of the full water waves equations)
in order to allow for the presence of a floating structure in various shallow water
models—we consider here the nonlinear shallow water equations and a Boussinesq
system. More precisely, we show that in the presence of a floating body, these
models can be written under the form of a compressible–incompressible system. To
every model corresponds a particular Lagrange multiplier and therefore a particular
interior pressure P i.

• To generalize this approach to numerical schemes; we show in particular how to
find a discretization of the interior pressure in such a way that it plays the role of
a discrete Lagrange multiplier.

• Show the efficiency of this method with some numerical computations for the one
dimensional nonlinear shallow water and Boussinesq models.

In these numerical computations, the fact that the interior pressure is the discrete
Lagrange multiplier associated to the constraint that the surface of the fluid under
the floating structure coincides with the boundary of this latter allows us to solve the
equations in the full computational domain (without having to handle the coupling
between the interior and exterior regions); the surface elevation computed in this way
coincides at machine precision with the bottom of the solid in the wetted region. Under
the assumptions described above, the floating body problem can therefore be solved
numerically very efficiently.

1.2 Organization of the Paper

We first describe in Section 2 how the waves are affected by the presence of a floating
structure, without considering the motion of the solid itself. The formulation of the
equations is first given in §2.1; it follows from this formulation that the horizontal
discharge (or the vertically averaged vertical velocity V ) is a natural quantity to express
the transition conditions at the contact line. We therefore seek in §2.2 a formulation
of the water waves equations in terms of this variable (and of the surface elevation).
After proving that such a formulation exists and is closed (i.e. that all the physical
quantities involved can be reconstructed in terms of the horizontal discharge and of
the surface elevation), we generalize this formulation in §2.3 in the presence of a
floating structure. This formulation has a compressible–incompressible structure: it is
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compressible in the exterior region, and incompressible under the floating structure.
The interior pressure P i naturally appears as the Lagrange multiplier associated to
the “incompressibility” condition ζ = ζw, and it can be found by solving a simple
d-dimensional elliptic equation.

In Section 3, the motion of the floating structure is considered. We first consider in
§3.1 the case of a solid with a forced motion, while the case of a freely floating solid
is studied in §3.2. In the latter case, the motion of the solid is found through Newton’s
laws where the force corresponding to the interior pressure P i is the buoyancy force;
this force is decomposed into several components, one of which corresponding to an
added mass effect. Let us mention that in both cases (forced motion and freely floating
body), specific attention is paid to the one-dimensional case: the elliptic equation for
the interior pressure P i is then one-dimensional and can be solved explicitly.

The evolution of the contact line is then studied in Section 4, in the one dimensional
case in §4.1, and in the two-dimensional case in §4.2. We also explain in §4.3 the
modifications one has to carry out when the boundaries of the floating structure are
vertical at the contact line.

In Section 5, we replace the water waves equations for the free surface by simpler
asymptotic models. The case of the nonlinear shallow water equations is considered
in §5.1, while the Boussinesq equations are treated in §5.2.

We then show in Section 6 how to implement our approach at the level of the
numerical scheme. To this end, we consider a simple one dimensional configuration
in which the solid is only allowed to move vertically and has vertical lateral walls (the
contact points are then independent of time). We show how to discretize the interior
pressure in such a way that it plays the role of a discrete Lagrange multiplier for the
numerical scheme. The equations are presented in §6.1 when the hydrodynamic model
is the nonlinear shallow water equations. Particular attention is paid to the ordinary
differential equation resulting from Newton’s law. We are in particular able to find a
simple nonlinear second order ODE governing the motion of the solid in the return
to equilibrium problem (the solid is dropped from an out of equilibrium position in
a fluid initially at rest). The numerical scheme is then presented and studied in §6.2,
and this approach is extended in §6.3 when the underlying hydrodynamic model is the
Boussinesq system.

The numerical computations based on these schemes are then presented in Section
7. For the nonlinear shallow water equations, several configurations are considered
in §7.1: a fixed solid, a solid in prescribed motion, and a freely floating solid. In the
last two cases we can derive formulas for explicit solutions for some configurations
and use them to validate our numerical simulations. Numerical simulations when the
hydrodynamical model is the Boussinesq system are then presented in §7.2.

Finally, several results are postponed to Appendices. In Appendix A we derive
an alternative equation for the interior pressure, while the equations of motion for
the solid structure are given in Appendix B in a body frame instead of the Eulerian
frame.
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1.3 Notations

We just introduce here some basic notations; a full table of notations is provided at
the end of the paper.

– We denote by d = 1, 2 the horizontal dimension.
– The gradient operator with respect to the horizontal variables X ∈ R

d is denoted
by ∇; the full (d + 1)-dimensional gradient operator is denoted ∇X,z , where z is
the vertical variable.

– If A ∈ R
d+1, we denote by Ah ∈ R

d its horizontal components, and by Av its
vertical (last) component.

– We denote by ez the unit upward vertical vector, and by ex and ey the unit vectors
in the horizontal directions x and y.

– When d = 2, we write X = (x, y) and sometimes use the notation ∂1 = ∂x ,
∂2 = ∂y .

– We denote with single vertical bars | · | norms over the horizontal plane R
2, and

with a double bar ‖ · ‖ norms over the fluid domain �. For instance,

| f |2 =
(

∫

Rd
| f |2

)1/2
and ‖F‖2 =

(

∫

�

|F |2
)1/2

.

2 Water Waves and Floating Structures

2.1 The Free Surface Euler Equations with a Floating Structure

Let us consider here the dynamics of the waves in the presence of a partially immersed
device (typically a ship or a floating wave energy converter). Denoting by C(t) the
volume occupied by the (solid) device at time t , we write ∂C(t) its boundary and
∂wC(t) the wetted surface, that is, the portion of ∂C(t) in contact with the water, and
by I(t) ⊂ R

d (d being the horizontal dimension) its projection on the horizontal
plane, which we shall refer to as the interior domain. The exterior domain E(t) is then
naturally defined as

E(t) = R
d\I(t)

(see Figure 1). We consider in this paper the case where overhanging waves do not
occur and where the wetted surface can be parametrized by a graph of some function
ζw(t, X), for all X ∈ I(t). The surface of the water is therefore determined by the
graph of a function X ∈ R

d 
→ ζ(t, X) satisfying the constraint ζ(t, X) = ζw(t, X)

on I(t). Denoting by h0 the typical depth at rest and by −h0 +b(X) a parametrization
of the bottom, the domain �(t) occupied by the fluid at time t is therefore given by

�(t) = {(X, z) ∈ R
d+1,−h0 + b(x) < z < ζ(t, X)}.
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Fig. 1 Notations

Notation 1 For any function f defined on R
d , we denote with a subscript i its restric-

tion to the interior domain I(t) and with a subscript e its restriction to the exterior
domain E(t),

fi = f|I(t) and fe = f|E(t) .

We assume that the flow is incompressible, irrotational, of constant density ρ,
and inviscid. We can then formulate the equations as a set of equations in �(t),
complemented with boundary conditions and a constraint associated to the presence
of the immersed structure:

• Equations in the fluid domain�(t). Denoting byU and P the velocity and pressure
fields, the equations are given by

∂tU + U · ∇X,zU = − 1

ρ
∇X,z P − gez, (1)

div U = 0, (2)

curl U = 0, (3)

where g is the acceleration of gravity.
• Boundary conditions at the surface. The surface being bounding (i.e. no fluid

particle crosses it), one gets the traditional kinematic equation

∂tζ −U · N = 0 with N =
(−∇ζ

1

)

, (4)

where we denoted U (t, X) = U(t, X, ζ(t, X)) the trace of the the velocity field
U at the free surface.
The assumption that the pressure is given by the constant atmospheric pressure
Patm on the exterior domain (i.e. on the portion of the surface of the fluid that is
not in contact with the immersed structure), gives if we write P = P|z=ζ and with
Notation 1,
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Pe = Patm. (5)

• Boundary condition at the bottom. Assuming that the bottom is impermeable, we
get another boundary condition at the bottom

Ub · Nb = 0 with Nb =
(−∇b

1

)

, (6)

where we denoted by Ub the trace of U at the bottom.
• Constraint in the interior domain. By definition, the surface of the fluid coincides

with the bottom of the solid structure in the interior domain; according to Notation
1, this yields

ζi = ζw. (7)

It is important to insist on the fact that the interior pressure P i is not known and must
be determined from the above equations. Similarly, the interior and exterior domains
I(t) and E(t) are also unknowns of the problem that we must determine. To this end,
we need another set of boundary coupling, or transition, conditions at the contact line
(defined as the part of the bottom of the boat which is in contact both with air and
water). Let us first give some notations.

Notation 2 We denote by �(t) := ∂I(t) = ∂E(t) the projection of the contact line on
the horizontal plane

It is implicitly assumed that ζi, P i, etc. (resp. ζe, Pe, etc.) are smooth in I(t) (resp.
E(t)) and that they can be extended by continuity on the closure of these domains;
however, they are certainly not smooth on the whole horizontal plane R

d . We only
have the following boundary conditions at the contact line:

• Continuity of the surface elevation. There is no jump of the surface elevation at
the contact line,

ζe(t, ·) = ζi(t, ·) on �(t). (8)

• Continuity of the pressure at the contact line. We assume that

P i(t, ·) = Patm on �(t). (9)

The equations (1)–(6) together with the constraint (7) and the boundary conditions
at the contact line (8)–(9) form the free surface Euler equation in the presence of a
floating body C(t), that we can also see as constrained free surface Euler equations.

Remark 1 The transition conditions (8)–(9) obviously exclude the configuration where
the boundaries of the solid are vertical at the contact line. We show in §4.3 how to
handle such configurations and generalize (8)–(9).

Of course, further information is needed on the motion of the solid: it can be fixed,
in prescribed motion, or freely floating for instance. These situations will be addressed
in Section 3.
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2.2 A Formulation of the Classical Water Waves Equation in (ζ, Q) Variables

Taking I(t) = ∅ and E(t) = R
d , equations (1)–(6) are the classical (i.e. without any

floating structure) free surface Euler equations, also called water-waves equations.
These equations are cast on the (d + 1)-dimensional domain �(t) which is itself
unknown.

Several reformulations of these equations have been proposed in order to work
with a set of equations on a fixed domain. Among these reformulations, one of the
most popular is the Zakharov–Craig–Sulem formulation [10,46], which is a set of two
scalar equations on ζ and on ψ , the trace of the velocity potential at the surface. The
dimension reduction of this formulation is one of its main features: ζ and ψ depend
only on the horizontal space variables, so that the z dependency has been removed.

Working with ζ and ψ is therefore quite usual when analyzing the water waves
problem, but the asymptotic models that are used for applications in oceanography
are generally not cast in terms of ζ and ψ . For these models, a dimension reduction is
also done to eliminate the vertical variable z, but this reduction is performed using a
different procedure, namely, vertical integration. Consequently, the asymptotic models
(such as the nonlinear shallow water equations, the Serre–Green–Naghdi equations,
etc.) are cast in terms of ζ and Q, where Q is the horizontal discharge defined as
follows.

Notation 3 We denote by Q the horizontal discharge defined as

Q(t, X) :=
∫ ζ(t,X)

−h0+b(X)

V (t, X, z)dz,

where V is the horizontal component of the velocity field U.

Such a formulation in (ζ, Q) variables is also much more adapted than the classical
(ζ, ψ) formulation to handle the transition conditions at the contact line. The aim of
this section is therefore to derive a new formulation of the full water waves equations
in terms of ζ and Q.

2.2.1 The Integrated Euler Equations

Integrating along the vertical variable z the momentum equation (1), it is well known
[8,45] that, in absence of any immersed solid, one can derive a set of equations coupling
the surface elevation ζ to the vertically integrated horizontal component of the velocity
Q and given by

⎧

⎪

⎨

⎪

⎩

∂tζ + ∇ · Q = 0,

∂t Q + ∇ ·
(∫ ζ

−h0+b
V ⊗ V

)

+ gh∇ζ + 1

ρ

∫ ζ

−h0+b
∇PNH = 0,

(10)

where h := h0 + ζ − b, V ⊗ V := VV T , and the non hydrostatic pressure PNH is
given by

123



On the Dynamics of Floating Structures Page 13 of 81  11 

PNH(t, X, z) := ρ

∫ ζ(t,X)

z

(

∂tw + U · ∇X,zw
)

, (11)

with w the vertical component of the velocity. In (10)–(11) however, several quantities
are not explicit functions of ζ and Q; it is therefore necessary to prove that the full
velocity field U in �(t) can be recovered from the knowledge of ζ and Q. In the next
section, the technical tools for such a reconstruction are provided.

2.2.2 The Average and Reconstruction Mappings

It is convenient to introduce here the Dirichlet–Neumann operator which plays a central
role in the Zakharov–Craig–Sulem formulation. We recall first that the Beppo-Levi
spaces Ḣ s(Rd) and Ḣ1(�) are defined for all s ≥ 0 by

Ḣ s(Rd) =
{

f ∈ L2
loc(R

d), ∇ f ∈ Hs−1(Rd)d
}

(12)

Ḣ1(�) =
{

f ∈ L2
loc(�), ∇X,z f ∈ L2(�)d+1

}

and are endowed with the (semi) norms | f |Ḣ s = |∇ f |Hs−1 and ‖ f ‖Ḣ1 = ‖∇X,z f ‖2
respectively. Note that the fact that the following definition makes sense stems from
Proposition 3.3 in [33].

Definition 1 Let ζ, b ∈ W 1,∞(Rd) be such that infRd (h0 + ζ(X) − b(X)) > 0. The
Dirichlet–Neumann operator G[ζ ] is defined as

G[ζ ] : Ḣ1/2(Rd) → H−1/2(Rd)

ψ 
→ √

1 + |∇ζ |2∂n�|z=ζ

where ∂n stands for the upwards normal derivative and � ∈ Ḣ1(�) is the variational
solution of the boundary value problem

{

X,z� = 0 in �,

�|z=ζ = ψ, ∂n�|z=−h0+b = 0.

We can now state the following proposition that shows that the velocity field U
can be reconstructed from ζ and V , where V is the vertically averaged horizontal
component of the velocity defined as

V (t, X) = 1

h(t, X)

∫ ζ(t,X)

−h0+b(X)

V (t, X, z)dz with h = h0 + ζ − b, (13)

and where we recall that the velocity in the fluid domain is U = (V, w). Quite
obviously, Q and V are related through the identity

Q = hV with h = h0 + ζ − b,
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so that the proposition also implies that one can reconstruct U from ζ and Q. In the
statement, the notation L2

b(�, div, curl) is used for the set of admissible velocity fields,

L2
b(�, div, curl) := {U ∈ L2(�)d+1, div U = 0, curl U = 0 and Ub · Nb = 0}.

Proposition 1 Let ζ, b ∈ W 1,∞(Rd) be such that infRd (h0 + ζ(X) − b(X)) > 0.
The average mapping

A[ζ ] :
L2
b(�, div, curl) → H1/2(Rd)d

U :=
(

V
w

)


→ V := 1
h

∫ ζ

−h0+b V

and the reconstruction mapping

R[ζ ] : H1/2(Rd)d → L2
b(�, div, curl)

V 
→ ∇X,z�,
with

⎧

⎪

⎨

⎪

⎩

X,z� = 0 in �

�|z=ζ = −G[ζ ]−1
(∇ · (hV )

)

∂n�|z=−h0+b = 0

are well defined and R[ζ ] is a left-inverse of A[ζ ].
Proof In order to prove that the average mapping is well defined, we just need to prove
that V belongs to H1/2(Rd) if U is in L2

b(�, div, curl). This is done in the following
lemma.

Lemma 1 Let ζ, b ∈ W 1,∞(Rd) be such that infRd (h0 + ζ(X) − b(X)) > 0 and
U = (V, w) ∈ L2

b(�, div, curl). Then one has

V ∈ H1/2(Rd)d , with V = 1

h

∫ ζ

−h0+b
V (X, z)dz.

Proof of the Lemma Let us define σ(X, z) = 1
h0

(ζ(X) − b(X))z + ζ(X). Denoting
also U = (V,W), with U(X, z) = U(X, z + σ(X, z)), one has

V = 1

h0

∫ 0

−h0

V(X, z)dz.

We then define ˜V on the strip S = R
d × (−h0, 0) by

∀(X, z) ∈ S, ˜V (X, z) = 1

h0
χ(z|D|)

∫ z

−h0

V(X, z)dz,

where χ : R → R is a smooth, even, function that is compactly supported and equal to
1 in a neighborhood of the origin (therefore, for z < 0, the Fourier multiplier χ(z|D|)
with symbol χ(z|ξ |) is a smoothing operator). One readily remarks that V = ˜V|z=0,
so that the result follows from the trace theorem if we can establish that ˜V ∈ H1(S)d .
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Since S is bounded in the vertical direction and since ˜V vanishes at the bottom, it
is enough by the Poincaré inequality to prove that all the components of ∇X,z˜V are in
L2(S). The strategy of the proof is as follows: first, we prove that ∇ · ˜V and ∇⊥ · ˜V
are in L2(S), which implies that all the horizontal derivatives of ˜V are in L2. We then
prove that ∂z˜V is also in L2(S).

– Control of ∇ · ˜V . From the definition of ˜V , one computes

∇ · ˜V = 1

h0
χ(z|D|)

∫ z

−h0

∇ · V(X, z)dz.

We also know that U is a divergence free vector field; after the change of variable
z 
→ z + σ(X, z), this yields

∇σ · V + h0

h
∂zW = 0, where ∇σ = ∇ − h0

h
(∇σ)∂z,

so that

∇ · V = h0

h
∇σ · ∂zV − h0

h
∂zW.

Plugging this expression into the above integral and integrating by parts, we obtain

h0∇ · ˜V = χ(z|D|)
[

h0

h

∫ z

−h0

(∇σ · ∂zV − ∂zW
)

dz

]

= χ(z|D|)
[

− 1

h

∫ z

−h0

∇h · V + h0

h

(∇σ · V − W +Ub · Nb
)

]

,

where we used the fact that U|z=−h0
= U|z=−h0+b = Ub. Since by assumptionUb ·Nb =

0, this yields

h0∇ · ˜V = χ(z|D|)
[

− 1

h

∫ z

−h0

∇h · V + h0

h

(∇σ · V − W
)

]

.

Since V ∈ L2(S) and h, σ ∈ W 1,∞(S), this implies easily that ∇ · ˜V ∈ L2(S) (we
did not use the presence of the smoothing operator χ(z|D|) here).

– Control of ∇⊥ · ˜V . Since U is irrotational, one has ∇⊥ · V = 0; after the same
change of variables as above, this yields (∇σ )⊥ · V = 0, or equivalently

∇⊥ · V = h0

h
∇⊥σ · ∂zV.

Proceeding as for the previous step, we deduce that

h0∇⊥ · ˜V = χ(z|D|)
[

− 1

h

∫ z

−h0

∇⊥h · V + h0

h
∇⊥σ · V − h0

h
∇⊥b · Vb

]

,
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with Vb = V|z=−h0+b . We can proceed as above for the first two components of the
bracket, so that the only thing that remains to prove is that the bottom contribution is
in L2, namely, that

χ(z|D|)[∇⊥b · Vb
] ∈ L2(S)

(we removed the factor h0/h since it belongs to W 1,∞(S) and therefore plays no
role for this regularity claim). Using the smoothing properties of Poisson kernels (see
Lemma 2.20 in [33] for instance), it is enough to prove that ∇⊥b · Vb ∈ H−1/2(Rd),
which is a classical consequence of the fact that U ∈ L2(�) is curl-free.

– Control of ˜V in L2((−h0, 0); H1(Rd)). This follows directly from the previous
two points. Note that the statement remains true if χ is replaced by χ ′ in the
definition of ˜V .

– Control of ∂z˜V . One directly gets from the definition of ˜V that

h0∂z˜V = |D|
(

χ ′(z|D|)
∫ z

−h0

V(X, z)dz

)

+ χ(z|D|)V.

The first term in the r.-h.-s. belongs to L2(S) thanks to the previous point, while
the second term is trivially in L2(S). This proves the claim and concludes the
proof of the lemma. ��

We now need to prove that the reconstruction mapping is also well defined, i.e. that
it is indeed possible to construct � according to the procedure given in the statement
of the proposition. This is done in the following lemma.

Lemma 2 Let ζ, b ∈ W 1,∞(Rd) be such that infRd (h0 + ζ(X) − b(X)) > 0 and
V ∈ H1/2(Rd)d .

i. The quantity ψ := −G[ζ ]−1(∇ · (hV )) is well defined in Ḣ1/2(Rd).
ii. There exists a unique variational solution � ∈ Ḣ1(�) to the boundary value

problem

{

X,z� = 0 in �,

�|z=ζ = ψ, ∂n�|z=−h0+b = 0.

iii. Denoting U = ∇X,z�, one has U ∈ L2
b(�, div, curl).

Proof of the Lemma For the first point, one needs to show that there exists a unique
ψ ∈ Ḣ1/2(Rd) such that G[ζ ]ψ = −∇ · (hV ). Equivalently, one needs to show that
there exists a unique � ∈ Ḣ1(�) such that

{

X,z� = 0 in �,
√

1 + |∇ζ |2∂n�|z=ζ = −∇ · (hV ), ∂n�|z=−h0+b = 0
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or, in a variational form,

∀ϕ ∈ Ḣ1(�),

∫

�

∇X,z� · ∇X,zϕ = −
∫

Rd
∇ · (hV )ϕ|z=ζ .

Denoting � := (1 − )1/2 and remarking that for all ϕ ∈ C∞(�) ∩ Ḣ1(�) (which
is dense in Ḣ1(�) as shown in [14] or Proposition 2.3 of [33]) one has

−
∫

Rd
∇ · (hV )ϕ|z=ζ =

∫

Rd
�1/2(hV ) · �−1/2∇(ϕ|z=ζ )

≤ |hV |H1/2 |�−1/2∇(ϕ|z=ζ )|2
≤ |h|W 1,∞|V |H1/2‖∇X,zϕ‖2,

the last inequality stemming from standard product estimates and Remark 3.14 in
[33]. It follows that the right-hand-side in the above variational formulation defines a
linear form on Ḣ1(�); the existence and uniqueness of � and therefore of ψ = �|z=ζ

follows classically from the Lax–Milgram theorem.
The proof of the last two points of the lemma is straightforward and therefore

omitted. ��
The only thing left to prove is that R[ζ ] is a left-inverse to A, i.e. that for all

U ∈ L2
b(div,curl), one hasR[ζ ]A[ζ ]U = U. Let us therefore denoteU′ = R[ζ ]A[ζ ]U

and show thatU′ = U. By construction, one hasU ′·N = −∇·(hV ) (withU ′ := U′|z=ζ
).

But since U is divergence free and that its normal trace vanishes at the bottom, one
also gets by integrating the incompressibility relation that U · N = −∇ · (hV ). It
follows that the normal traces of U and U′ coincide at the surface and at the bottom
(where they both vanish). Since they are also divergence and curl free, one deduces
that U = U′. ��

2.2.3 The Classical Water Waves Equations in the (ζ, Q) variables

It follows from Proposition 1 that one can replace U = (V, w) by R[ζ ]V in the
formulation (10)–(11), hereby obtaining a closed system of equations in (ζ, Q). More
precisely, writing V = Q/h and defining the “Reynolds”2 tensor R and the non
hydrostatic acceleration aNH as

R(h, Q) =
∫ ζ

−h0+b
(Rh[ζ ]V − V ) ⊗ (Rh[ζ ]V − V ), (14)

aNH(h, Q) = 1

h

∫ ζ

−h0+b
∇
[∫ ζ

z

(

∂tR[ζ ]V + (R[ζ ]V ) · ∇X,zR[ζ ]V ) · ez
]

, (15)

2 This terminology introduced in [8] is of course improper but the analogy with turbulence can be useful.
Replacing statistical averaging by vertical integration, R measures the importance of the variations of the
horizontal velocity field V with respect to its average. These variations are only due to non-hydrostatic
(dispersive) effects since the flow is assumed to be irrotational; in the general case with vorticity, R takes
also into account the shear effects induced by the vorticity [8].
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with Rh[ζ ]V the horizontal component of R[ζ ]V and ez the vertical upward unit
vector, we can rewrite (10)–(11) under a closed form. The following proposition is
therefore a direct consequence of Proposition 1.

Proposition 2 If ζ and U solve the free-surface Euler equations (1)–(6), then (ζ, Q),
with Q = hV and V as in (13), solve the following closed system of equations in
(ζ, Q),

⎧

⎨

⎩

∂tζ + ∇ · Q = 0,

∂t Q + ∇ ·
(

1

h
Q ⊗ Q

)

+ gh∇ζ + ∇ · R(h, Q) + haNH(h, Q) = 0,
(16)

where R(h, Q) and aNH(h, Q) are as in (14).

Remark 2 (The energy in (ζ, Q) variables) The total energy of the fluid

Efluid = ρ

2
g
∫

Rd
ζ 2 + ρ

2

∫

�(t)
|U|2

is formally conserved by the free surface Euler equations (1)–(6). In the Zakharov–
Craig–Sulem formulation, this energy can be written in terms of ζ and ψ (where
ψ = �|z=ζ and U = ∇X,z�), namely,

Efluid = ρ

2
g
∫

Rd
ζ 2 + ρ

2

∫

Rd
ψG[ζ ]ψ.

As seen in the proof of Lemma 2, one has ψ = −G[ζ ]−1∇ · Q, and we can express
E in terms of ζ and Q,

Efluid = ρ

2
g
∫

Rd
ζ 2 + ρ

2

∫

Rd
∇ · QG[ζ ]−1∇ · Q. (17)

2.3 The Water Waves Equations with a Floating Object in the (ζ, Q) Variables

Our purpose in this section is to generalize the formulation (16) of the water waves
equation as a closed system of equations in terms of (h, Q) in the presence of a
floating solid. Before we state this generalization, let us remark that, in absence of
any immersed device, the acceleration aFS := ∂2

t ζ of the surface of the fluid can be
deduced from (16),

aFS(h, Q) = −∇ · ∂t Q

= ∇ ·
[

∇ ·
(

1

h
Q ⊗ Q

)

+ gh∇ζ + ∇ · (R(h, Q)
)+ haNH(h, Q)

]

.

(18)
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Under the floating structure, the acceleration of the surface is imposed by the motion of
the structure, i.e. one has ∂2

t ζ = ∂2
t ζw, and the relation ∂2

t ζ = aFS is no longer true. This
implies that an additional term must be added to the momentum equation to account
for the presence of the structure. More precisely, one has the following proposition
in which the interior pressure is expressed as a Lagrange multiplier associated to the
constraint (7). We recall that we use the notation

Pe = P |E (t) and P i = P |I (t),

that R(h, Q) and aNH(h, Q) are defined in (14)–(15), and that aFS(h, Q) is defined in
(18).

Proposition 3 Let us consider a solution of the free surface Euler equations in the
presence of a floating structure (1)–(6) and (7)–(9), and let in particular ζ and U be
the associated surface elevation and velocity field. Then ζ and Q, with Q = hV and
V as in (13), solve the following system on R

d ,

⎧

⎨

⎩

∂tζ + ∇ · Q = 0,

∂t Q + ∇ ·
(

1

h
Q ⊗ Q

)

+ gh∇ζ + ∇ · R(h, Q) + haNH(h, Q) = −h

ρ
∇P,

(19)
with the surface pressure P given by

Pe = Patm and

⎧

⎨

⎩

−∇ ·
(

h
ρ
∇P i

)

= −∂2
t ζw + aFS(h, Q) on I(t),

P i|�(t)
= Patm,

(20)

and with the transition conditions at the contact line

ζe = ζi and Qe = Qi on �(t). (21)

Conversely, if ζ , Q and I(t) solve (19)–(21), and if moreover the initial conditions
(ζ 0, Q0) satisfy

ζ 0 = ζw|t=0
and ∇ · Q0 = −∂tζw|t=0

on I(0), (22)

then for all t ≥ 0, one has ζ(t, ·) = ζw(t, ·) on I(t).

Remark 3 One of the advantages of working with the (ζ, Q) formulation of the water
waves equations is that, in (21), the transition condition on Q at the contact line can be
expressed very simply. This would not be the case if we had worked in the Hamiltonian
variables (ζ, ψ) of the Zakharov–Craig–Sulem formulation.

Remark 4 The interior pressure P i is given by the simple elliptic equation (20) cast
in the interior region I(t). In the component aFS of the source term of this elliptic
equation, time derivatives of the velocity field are present (through the non-hydrostatic
acceleration aNH). In the configurations investigated in this paper it is very convenient
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to proceed this way; however, it is also possible to express these time derivatives of the
velocity in terms of the pressure field (using Euler’s equations). This latter approach
leads to a different equation for the interior pressure (equivalent of course to (20))
which can also be of interest (in deep water settings or for the mathematical analysis
of the equations for instance). We therefore derive it in Appendix A.

Remark 5 The elliptic equation on the interior pressure is only d-dimensional, but the
computation of aNS in the source term requires a reconstruction of the velocity field in
the d + 1 dimensional domain �. In the shallow water regime considered in Section
5 such computations can be avoided and the computation of the pressure is therefore
truly d-dimensional.

Remark 6 One can use the classical balance of energy for the water waves equations
when the pressure at the surface is not constant to see that the energy conservation in
(h, Q) variables given in Remark 2 must be modified as follows in the presence of a
floating structure,

d

dt
Efluid = −

∫

I(t)
∂tζ
(

P i − Patm
) = −

∫

I(t)
Q · ∇P i.

For the sake of convenience, we introduce the following terminology (note that accord-
ing to the last point of the proposition, the constraint (7) is equivalent to the assumption
(22) on the initial data).

Definition 2 The set of equations (19)–(21) form the water waves equations with a
floating structure in (ζ, Q) variables. It is always assumed that the initial condition
satisfies (22) so that the constraint (7) is automatically satisfied.

Proof The mass conservation equation

∂tζ + ∇ · Q = 0

is obtained classically by integrating the incompressibility condition (2) and using the
kinematic condition (4) and the impermeability condition (6).
Integrating vertically the horizontal component of the momentum equation (1), one
gets

∂t Q + ∇ ·
(∫ ζ

−h0+b
V ⊗ V

)

+ 1

ρ

∫ ζ

−h0+b
∇P = 0.

Denoting by P the trace of the pressure at the surface of the fluid, one can write

(∇P)(t, X, z) = ∇
(

P +
∫ ζ(t,X)

z
−∂z P(t, X, z′)dz′

)

= ∇
(

P +
∫ ζ(t,X)

z
ρg − ∂z PNH(t, X, z′)dz′

)
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where we used the vertical component of (1) to derive the second identity. We therefore
get

(∇P)(t, X, z) = ∇P + ρg∇ζ + ∇PNH

and the averaged momentum equations takes the form

∂t Q + ∇ ·
(∫ ζ

−h0+b
V ⊗ V

)

+ gh∇ζ + 1

ρ

∫ ζ

−h0+b
∇PNH = −h

1

ρ
∇P .

Using Proposition 1, one can rewrite this equation as

∂t Q + ∇ ·
(

1

h
Q ⊗ Q

)

+ gh∇ζ + ∇ · R(h, Q) + haNH(h, Q) = −h
1

ρ
∇P .

On the exterior domain, one has P = Patm by (5) and the right-hand-side vanishes; in
the interior domain, the right-hand-side is equal to −h 1

ρ
∇P i with P i to be determined.

In order to do so, we use the mass conservation equation together with the constraint
(7) to obtain that

∇ · Q = −∂tζw in I(t).

Taking the divergence of the momentum equation, one gets therefore the following
elliptic equation for P i,

−∇ ·
(

h

ρ
∇P i

)

= −∂2
t ζw + aFS(h, Q),

and we deduce from (9) the boundary conditions P i = Patm on the boundary �(t) =
∂I(t). To obtain the boundary condition on Q stated in (21), we just need to remark
that since ζe = ζi = ζ on �(t) one has

Qe(t, X) − Qi(t, X) =
∫ ζ

−h0+b

(

Ve(t, X, z) − Vi(t, X, z)
)

dz;

since the flow is incompressible and irrotational, we know by standard elliptic theory
that the velocity field U and therefore V is smooth in the interior of �. This implies
that the r.-h.-s. in the above expression vanishes, and therefore that Qe = Qi on �(t).
This achieves the proof of the first part of the proposition.

For the second part, we just need to remark that (19)–(20) imply that ∂2
t ζ =

∂2
t ζw so that ζ = ζw provided that (ζ, ∂tζ ) and (ζw, ∂tζw) coincide at t = 0,

leading to the assumptions on the initial conditions made in the statement of the
proposition. ��
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3 Coupling with the Solid Dynamics

We address in this section the coupling of the water waves equations with a floating
structure (19)–(20) with the motion of the partially immersed solid which at time t
occupies the volume C(t). This coupling was already present in (19)–(20) but through
the presence of the second time derivative ∂2

t ζw which is not a natural quantity to
describe the dynamics of the solid. We therefore want to derive a version of the
equations (19)–(20) in terms of the velocity of the center of mass of the solid, and of
its angular velocity.

We first consider in §3.1 the case where the motion of the solid is prescribed; the
case of a freely floating object is then treated in §3.2. In both cases, the general two-
dimensional case is treated first, and the one-dimensional case where considerable
simplifications can be performed is considered subsequently.

Notation 4 Throughout this section, we shall denote by G(t) = (XG(t), zG(t)) ∈
R

2+1 the coordinates of the center of mass of the solid and by UG its velocity

UG(t) =
(

VG(t)
wG(t)

)

=
(

ẊG(t)
żG(t)

)

,

where the dot stands for the time derivative.
We also denote by ω(t) = (ωh(t), ωv(t)) ∈ R

2+1 the angular velocity of the solid.

As for the kinematic condition (4), one easily derives that

∂tζw −Uw · Nw = 0 in I(t) with Nw =
(−∇ζw

1

)

(23)

and where Uw denotes the velocity of the solid on the wetted surface,

∀X ∈ I(t), Uw(t, X) = UC(t, X, ζw(t, X)),

and UC(t, X, z) is the velocity at time t of the point (X, z) ∈ C(t). From standard
solid mechanics, we have therefore,

Uw = UG + ω × rG with rG(t, X) =
(

X − XG(t)
ζw(t, X) − zG(t)

)

, (24)

so that (23) gives the following relation

∂tζw =(UG + ω × rG
) · Nw in I(t). (25)

We now have to distinguish two different situations

• The solid is in prescribed motion, in which case G and ω are known functions of
time

• The solid is freely floating, in which case the evolution of G and ω are unknown
functions whose evolution is coupled to the wave motion.
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3.1 The Case of a Structure with a Prescribed Motion

When the motion of the solid is prescribed, there is no influence of the flow on its
motion, but the flow is of course affected by the presence of the solid. This influence
is taken into account by the interior pressure P i in the equations (19)–(20) (the flow is
pressurized). In the following proposition, we show how this pressure can be computed
in terms of the position of the center of mass and of the rotation matrix. We consider
first the most general case d = 2; the simplifications in the one dimensional case
d = 1 where many computations can be carried out explicitly are described in §3.1.2.

3.1.1 The General two Dimensional Case

Before stating the main result of this section, it is convenient to introduce the following
notations. We first define the second fundamental form associated to the solid structure.
Denoting by nw = 1

|Nw|Nw the upward unit normal vector to the solid C(t) on the
wetted surface ∂wC(t), and by TX∂wC the tangent plane to this surface at the point
(X, ζw(t, X)), the second fundamental form is the bilinear mapping

II : TX∂wC × TX∂wC → R

(t, t′) 
→ −(∇tnw) · t′,

where ∇tnw is the directional derivative of nw in the direction t. We also define the
tangent vector Uw,τ as

Uw,τ = Uw − (Uw · Nw)ez =
(

Vw
Vw · ∇ζw

)

,

and we also define Q[rG](·) as the quadratic form

Q[rG ](VG,ω) = (ω × Nw) · (ω × rG − 2Uw,τ

)−
√

1 + |∇ζw|2II(Uw,τ ,Uw,τ ).

We recall that it is always assumed that the initial condition satisfies (22) so that the
constraint (7) is automatically satisfied.

Proposition 4 Denoting byUG the velocity of the center of mass and byω the angular
velocity, the water waves equations with a floating structure then take the form

⎧

⎨

⎩

∂tζ + ∇ · Q = 0,

∂t Q + ∇ ·
(

1

h
Q ⊗ Q

)

+ gh∇ζ + ∇ · R(h, Q) + haNH(h, Q) = SI + SII + SIII,

with the transition conditions at the contact line

ζe = ζi and Qe = Qi on �(t),
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and with the source terms given in the exterior and interior domains by

S j
e = 0 and S j

i = −h

ρ
∇P j

i ( j = I, II, III)

where

– P I
i corresponds to the interior pressure one would have if the solid were fixed,

⎧

⎨

⎩

−∇ ·
(

h
ρ
∇P I

i

)

= aFS(h, Q) on I(t),

P I
i |�(t)

= Patm,

– P II
i depends linearly on the first time derivatives of UG and ω,

⎧

⎨

⎩

−∇ ·
(

h
ρ
∇P II

i

)

= −(U̇G + ω̇ × rG
) · Nw on I(t),

P II
i |�(t)

= 0,

– P III
i gathers the quadratic terms in VG and ω,

⎧

⎨

⎩

−∇ ·
(

h
ρ
∇P III

i

)

= Q[rG ](VG,ω) on I(t),

P III
i |�(t)

= 0.

Remark 7 The formula for P II
i and P III

i involve rG and Nw which require the knowl-
edge of G = (XG , zG) and ζw. They can both be deduced from UG and ω. Indeed, the
position of the center of mass is found by solving (denoting by G0 the initial position
of the center of mass)

Ġ = UG, G(0) = G0

while ζw is determined by the position of the solid which, at time t , is given by

C(t) = {G(t) + �(t)(M − G0), M ∈ C(0)
}

with the rotation matrix � satisfying

�̇ = ω × �, �(0) = Id.

Remark 8 – If C(t) is a sphere with a fixed center of mass (i.e. if UG = 0), then
Q[rG ](VG,ω) = 0 and SIII is therefore identically zero. This follows from simple
computations and from the observation that, for a sphere of radius R, one has

II(t, t′) = 1

R
t · t′, Uw,τ = Uw = ω × rG and Nw =− 1

R

√

1 + |∇ζw|2rG .
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– Similarly, Q[rG](VG,ω) = 0 if the solid is constrained to move vertically (so that
VG = 0 and ω = 0). We shall use this remark in §6 for the configuration for which
we provide numerical schemes and simulations.

Proof By linearity of (20), it is enough to prove that

∂2
t ζw = (U̇G + ω̇ × rG) · Nw − Q[rG ](VG,ω) on I(t). (26)

Time differentiating (25), one gets in I(t),

∂2
t ζw = (U̇G + ω̇ × rG + ω × ṙG

) · Nw +Uw · ∂t Nw,

and we therefore look closer at the terms (ω × ṙG) · Nw and Uw · ∂t Nw:

– The term (ω× ṙG)·Nw. By definition of rG and using the fact that ∂tζw = Uw ·Nw,
we get

(ω × ṙG) · Nw = −(ω × Nw) · ṙG
= (ω × Nw) · (UG − (Uw · Nw)ez

)

,

and therefore

(ω × ṙG) · Nw = (ω × Nw) · (Uw,τ − ω × rG).

– The term Uw · ∂t Nw. Since the vertical component of Nw is time and space inde-
pendent, and denoting by Vw the horizontal component of Uw, one has

Uw · ∂t Nw = − Vw · ∇(Uw · Nw)

= − ((Vw · ∇)Uw

) · Nw + Vw · ((Vw · ∇)∇ζw
)

.

Recalling that Uw = UG + ω × rG , we deduce that

Uw · ∂t Nw = − [ω × ((Vw · ∇)rG
)] · Nw + Vw · H(ζw)Vw,

where H(ζw) denotes the Hessian matrix of ζw. Remarking further that (Vw ·
∇)rG = Uw,τ , we finally get

Uw · ∂t Nw = (ω × Nw) ·Uw,τ + Vw · H(ζw)Vw.

Gathering all these elements, we get that

∂2
t ζw = (U̇G + ω̇ × rG

) · Nw + (ω × Nw) · (2Uw,τ − ω × rG
)+ Vw · H(ζw)Vw.

The identity (26) follows therefore if we can show that

II(Uw,τ ,Uw,τ ) = 1
√

1 + |∇ζw|2 Vw · H(ζw)Vw.
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In the canonical basis (t1, t2) of the tangent space, with t1 = (1, 0, ∂xζw)T and t2 =
(0, 1, ∂yζw)T , the of the second fundamental form is 1√

1+|∇ζw|2 H(ζw), and the tangent

vector Uw,τ is represented by Vw, so that the result follows. ��

3.1.2 Simplification in the One Dimensional Case

When the horizontal dimension d is equal to 1, the number of unknown variables
reduces:

• For the solid. In dimension d = 1, the velocity of the center of mass has no
transverse component, UG = (uG , 0, wG)T , and ω = (0, ω, 0)T is perpendicular
to the (x, z) plane. We therefore adapt our notations for the sake of simplicity

G = (xG , zG)T , UG = (uG , wG)T , rG = (x − xG , ζw − zG)T .

Instead of the six components vector (UG ,ω), the motion of the solid is determined
by the three dimensional vector (uG , wG, ω).

• In the fluid. Similarly, in the fluid, the velocity U = (u, 0, w)T has no transverse
component, and the horizontal discharge takes the form Q = (q, 0). The water
waves equations (19) in (ζ, Q) variables therefore simplify into a system of two
scalar equations on (ζ, q), in which the operators R(h, Q) and aNH(h, Q) defined
in (14)–(15) are therefore denoted R(h, q) and aNH(h, q) for the sake of clarity.

• For the interior domain. Assuming (as we shall always do without loss of generality
in dimension d = 1) that the interior domain is an interval, we write

I(t) = (x−(t), x+(t)
)

.

The water waves equations with a floating structure (19)–(21), as well as the equations
for the interior pressure given in Proposition 4 take a much simpler form due the smaller
number of variables. The most striking simplification however is that among the three
components of the interior pressure described in Proposition 4, the computations of
the last two—that take into account the motion of the solid structure—can be carried
out explicitly. It is convenient at this point to introduce the following notation for a
horizontal averaging in the interior domain that take into account the shape of the
immersed region of the solid.

Notation 5 If f is a function defined on I(t) = (x−(t), x+(t)
)

, we define its average
and oscillating components as

〈 f 〉 := 1
∫ x+

x−

1

h

∫ x+

x−

f

h
and f ∗ := f − 〈 f 〉.

We can now state the following proposition in which it is shown that the contributions
due to the motion of the solid in the momentum equation for the fluid can be computed
explicitly (in the statement below we write R and aNH instead of R and aNH since
these quantities are scalar when d = 1).

123



On the Dynamics of Floating Structures Page 27 of 81  11 

Proposition 5 Assume that d = 1 and that the position of the center of mass and the
angular velocity are some given functions of time t 
→ G(t) = (xG(t), zG(t)) and
t 
→ ω(t). The water waves equations with a floating structure (19)–(21) take the
form

⎧

⎨

⎩

∂tζ + ∂xq = 0,

∂t q + ∂x

(

1

h
q2
)

+ gh∂xζ + ∂x R(h, q) + haNH(h, q) = SI + SII + SIII,

where the source terms SI, SII and SIII are given by

SI
e = 0 and SI

i =
[

∂x

(

1

h
q2
)

+ gh∂xζ + ∂x R(h, q) + haNH(h, q)

]∗

SII
e = 0 and SII

i = U̇⊥
G · r∗

G + 1

2
ω̇(|rG |2)∗

SIII
e = 0 and SIII

i = −u2
G(∂xζw)∗ + 2uGω

(

rG · N⊥
w

)∗ + ω2((ζw − zG)rG · N⊥
w

)∗

and with the transition conditions at the contact points

ζe = ζi and qe = qi at x = x±(t).

Proof We shall repeatedly use the following lemma in this proof.

Lemma 3 Let x− < x+ and f, h ∈ C([x−, x+]) be such that inf [x−,x+] h > 0. There
exists a unique solution P ∈ C1([x−, x+]) to the boundary value problem

{

−∂x (h∂x P) = ∂x f in (x−, x+),

P(x±) = 0,

and moreover one has, using Notation 5,

−h∂x P = f ∗ in [x−, x+].

Proof of the Lemma Integrating, one gets

−h∂x P = f + c

for some integration constant c. Dividing by h, using the fact that P(x−) = 0, and
integrating again yields

−P =
∫ x

x−

f

h
+ c

∫ x

x−

1

h
.

The value of c is then given by the fact that P(x+) = 0, namely,

c = −〈 f 〉;
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plugging this into the expression for −h∂x P derived above, this gives the result. ��
In dimension d = 1, the equation for P I

i becomes, in
(

x−(t), x+(t)
)

,

−∂x

(

h

ρ
∂x P

I
i

)

= aFS(h, q)

= ∂x

[

∂x

(

1

h
q2
)

+ gh∂xζ + ∂xR(h, q) + haNH(h, q)

]

,

with the boundary condition P i|x±(t)
= Patm. It follows from Lemma 3 (the boundary

data is here non homogeneous, but the adaptation is straightforward) that

−h

ρ
∂x P

I
i = [∂x ( 1

h
q2) + gh∂xζ + ∂xR(h, q) + haNH(h, q)

]∗
.

Similarly, the equation for P II
i is

−∂x

(

h

ρ
∂x P

II
i

)

= u̇G∂xζw − ẇG + ω̇
(

(x − xG) + (ζw − zG)∂xζw
)

= ∂x

[

U̇⊥
G · rG + 1

2
ω̇|rG |2

]

,

with the boundary conditions P II
i |x±(t)

= 0. It follows therefore from Lemma 3 that

−h

ρ
∂x P

II
i = U̇⊥

G · r∗
G + 1

2
ω̇(|rG |2)∗.

Finally, one has for P III
i ,

−∂x

(

h

ρ
∂x P

III
i

)

= −u2
G∂2

x ζw − 2uGω
(

1 + (∂xζw)2 + (ζw − zG)∂2
x ζw

)

− ω2((x − xG)∂xζw + (ζw − zG)(1 + 2(∂xζw)2)

+ (ζw − zG)2∂2
x ζw
)

= −∂x
[

u2
G∂xζw + 2uGω

(

(x − xG) + (ζw − zG)∂xζw
)

+ ω2((x − xG)(ζw − zG) + (ζw − zG)2∂xζw
]

with the boundary conditions P III
i |x±(t)

= 0. We therefore get from Lemma 3 that

−h

ρ
∂x P

III
i = −u2

G(∂xζw)∗ − 2uGω
(

r⊥
G · Nw

)∗ − ω2((ζw − zG)r⊥
G · Nw

)∗
.

Setting Sj
i = − h

ρ
∂x P

j
i ( j = I, II, III) then gives the result. ��
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3.2 The Case of a Freely Floating Structure

When the solid is freely floating, its motion is still determined by the velocity of its
center of mass and by its angular velocity. These two quantities are however no longer
prescribed functions of time and must be found by solving Newton’s laws in which the
force and torque exerted by the fluid on the solid play an important role. This strong
coupling is investigated here, and we exhibit in particular the added mass effect that
it induces.

We consider first the most general case d = 2; the simplifications in the one
dimensional case d = 1 are described in §3.2.2 below.

3.2.1 The General Two Dimensional Case

As above for the case of a prescribed motion, the motion of the solid is determined
by the velocity of its center of mass UG(t) = (VG(t), wG(t)) ∈ R

2+1 and its angular
velocity ω(t) = (ωh(t), ωv(t)) ∈ R

2+1. The difference is that these functions are
not a priori known any more and must be determined through Newton’s laws for the
floating solid. We shall need the following notations.

Notation 6 We denote by m the mass of the solid object, and by I(t) the inertia matrix
of the body relative to the center of mass and measured in the Eulerian frame; this
frame being inertial, the inertia matrix depends on time. Its value is determined from
its value at time t = 0 through the formula

I(t) = �(t)I(0)�(t)T , (27)

where �(t) ∈ SO(3) is the rotation matrix found by solving the ODE

�̇ = ω × �, �(0) = Id3×3. (28)

We can now state Newton’s laws for the conservation of linear momentum and angular
momentum,

mU̇G = −mgez + Ffluid, (29)

d

dt

(

Iω
) = Tfluid, (30)

where Ffluid and Tfluid are respectively the resulting force and torque exerted by the
fluid on the solid,3

Ffluid =
∫

I(t)
(P i − Patm)Nw and Tfluid =

∫

I(t)
(P i − Patm)rG × Nw, (31)

3 It is actually the resulting force and torque after deducing the contribution due to the atmospheric pressure.
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where we recall that Nw =
(−∇ζw

1

)

. We shall show that part of the contribution of

Ffluid and Tfluid can be put under the form of an added mass operator in Newton’s laws
(29)–(30); to this end, we need to introduce the elementary potentials.

Definition 3 (Elementary potentials) LetI ⊂ R
2 be a bounded domain with Lipschitz

boundary �, ζw ∈ W 1,∞(I) and h ∈ C(I) be such that infI h > 0. Let also G =
(XG, zG) ∈ R

3 and denote by Nw and rG the vectors fields

∀X ∈ I, Nw(X) =
(−∇ζw(X)

1

)

and rG(X) =
(

X − XG

ζw(X) − zG

)

.

We define the elementary potentials �
( j)
I ( j = 1, . . . , 6) as the unique solutions of

the boundary value problems, for j = 1, 2, 3,

{

−∇ · h∇�
( j)
I = (Nw) j on I

�
( j)
I |� = 0

and

{

−∇ · h∇�
( j+3)

I = (rG × Nw) j on I
�

( j+3)

I |� = 0.

Definition 4 The mass-inertia matrix is the (time-dependent) 6 × 6 block diagonal
matrix defined as

M(t) := diag
(

mId3×3,I(t)
)

.

Using the elementary potentials introduced in Definition 3, we define the added mass-
inertia matrix as

Ma[h,�I ] := ρ

(∫

I
1

h
(h∇�

( j)
I ) · (h∇�

(k)
I )

)

1≤ j,k≤6
,

with the notation �I = (�(1)

I , . . . , �
(6)

I
)

.
If Si is a R

3-valued function defined on I, we also define F[h,�I ]Si ∈ R
6 as

F[h,�I ]Si = −ρ

(∫

I
1

h
(h∇�

( j)
I ) · Si

)

1≤ j≤6
.

We can now state the following proposition describing the influence of the fluid on
the solid motion. Note that the equation for the motion of the solid body are given
in the inertial Eulerian frame. It might be convenient in some situation to write these
equations in a reference frame moving with the body. Such a formulation is provided
in Appendix B.

Proposition 6 For a freely floating body, the water waves equation with a floating
structure take the form

⎧

⎨

⎩

∂tζ + ∇ · Q = 0,

∂t Q + ∇ · (
1

h
Q ⊗ Q) + gh∇ζ + ∇ · R(h, Q) + haNH(h, Q) = SI + SII + SIII,
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with the transition conditions at the contact line

ζe = ζi and Qe = Qi on �(t),

and with the source terms S j
i ( j = I, II, III) as in Proposition 4. Moreover, the velocity

UG of the center of mass and the angular velocity ω satisfy the ODE

(M + Ma[h,�I(t)]
)

(

U̇G

ω̇

)

=
( −mgez
Iω × ω

)

+ F[h,�I(t)](SI
i + SIII

i

)

.

In particular, one has conservation of the total energy,

d

dt
Etot = 0 with Etot := Efluid + Esolid

where Efluid is as in (17) while Esolid is given by

Esolid = mgzG + 1

2
M
(

UG

ω

)

·
(

UG

ω

)

.

Remark 9 It is shown in Appendix A.3 that Ma[h,�I ] is not the exact added mass-
inertia matrix—indeed, some of the terms in F[h,�I ](SI

i + SIII
i

)

contribute to it. It
is however much more convenient to work with the present form, in particular for the
derivation of simplified asymptotic models in shallow water in Section 5.

Remark 10 In order to compute the elementary potentials that appear in the expres-
sion for the added mass, one needs to solve a d-dimensional elliptic problem in the
(bounded) interior region I(t). This has to be compared with the (d + 1)-dimensional
elliptic equation one has to solve in the (unbounded) fluid region �(t) in order to
compute the Kirchhoff potential that appear classically in the expression for the added
mass (see for instance [18,19]).

Remark 11 As we shall see in §5.1, Archimedes’ force is contained in F[h,�I(t)]SI
i .

Proof The first step is to rewrite the equation for the angular momentum (30) under
the form

Iω̇ = Iω × ω + Tfluid; (32)

this is a classical computation in solid mechanics that we reproduce for the sake of
completeness. Using (27) and (28), one has

d

dt
(Iω) = �̇I(0)�Tω + �I(0)�̇Tω + Iω̇

= ω × Iω − I�̇�Tω + Iω̇.

Since �̇�Tω = ω × (��Tω) = ω × ω = 0, (32) follows.
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Next, with the notations of Proposition 4, the interior pressure can be decomposed as

P i = P I
i + P II

i + P III
i ;

we can accordingly decompose the force Ffluid and the torque Tfluid as

Ffluid = F I
fluid + F II

fluid + F III
fluid and Tfluid = T I

fluid + T II
fluid + T III

fluid,

with

F I
fluid =

∫

I(t)
(P I

i − Patm)Nw and T I
fluid =

∫

I(t)
(P I

i − Patm)rG × Nw,

and

F j
fluid =

∫

I(t)
P j

i Nw and T j
fluid =

∫

I(t)
P j

i rG × Nw ( j = II, III).

Notation 7 When no ambiguity is possible, we shall simply write I instead of I(t).

In order to rewrite (29) and (32) under the desired form, the only things to prove are
therefore that

(

F II
fluid

T II
fluid

)

= −Ma[h,�I ]
(

U̇G

ω̇

)

(33)

and
(

F j
fluid

T j
fluid

)

= − 1

ρ
F[h,�I ](h∇P j

i ) ( j = I, III). (34)

By definition of the elementary potentials, we have

F II
fluid = −

3
∑

j=1

∫

I
P II

i ∇ · (h∇�
( j)
I )e j ,

so that, after integration by parts, we get

F II
fluid = −

3
∑

j=1

∫

I
∇ · (h∇P II

i )�
( j)
I e j

= −ρ

3
∑

j=1

∫

I
(U̇G + ω̇ × rG) · Nw�

( j)
I e j ,

where we used the definition of P II
i given in Proposition 4 to derive the second identity.

Using again the definition of the elementary potentials, we get further that
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F II
fluid = ρ

3
∑

j=1

3
∑

k=1

[(∫

I
�

( j)
I ∇ · (h∇�

(k)
I )e j ⊗ ek

)

U̇G

+
(∫

I
�

( j)
I ∇ · (h∇�

(k+3)

I )e j ⊗ ek

)

ω̇

]

and, after integration by parts,

F II
fluid = −ρ

3
∑

j=1

3
∑

k=1

[(∫

I
∇�

( j)
I · h∇�

(k)
I e j ⊗ ek

)

U̇G

+
(∫

I
∇�

( j)
I · h∇�

(k+3)

I e j ⊗ ek

)

ω̇

]

.

Proceeding similarly for the torque, we have

T II
fluid = −

3
∑

j=1

∫

I
P II

i ∇ · (h∇�
( j+3)

I )e j ;

integrating by parts and proceeding as above, we then get

T II
fluid = −ρ

3
∑

j=1

∫

I
(U̇G + ω̇ × r) · N�

( j+3)

I e j

and using again the definition of the elementary potentials, we finally get

T II
fluid = −ρ

3
∑

j=1

3
∑

k=1

[

( ∫

I
∇�

( j+3)

I · h∇�
(k)
I e j ⊗ ek

)

U̇G

+
(∫

I
∇�

( j+3)

I · h∇�
(k+3)

I )e j ⊗ ek

)

ω̇
]

.

These expressions for F II
fluid and T II

fluid yield (33).
For (34), we just need to remark that

F I
fluid =

3
∑

j=1

∫

I
(P I

i − Patm)N je j = −
3
∑

j=1

∫

I
(P I

i − Patm)∇ · (h∇�
( j)
I )e j

Integrating by parts, we deduce that

F I
fluid =

3
∑

j=1

∫

I
∇P I

i · h∇�
( j)
I e j
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so that, proceeding similarly for the torque and for the component P III
i of the pressure,

(34) follows easily.
In order to prove the conservation of energy, let us recall first that owing to Remark

6, one has

d

dt
Efluid = −

∫

I
∂tζ(P i − Patm),

and we therefore turn to compute the time derivative of Esolid. One gets

d

dt
Esolid = mgwG + M

(

UG

ω

)

·
(

U̇G

ω̇

)

+ 1

2
Ṁ
(

UG

ω

)

·
(

UG

ω

)

=
(

UG

ω

)

· [M
(

U̇G

ω̇

)

+
(

mgez
0

)

]

,

where we used the fact that İω · ω = 0. By Newton’s laws, this gives

d

dt
Esolid =

(

UG

ω

)

·
∫

I
(P i − Patm)

(

Nw
rG × Nw

)

=
∫

I
(P i − Patm)Uw · Nw,

the last line stemming from (24). Since Uw · Nw = ∂tζ in the interior region I, one
has d

dt Esolid = − d
dt Efluid and the result follows.4 ��

3.2.2 Simplifications in the One Dimensional Case

When the horizontal dimension d is equal to 1, the velocity of the center of mass has
no transverse component, UG = (uG , 0, wG), and ω = (0, ω, 0) is perpendicular to
the (x, z) plane; the inertia matrix is given by I = diag(0, i0, 0), with i0 independent
of time and the rotation matrix � takes the form

�(t) =
⎛

⎝

cos θ(t) 0 − sin θ(t)
0 1 0

sin θ(t) 0 cos θ(t)

⎞

⎠

and one has ω = −θ̇ (this sign convention ensures that θ is orientated according to
the standard trigonometric convention in the plane (Oxz)). Newton’s laws therefore
reduce to

m

(

u̇G
ẇG

)

= −mgez + Ffluid (35)

i0ω̇ = Tfluid (36)

4 The result could also be inferred from the fact the if we write the fluid equation in Zakharov variables
(ζ, ψ), the equations on (ζ, ψ,G,�) are formally Hamiltonian [11].
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with

Ffluid =
∫

I(t)
(P i − Patm)Nw and Tfluid = −

∫

I(t)
(P i − Patm)r⊥

G · Nw, (37)

and where rG = (x − xG , ζw − zg)T and Nw = (−∂xζw, 1)T . The mass-inertia matrix
is now a 3 × 3 diagonal matrix independent of time,

M0 = diag(m,m, i0).

In addition to the simplifications already seen in Proposition 5, the elementary poten-
tials can be computed explicitly in dimension d = 1; consequently, the force and
torque exerted by the fluid on the solid take a much simpler form. Denoting

T(rG) =
( −r⊥

G
1
2 |rG |2

)

we can define (recall that the definition of the oscillating component f ∗ of a function
f has been given in Notation 5)

˜Ma[h, rG ] =
∫

I
1

h
T(rG)∗ ⊗ T(rG)∗ and ˜F[h, rG ]S j

i = −ρ

∫

I
1

h
S j

i T(rG)∗;

we can now state the following proposition describing the interaction of water waves
with a freely floating object.

Proposition 7 Assume that d = 1 and that the body is freely floating. The water
waves equations with a floating structure then take the form

⎧

⎨

⎩

∂tζ + ∂xq = 0,

∂t q + ∂x

(

1

h
q2
)

+ gh∂xζ + ∂x R(h, u) + haNH(h, u) = SI + SII + SIII,

with the transition conditions at the contact points

ζe = ζi and qe = qi at x = x±(t)

and with the source terms SI, SII and SIII as in Proposition 5. Moreover, the velocity
of the center of mass UG and the angular velocity ω satisfy the ODE

(M0 + ˜Ma[h, rG ])
(

U̇G

ω̇

)

=
(−mgez

0

)

+ ˜F[h, rG ](SI
i + SIII

i ).

Proof In dimension d = 1, only three elementary potentials are necessary; relabelling
for the sake of simplicity, these potentials are given by the equations on I(t) =
(x−(t), x+(t)),
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−∂x (h∂x�
(1)

I ) = −∂xζw, −∂x (h∂x�
(2)

I ) = 1, −∂x (h∂x�
(3)

I ) = −r⊥
G · Nw,

with the boundary conditions �
( j)
I = 0 at x = x±(t) ( j = 1, 2, 3). We therefore write

�I the three-dimensional vector with coordinates (�I) j = �
( j)
I . A straightforward

adaptation of Proposition 6 to the one dimensional case shows that (35)–(36) can be
put under the form

(M0 + Ma[h,�I ])
(

U̇G

ω̇

)

=
(−mgez

0

)

+ F[h,�I ](SI
i + SIII

i )

with

Ma[h,�I ] = ρ

∫

I
1

h
(h∂x�I) ⊗ (h∂x�I)

and

F[h,�I ]SI
i =

∫

I
1

h
(h∂x P

I
i)(h∂x�I), F[h,�I ]SIII

i =
∫

I
1

h
h∂x P

III
i (h∂x�I).

Using the definition of �I and Lemma 3, and using the Notation 5, one gets the
following expression for −h∂x�I ,

−h∂x�I =
(

(rG∗)⊥
− 1

2 (|rG |2)∗
)

so thatMa(h,�I) = ˜Ma[h, rG ] andF[h,�I ]S j
i = ˜F[h, rG ]S j

i , and the proposition
follows. ��

4 Comments on the Evolution of the Contact Line

The evolution of the contact line �(t), and therefore of the interior and exterior domains
I(t) and E(t), is governed by the equations (1)–(9); this evolution is however quite
implicit, and the goal of this section is to derive more explicit formulations of this
evolution. We first consider the one dimensional case d = 1 and then turn to the
general two dimensional situation.

4.1 Evolution of the Contact Line in the One Dimensional Case (d = 1)

Assuming that the wetted surface is connected, one can write the interior domain as
an interval

I(t) = (x−(t), x+(t)
)

,
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and we need to find the time evolution of the boundary points x±(t). The following
proposition gives an expression for the time derivative ẋ±(t) of x±(t) in terms of the
position and velocity of the center of mass, and of the angular velocity of the solid.

Proposition 8 Denoting by G = (xG, zG) the center of mass of the solid and by ω its
angular velocity, the contact points x± satisfy the nonlinear ODEs in time

ẋ± = − (∂xζw)±
(∂xζe)± − (∂xζw)±

(

ẋG + ω(ζw,± − zG)
)

+ 1

(∂xζe)± − (∂xζw)±
(

żG − ω(x± − xG) + (∂xqe)±
)

,

where for any function f (t, x), we used the notation f±(t) = f (t, x±(t)).

Remark 12 It is instructive to compare the evolution equation of the proposition to
the equation describing the evolution of the shoreline in the case of a vanishing depth.
In this latter case, the condition (38) below, should be replaced by he(t, γ (t, α)) = 0.
Following the same steps as in the proof below, one would obtain

ẋ+(∂xζe)+ = (∂xqe)+
= (∂xhe)+u+ + he,+(∂xu)+.

Since by definition he,± = 0, one obtains the kinematic equation

ẋ+ = u+ (and similarly ẋ− = u−).

The evolution equation of the contact line stated in the proposition involves derivatives
of ζe and qe and is therefore more singular than the kinematic equation obtained for
the evolution of the shoreline.

Proof By definition of x±(t) and using the boundary condition (8) and the constraint
(7), one gets that for all t ,

ζe(t, x±(t)) = ζw(t, x±(t)). (38)

Differentiating this relation yields

ẋ±
(

(∂xζe)± − (∂xζw)±
) = −((∂tζe)± − (∂tζw)±

)

.

Using the first equation of (19), one can replace ∂t he = −∂xqe so that

ẋ±
(

(∂xζe)± − (∂xζw)±
) = (∂tζw)± + (∂xqe)±.

We also know from (25) that

∂tζw = −(ẋG + ω(ζ − zG)
)

∂xζw + żG − ω(x − xG),

so that the formula of the proposition follows easily. ��
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4.2 Evolution of the Contact Line in the Two Dimensional Case (d = 2)

Assuming that the wetted surface is simply connected and that the boundary �(t) of
the interior domain can be parametrized by a closed curve γ (t, ·) : [0, 1] → R

2,
namely,

�(t) := {γ (t, α), α ∈ [0, 1]},

we need to determine the time evolution of γ .

Proposition 9 Denote by G = (XG, zG) the center of mass of the solid and by ω its
angular velocity, and assume that on the time interval [0, T ] the contact line �(t) is
parametrized by a C2 function γ : [0, T ]×[0, 1] → R

2, regular everywhere (i.e. ∂αγ

never vanishes).

i. The function γ solves

∂tγ = −
{

(∇ζe − ∇ζw) ⊗ ∇ζw

|∇ζe − ∇ζw|2
}

|γ

(

ẊG − ω⊥
h (ζw|γ − zG) + ωv(γ − XG)⊥

)

+
{

(∇ζe − ∇ζw)

|∇ζe − ∇ζw|2
}

|γ

(

żG + ω⊥
h · (γ − XG) + (∇ · Qe)|γ

)+ a∂αγ,

(39)

for some scalar function a ∈ C1([0, T ] × [0, 1]) and where for any function
f (t, X), we used the notation f|γ (t, α) = f (t, γ (t, α)).

ii. Conversely, if there exists a scalar function a ∈ C1([0, T ] × [0, 1]) such that γ

solves (39) and if γ (0, ·) is a parametrization of the contact line at t = 0, then it
is a parametrization of �(t) for all times.

iii. Different choices of the scalar function a in (39) correspond to different
parametrizations of the same curve.

Remark 13 Choosing a particular function a in (39) is equivalent to choosing a par-
ticular parametrization for the curve �(t). For instance, if it can be parametrized as a
polar curve by choosing

γ (t, α) := (ρ(t, α) cos(2πα), ρ(t, α) sin(2πα)
)

,

one gets

∂tρ = − 1

∂ρζe − ∂ρζw

(∇ · Qe − (UG + ω × rG) · Nw
)

|γ ,

where we used the notation ∂ρ = cos(2πα)∂x + sin(2πα)∂y . The polar parametriza-
tion is therefore unique; it corresponds to a particular choice of the function a in
Proposition 9.
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Proof By definition of γ and using the boundary condition (8) and the constraint (7),
one gets that for all t and all α ∈ [0, 1],

ζe(t, γ (t, α)) = ζw(t, γ (t, α)). (40)

Differentiating this relation with respect to t gives

∂tζe + ∂tγ · ∇he = ∂tζw + ∂tγ · ∇ζw

so that we can write

∂tγ = − ∇ζe − ∇ζw

|∇ζe − ∇ζw|2 (∂tζe − ∂tζw) + f (∇he − ∇hw)⊥

for some scalar function f . Differentiating (40) with respect to α, we get that

∂αγ · (∇ζe − ∇ζw) = 0,

so that ∂αγ is proportional to (∇ζe − ∇ζw)⊥. Since ∂αγ �= 0, we deduce from the
above that

∂tγ = −
[ ∇ζe − ∇ζi

|∇ζe − ∇ζi|2 (∂tζe − ∂tζw)

]

|γ
+ a∂αγ (41)

for some scalar function a. Taking the scalar product of this expression with ∂αγ and
using the regularity assumptions made on γ , we deduce that a is C1 in space and time.

Conversely, if γ solves an equation of the form (41), and if γ (0, ·) is a parametriza-
tion of the contact line at t = 0, then one easily gets that (40) holds for all times, so
that γ (t, ·) is a parametrization of the contact line for all times.

Let us show now that different choices of a in (41) correspond to different
parametrizations of the �(t). More precisely, let a and ã be two C1 functions of space
and time, and let us show that there exists a reparametrization ϕ(t, ·) : [0, 1] → [0, 1]
such that if γ solves (41) then γ̃ (t, α) := γ (t, ϕ(t, α)) solves (41) with a replaced by
ã. From the definition of γ̃ , one has

∂t γ̃ = ∂tγ ◦ ϕ + ∂tϕ∂αγ ◦ ϕ

= −
[ ∇ζe − ∇ζw

|∇ζe − ∇ζw|2 (∂tζe − ∂tζw)

]

|γ̃
+ (a ◦ ϕ + ∂tϕ

)

∂αγ ◦ ϕ,

so that the claim is proved by solving the ODE ∂tϕ = ã ◦ ϕ − a ◦ ϕ and taking
α̃ = ϕ(t, α) as new parameter.

The last step of the proof consists in showing that (41) can be put under the form
(39). Using the relation

∂tζe = −∇ · Qe,
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which corresponds to the first equation of (19), together with (25),

∂tζw = (UG + ω × rG
) · Nw

= −(ẊG − ω⊥
h (ζw − zG) + ωv(X − XG)⊥

) · ∇ζw + (żG + ω⊥
h · (X − XG)

)

,

the result follows directly from (41). ��

4.3 The Case of Vertical Walls

The boundary conditions (8)–(9) at the contact line are valid under the condition that
in the neighborhood of the contact line, the boundary of the solid is not vertical. Since
such a configuration, represented in Figure 2, is also of interest (and we shall use it in
Sections 6 and 7 for the numerical aspects), we show here how to handle it. Of course,
the walls would not stay vertical if the solid were allowed to rotate along the horizontal
axis, and we must therefore assume that the motion of the solid is constrained (by some
additional exterior force) to avoid these situations. The angular velocity is therefore
of the form ω = (0, 0, ωv).

In the presence of vertical walls, we relax the continuity condition (8) on the water
elevation, and consequently replace the continuity condition (9) on the pressure by a
more general expression. This generalization of the boundary conditions (8)–(9) is the
following:

• Continuity of the normal velocity at the vertical walls. Denoting by ν ∈ R
d the

unit normal vector to �(t) pointing towards the exerior region E(t), one has

V · ν = VC · ν on the immersed part of the vertical walls, (42)

where we recall that V and VC denote the horizontal velocities of the fluid and of
the solid respectively.

• Consistency of the pressure jump at the contact line. Integrating the vertical com-
ponent of Euler’s equation (1) between z = ζi and z = ζe yields the condition

Fig. 2 The case of vertical walls
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P i(t, ·) = Patm + ρg(ζe − ζi) + ρ

∫ ζe

ζi

(∂tw + U · ∇X,zw) on �(t), (43)

where w is the vertical component of the velocity field U in the fluid domain.

Of course, whenever ζi = ζe (in particular when the boundary at the contact line is not
vertical), (43) coincides with (9). Allowing for the possibility of vertical walls imposes
the presence of a fourth source term SIV in the momentum equation of Proposition 4
(and Proposition 6 when the solid is freely floating), and the transition condition on
Q at the contact line must be modified. We shall use the following notations.

Notation 8 For the sake of simplicity, we still denote by M + Ma[h,�I ] the 4 × 4
matrix with entries

(M+Ma[h,�I ])i j (i, j = 1, 2, 3, 6) and by F[h,�I ] the four
dimensional vector with entries (F[h,�I ])i (i = 1, 2, 3, 6).

Proposition 10 Denoting by UG = (VG , wG) the velocity of the center of mass of
the solid and assuming that the motion is constrained so that its angular velocity is of
the form ω = (0, 0, ωv), the water waves equations with a floating structure can be
written
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂tζ + ∇ · Q = 0,

∂t Q + ∇ ·
(

1

h
Q ⊗ Q

)

+ gh∇ζ + ∇ · R(h, Q) + haNH(h, Q)

= SI + SII + SIII + SIV,

with the transition condition at the contact line

(

Qe − Qi
) · ν = (ζe − ζi)

(

VG + ωv(X − XG)⊥
) · ν on �(t),

and SI, SII and SIII as in Proposition 4, and with SIV
e = 0 and

SIV
i = −h

ρ
∇P IV

i where

{−∇ · ( h
ρ
∇P IV

i ) = 0 on I(t),

P IV
i |�(t)

= ρg(ζe − ζi) + ρ
∫ ζe
ζi

(∂tw + U · ∇X,zw).

If the solid structure is freely floating, the evolution of UG and ω is given by

(M + Ma[h,�I ])
(

U̇G

ω̇v

)

=
(−mgez

0

)

+ F[h,�I ](SI
i + SIII

i

)

+
∫

I
P IV

i

(

Nw

(X − XG) · ∇⊥ζw

)

.

Remark 14 The adaptation of the proposition to the one dimensional case d = 1 is
straighforward. Moreover, the source term SIV can then be computed explicitly; one
has

SIV = − p+ − p−
ρ

1
∫ x+
x− 1/h

with
p±
ρ

=
[

g(ζe − ζi) +
∫ ζe

ζi

(∂tw + U · ∇X,zw)

]

|x=x±

,
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and the corresponding pressure P IV
i is

P IV
i = p− + (p+ − p−)

∫ x
x− 1/h
∫ x+
x− 1/h

.

Proof We just prove the transition condition on Q at the contact line. The rest of the
proof is a close adaptation of the proof of Propositions 6 and 4. By definition, one has

Qe(t, X) =
∫ ζe(t,X)

−h0+b(X)

V (t, X, z)dz and Qi(t, X) =
∫ ζi(t,X)

−h0+b(X)

V (t, X, z)dz.

As for the proof of Proposition 3, we know that V is smooth in the interior of the fluid
region, so that

Qe(t, X) − Qi(t, X) =
∫ ζe(t,X)

ζi(t,X)

V (t, X, z)dz.

Taking the scalar product with ν and using the transition condition (42), we get

(Qe − Qi) · ν =
∫ ζe

ζi

VC · ν on �(t),

which yields the result since VC · ν does not depend on z and because VC = VG +
ωv(X − XG)⊥. ��

5 Asymptotic Models

It is classical in the theory of water waves to derive simpler models from the governing
equations. The same approximations lead to simplified versions of the water waves
equations with a floating structure (with the terminology of Definition 2). We shall
consider here two important regimes: the nonlinear shallow water equations which
is a fully nonlinear model (in the sense that no smallness assumption is made on the
size of the waves), and the Boussinesq model which is a weakly nonlinear model,
but which takes into account the non-hydrostatic dispersive effects neglected in the
nonlinear shallow water equations. The former is studied in §5.1 and the latter in §5.2.

5.1 The Shallow Water Approximation

In absence of any immersed structure, the shallow water approximation consists in
performing two approximations5 on the averaged Euler equations (16),

5 For the classical water waves equations (without floating body) these approximations are valid at lead-

ing order under the assumption that μ � 1, where μ = h2
0

L2 is the shallowness parameter given by the square
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1. Neglect the vertical variations of the horizontal velocity in the quadratic term. This
leads to

∫ ζ

−h0+b
V ⊗ V ≈ hV ⊗ V = 1

h
Q ⊗ Q.

2. Neglect the non-hydrostatic acceleration,

aNH ≈ 0.

We show in this section how to simplify the water waves equations with a floating
structure (19)–(21) under these approximations. The same simplifications as above
must be performed on the momentum equation in (19), but must also be consistently
made in (20) for the computations of the interior pressure P i. This means that the
termsR(ζ, Q) and aNH(ζ, Q) must be neglected in (19), but also in (18). The resulting
nonlinear shallow water equations with a floating structure are given by

⎧

⎨

⎩

∂tζ + ∇ · Q = 0,

∂t Q + ∇ ·
(

1

h
Q ⊗ Q

)

+ gh∇ζ = −h
1

ρ
∇P,

(44)

where Pe = Patm in E(t) and P i is given by

⎧

⎨

⎩

−∇ ·
(

h
ρ
∇P i

)

= −∂2
t ζw + ∇ · [∇ · ( 1

h Q ⊗ Q
)+ gh∇ζ

]

in I(t),

P i|�(t)
= Patm,

(45)

and with the boundary conditions at the contact line

Qe = Qi and ζe = ζi on �(t). (46)

Remark 15 As for the full water waves equations with a floating structure (see Propo-
sition 3), the constraint

ζ = ζw on I(t)

is satisfied at all time provided that the initial conditions verify

ζ 0 = ζw|t=0
and ∇ · Q0 = −∂tζw|t=0

on I(0),

which we shall always assume.

Footnote 5 continued
of the ratio of the depth over the typical horizontal scale. The nonlinear shallow water equations are obtained
by neglecting all the terms of size O(μ) in the dimensionless water waves equations; see for instance [33].
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Remark 16 The equations (44)–(45) can alternatively be written as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂tζ + ∇ · Q = 0,

∂t Q + ∇ ·
(

1

h
Q ⊗ Q

)

+ gh∇ζ = −h
1

ρ
∇P,

h ≤ hw, (h − hw)P = 0.

This is a typical example of congested flow; in the case g = 0, this model appears in
various contexts such as traffic flows [3,13], granular flows [36,42,43], hydrodynamics
in pipes [6], compressible-low Mach coupling in gaz dynamics [41], etc. As remarked
in [13] the transition conditions at the boundary of the congested zone (the contact
line in our case) play a crucial role, and the computation of the evolution of the
corresponding free boundary �(t) is very delicate. For this reason, the “compressible”
part of the equations is often approximated as the limit of a singular incompressible
system [7,13,20]. Our approach offers an alternative to this method; we establish in
[26] a well-posedness result for (44)–(46) in the one dimensional case, which describes
in particular the evolution of the contact line.

The simpler form of the elliptic equation for the interior pressure allows us to give
a more explicit and more instructive form of the hydrodynamic forces acting on the
solid; we shall denote by FArch and FNL the Archimedes6 and nonlinear force/torque
respectively, given by the surfacic integrals

FArch = −ρg
∫

I(t)
ζ

(

N
rG × N

)

and FNL = −ρ

∫

I(t)
∇ · ( 1

h
Q ⊗ Q

) · ∇�I ,

(47)
and by F� the contribution7 coming from the contact line

F� = −g
∫

�(t)
hζ∂ν�I; (48)

as usual �I = (

�
(1)

I , . . . , �
(6)

I
)

is as in Definition 3, and we denoted by ν ∈ R
2 the

outward unit normal vector to �(t).

Proposition 11 Denoting by UG the velocity of the center of mass and by ω the
angular velocity, the nonlinear shallow water equations with a floating structure then
take the form

⎧

⎨

⎩

∂tζ + ∇ · Q = 0,

∂t Q + ∇ ·
(

1

h
Q ⊗ Q

)

+ gh∇ζ = SI
SW + SII + SIII,

6 The standard Archimedes force is the vertical component of the force, given by −ρg
∫

I ζ , which is the
opposite of the weight of the fluid that the body displaces (with respect to the still water level). Note that
this force can be oriented downwards, for instance if the object is floating on a large amplitude wave so that
ζ = ζw ≥ 0 in the interior region I(t).
7 As we shall see in §6.1.2, this component contains damping forces as well as excitation forces coming
from the wave field.

123



On the Dynamics of Floating Structures Page 45 of 81  11 

with the transition conditions at the contact line

Qe = Qi and ζe = ζi on �(t),

and with the source terms SII and SIII as in Proposition 4, while SI
SW is given by

SI
SW,e = 0 and SI

SW,i = −h

ρ
∇P I

SW,i

where

{−∇ · ( h
ρ
∇P I

SW,i) = ∇ · [∇ · ( 1
h Q ⊗ Q) + gh∇ζ

]

on I(t),

P I
SW,i|�(t)

= Patm.

In the case where the solid is freely floating, the evolution of UG and ω is given by the
ODE

(M + Ma[h,�I ])
(

U̇G

ω̇

)

=
( −mgez
Iω × ω

)

+ FArch + F� + FNL + F[h,�I ]SIII
i ,

with the same notations as in Proposition 6. In particular, one has conservation of the
total energy,

d

dt
ESW,tot = 0 with ESW,tot = ESW + Esolid,

and where Esolid is as in Proposition 6 while ESW is given by

ESW = ρ

2

∫

Rd

1

h
|Q|2 + ρ

2

∫

Rd
gζ 2.

Remark 17 (Vertical walls) Following what has been done for the full water waves
equations in §4.3, it is possible to allow for the possibility of vertical walls by removing
the condition ζe = ζi from the transition conditions at the contact line, and by adding
a source term SIV

SW to the momentum equation with SIV
SW,e = 0 and

SIV
SW,i = −h

ρ
∇P IV

SW,i where

{−∇ · ( h
ρ
∇P IV

SW,i) = 0 on I(t),

P IV
SW,i|�(t)

= ρg(ζe − ζi);

the difference between P IV
i and P IV

SW,i is that the non-hydrostatic term ρ
∫ ζe
ζi

(∂tw+U ·
∇X,zw) has been neglected in the latter, consistently with the approximations made
to derive the nonlinear shallow water equations.
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Proof The only point that deserves a proof is the derivation of the ODE for ω and UG

and the energy conservation. It is given by the same ODE as in Proposition 6, with SI

replaced by SI
SW, namely,

(M + Ma[h,�I(t)]
)

(

U̇G

ω̇

)

=
( −mgez
Iω × ω

)

+ F[h,�I(t)](SI
SW,i + SIII

i

)

.

We therefore need to prove that F[h,�I(t)]SI
SW,i = FArch +F� +FNL, with FArch,

F� and FNL as in (47)–(48). By definition, one has

F[h,�I(t)]SI
SW,i =

∫

I
1

h
(h∇P I

SW,i)h∇�I

= −
∫

I
P I

SW,i∇ · (h∇�I).

Integrating by parts and using the definition of P I
SW,i, one gets

F[h,�I(t)]SI
SW,i =

∫

I
∇[gh∇ζ + ∇ · (

1

h
Q ⊗ Q)

]

�I ,

so that the result follows from a simple integration by parts.
For the energy conservation, one readily gets

d

dt
Esw = −

∫

I(t)
(PSW,i − Patm)∂tζw.

with PSW,i = P I
SW,i + P II

i + P III
i . The fact that d

dt Esolid = − d
dt ESW is then obtained

as in the proof of Proposition 6.

5.2 The Boussinesq Approximation

In the nonlinear shallow water model used in the previous section, the (non hydrostatic)
dispersive effects are neglected, which is not satisfactory for many applications. We
consider here a Boussinesq model, which is the simplest nonlinear model that includes
dispersive effects. In absence of any immersed structure, the Boussinesq approxima-
tion consists in performing the following three approximations8 on the averaged Euler
equations (16),

8 The Boussinesq regime consists in assuming that μ � 1 as for the nonlinear shallow water equations, but
also requires a smallness assumption on the amplitude of the surface variations, namely, ε = O(μ), where
ε = a

h0
is the ratio of the typical amplitude of the surface variations over the depth at rest. A similar smallness

assumption is also made on the bottom variations. The Boussinesq equations are obtained by dropping the
terms of order O(μ2) in the dimensionless water waves equations. If the smallness assumption on ε, namely,
ε = O(μ), is removed, more terms should be kept for the non-hydrostatic acceleration. The corresponding
regime is called Serre-Green-Naghdi (or fully nonlinear Boussinesq). We refer to [34] for more details, and
to [33] for a mathematical justification of these approximations. We treat here the Boussinesq regime for the
sake of clarity, but the Serre-Green-Naghdi regime could be treated similarly, albeit with more complicated
expressions.
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(1) Neglect the vertical variations of the horizontal velocity in the quadratic. This
leads, as in the shallow water approximation, to

∫ ζ

−h0+b
V ⊗ V ≈ 1

h
Q ⊗ Q.

(2) Neglect the variations of the surface elevation and of the bottom in the above
approximations,

1

h
Q ⊗ Q ≈ 1

h0
Q ⊗ Q

(3) Take into account the leading order term of the non-hydrostatic acceleration

haNH ≈ −h2
0

3
∂t Q.

The resulting Boussinesq equations with a floating structure are given by

⎧

⎨

⎩

∂tζ + ∇ · Q = 0,

[

1 − h2
0

3

]

∂t Q + ∇ · ( 1

h0
Q ⊗ Q) + gh∇ζ = −h

1

ρ
∇P,

(49)

where Pe = Patm in E(t) and

{

−∇·( h
ρ
∇P i) = −[1 − h2

0
3 
]

∂2
t ζw + ∇·[∇·( 1

h0
Q ⊗ Q) + gh∇ζ

]

in I(t),

P i|�(t)
= Patm,

(50)
and with the boundary conditions at the contact line

Qe = Qi and ζe = ζi on �(t) (51)

(and here again with the assumption (22) on the initial condition so that the constraint
(7) is automatically satisfied). As shown in the following proposition, the source terms
created by the motion of the solid in the momentum equations must be modified, as
well as the added mass-inertia matrix. The proof being a simple adaptation of the proof
of Proposition 6, it is omitted.

Proposition 12 Denoting by UG the velocity of the center of mass and by ω the
angular velocity, the Boussinesq equations with a floating structure take the form

⎧

⎨

⎩

∂tζ + ∇ · Q = 0,

[

1 − h2
0

3

]

∂t Q + ∇ · (
1

h0
Q ⊗ Q) + gh∇ζ = SI

B + SII
B + SIII

B ,
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with the transition conditions at the contact line

Qe = Qi and ζe = ζi on �(t),

and with the source terms Sj
B ( j = I, II, III) given by

Sj
B,e = 0 and Sj

B,i = −h

ρ
∇P j

B,i

where P I
B,i|�(t)

= Patm and P II
B,i|�(t)

= P III
B,i|�(t)

= 0, and

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−∇ · (
h

ρ
∇P I

B,i) = ∇ · [∇ · ( 1
h0
Q ⊗ Q

)+ gh∇ζ
]

−∇ · (
h

ρ
∇P II

B,i) = −(1 − h2
0

3 )
[(

U̇G + ω̇ × rG
) · Nw

]

−∇ · (
h

ρ
∇P III

B,i) = (1 − h2
0

3 )Q[rG](VG,ω),

on I(t).

In the case where the solid is freely floating, the evolution of UG and ω is given by the
ODE

(M + Ma[h,�I ] + MB
)

(

U̇G

ω̇

)

=
( −mgez
Iω × ω

)

+ FArch + F� + FB,NL

+F[h,�I ]SIII
B,i,

where FArch and F� are as in Proposition 11 and

FB,NL = −ρ

∫

I(t)
∇ · ( 1

h0
Q ⊗ Q

) · ∇�I and

MB = −ρ
h2

0

3

∫

I
�I ⊗ 

(

N
rG × N

)

.

Remark 18 Contrary to Ma[h,�I ], the dispersive correction MB is not necessarily
positive nor symmetric.

Remark 19 The energy formally conserved in the case of a freely floating object is
EB,tot := EB + Esolid, with Esolid as in Proposition 6 and

EB = ρ

2

∫

Rd

( 1

h0
|Q|2 + h0

3
|∂x Q|2)+ ρ

2

∫

Rd
gζ 2.

Remark 20 (Vertical walls) Similarly to what has been done in Remark 17 for the
shallow water model, it is possible to allow for the possibility of vertical walls, provided
one adds the same9 extra source term SIV

SW as in Remark 17 to the momentum equation.

9 In the Boussinesq regime, the term ρ
∫ ζe
ζi

(∂tw+U ·∇X,zw) can also be neglected in the definition of PIV

provided in §4.3. In order to check that this is the case, we recall that the horizontal velocity does not depend
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6 On the Discretization of the Wave–Structure Interaction

We have derived in Section 2 the equations describing the evolution of water waves in
the presence of a floating structure; in Section 5, the same approach has been used to
show how one has to modify simpler asymptotic models (such as the nonlinear shallow
water equations) when a floating structure is present. The key point was that in order for
the interior pressure to be a Lagrange multiplier associated to the constraint ζ = ζw in
I in the simplified model, one had to modify consistently the elliptic equation defining
P i. The goal of this section is to push this strategy one step further, namely, at the
discrete level. More precisely, starting from a numerical scheme approximating some
hydrodynamic model without any floating structure, we show what the corresponding
discretization of the additional terms describing the wave–structure interactions should
be in order for the interior pressure to be a discrete Lagrange multiplier.

For the sake of simplicity, we shall only consider simple configurations here:

• The hydrodynamical models we shall consider are the one-dimensional shallow
water equations and the one-dimensional Boussinesq equations

• We assume that the solid can only move vertically
• We assume that the structure has vertical sidewalls, so that the interior region is

independent of time, I = (x−, x+).

More complex configurations (moving contact points, more degrees of freedom for
the solid structure, two dimensional case, etc) will be considered in future works; our
point here is to show that the discretization of the terms describing the fluid–structure
interaction must be chosen carefully and depend strongly on the numerical scheme
used for the fluid model. To be more precise, an important feature of our formulations
is that if the initial datas satisfy the compatibility condition (22) then the constraint
ζi = ζw is automatically satisfied. The discretization of the source terms due to the
floating structure must be done in such a way that this property is preserved at the
discrete level.

Footnote 9 continued
on z at leading order in μ, so that one gets from the incompressibility condition that w ≈ −(z + h0)∇ · V ,
and therefore, neglecting the nonlinear terms that are smaller by a factor ε = O(μ) in the Boussinesq
regime,

ρ

∫ ζe

ζi

(∂tw + U · ∇X,zw) ≈ −ρ∇ · ∂t V
∫ ζe

ζi

(z + h0)

= −ρ∇ · ∂t V
1

2
(h2

e − h2
i ).

Now, in the exterior region, one has at leading order in the Boussinesq regime ∂t V = −g∇ζ , and therefore

ρ

∫ ζe

ζi

(∂tw + U · ∇X,zw) ≈ ρ
1

2
g(h2

e − h2
i )ζ.

Under the assumptions that the surface variations are small (in the sense that ε = O(μ)), one has (h2
e −h2

i ) =
O(ε) in dimensionless variables and ρ

∫ ζe
ζi

(∂tw+U ·∇X,zw) is therefore of size O(εμ) and must therefore
be neglected at the precision of the model. Note that this would not be the case for the Green-Naghdi model
for which the assumption ε = O(μ) is removed.
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NB. For the sake of simplicity, we consider a flat bottom (b = 0) throughout this
section.

6.1 The Equations for the Nonlinear Shallow Water Model

When the solid can only move vertically, the horizontal coordinate of the center of
mass remains constant; we take it equal to zero for simplicity, i.e. xG = 0. The
position of the solid is therefore fully determined by the vertical coordinate zG(t) of
its center of mass; it is a given function of time when the motion of the solid structure
is prescribed, and must be found through Newton’s law when it is freely floating in
the vertical direction.

6.1.1 The Case of a Prescribed Vertical Motion

We recall that Proposition 11 describes the shallow water equations in the presence
of a floating structure; in the particular case of vertical motion considered here, the
source term SIII vanishes; moreover, the source terms SI

SW and SII can be simplified
in horizontal dimension d = 1 as in Proposition 5 (and taking into account that
uG = ω = 0 here) into

SI
SW,e = 0, SI

SW,i = [∂x
(1

h
q2 + 1

2
gh2)]∗

SII
SW,e = 0, SII

SW,i = −z̈G x
∗,

where we refer to Notation 5 for the definition of the oscillating component f ∗; as
shown in §4.3 and Remark 17 (see also Remark 14 for the simplifications in the case
d = 1), an additional term SIV

SW must also be added due to the fact that the walls are
vertical at the contact points,

SIV
SW,e = 0, SIV

SW,i = −g�ζe − ζi�
1

∫ x+
x− 1/h

,

where we used the notation � f � = f (x+) − f (x−). Therefore, in conservative form,
the equations take the form

∂tU + ∂x
(F(U )) = (0, S)T (52)

with

U =
(

ζ

q

)

, F(U ) =
(F1(U )

F2(U )

)

=
(

q
1
h q

2 + 1
2gh

2

)

,

where the source term S is given by

Se = 0, Si = [∂x
(1

h
q2 + 1

2
gh2)]∗ − z̈G x

∗ − g�ζe − ζi�
1

∫ x+
x− 1/h

, (53)
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and with the continuity condition at x = x±

qe = qi (54)

(this condition corresponds to a specialization of the transition condition given in
Proposition 10 in the one dimensional case and for an object moving only in the
vertical direction). It is also assumed that the initial data satisfies the condition (22),

ζ 0 = ζw|t=0
and ∂xq

0 = −∂tζw|t=0
on I(0),

which ensures that the constraint ζi = ζw is automatically satisfied at all times.

6.1.2 The Case of an Object Freely Floating in the Vertical Direction

If the solid is freely floating, the motion of its center of mass is given by Proposition 11;
we can in the present case (where the motion is purely vertical) simplify the differential
equation on the center of mass, as shown in the proposition below. We recall first that
the average and oscillating components of a function f defined on the interior region
(x+, x−) have been introduced in Notation 5. In the present configuration of a purely
vertical motion, the added mass coefficient can be easily expressed in terms of the
associated variance.

Notation 9 If f is a scalar function defined on I = (x−, x+), and recalling that 〈 f 〉
is defined in Notation 5, we define the variance by

Var( f ) = 〈 f 2〉 − 〈 f 〉2.

We shall also denote by ζw,eq and zG,eq the parametrization of the wetted surface and
the position of the center of mass at equilibrium, and similarly hw,eq = h0 + ζw,eq.
Away from equilibrium, the water depth under the solid is therefore fully determined
by the distance of the center of mass to its equilibrium position, δG = zG − zG,eq;
consequently, one has hw = hw,eq + δG , and Var(x) and 〈x〉 are functions of δG only.

Proposition 13 If the hydrodynamic model is the nonlinear shallow water model (52)
and the object is freely floating, the distance δG = zG − zG,eq of the center of mass to
its equilibrium position satisfies the ODE

⎧

⎨

⎩

(

m + ma(δG)
)

δ̈G = −cδG + ρg(ζe,+x∗+ − ζe,−x∗−) + FNL(δG, δ̇G , 〈q〉),
d

dt
〈q〉 = −g

ζe,+ − ζe,−
α(δG)

+ HNL(δG, δ̇G , 〈q〉), (55)

where x∗± = x± − 〈x〉, ζe,±(t) = ζe(t, x±) and the added mass ma(δG), the stiffness
coefficient c and α(δG) are given by

ma(δG) = ρα(δG)Var(x), α(δG) =
∫ x+

x−

1

hw
and c = ρg(x+ − x−);

123



 11 Page 52 of 81 D. Lannes

denoting qi = 〈q〉 − x∗δ̇G, the nonlinear terms FNL and HNL are given by

FNL(δG , δ̇G , 〈q〉) = ρα(δG)
〈

x∗∂x
[ q2

i

hw

]

〉

HNL(δG , δ̇G , 〈q〉) = (〈 x

hw
〉 − 〈x〉〈 1

hw
〉)(δ̇G)2 −

〈

∂x
[ q2

i

hw

]

〉

.

Remark 21 In this equation it is necessary to know the boundary values ζe,± of the
surface elevation in the exterior domain. These quantities are of course determined
through the resolution of the fluid equations (52)–(53).

Remark 22 The excitation forces are due to the incoming waves, while damping forces
are due to the motion of the structure; these two forces are contained in the term
ρg(ζe,+x∗+ − ζe,−x∗−) in the equation for δG . In the return to equilibrium problem
considered in Corollary 1 below, there are no incoming waves and this force reduces
to a purely damping force.

Proof In the case where the solid structure is freely floating in the vertical direction,
we deduce from Proposition 11, Remark 17 and the same kind of one dimensional
simplifications as in §3.2.2, that the vertical coordinate zG(t) of the center of mass
((or equivalently its distance to equilibrium δG ) is found by solving the second order
ODE

(

m + ma(hw)
)

δ̈G = −mg + ρ

∫ x+

x−

x∗

hw
SI

SW,i +
∫ x+

x−
P IV

SW,i,

with SI
SW,i as given in the previous section, and where the added mass ma(hw) and

the pressure jump P IV
SW,i at the vertical walls are given by

ma(hw) = ρ

∫ x+

x−

(x∗)2

hw
,

P IV
SW,i = p− + (p+ − p−)

∫ x
x− 1/hw
∫ x+
x− 1/hw

with p± = ρg(ζe − ζi)|x=x± .

We can therefore rewrite the equation on δ̈G under the form

(

m + ma(hw)
)

δ̈G = −(mg + ρg
∫ x+

x−
ζw
)+ ρg(ζe,+x∗+ − ζe,−x∗−)

+ ρ

∫ x+

x−

x∗

hw
∂x (

q2
i

hw
).

It is obvious that ma(hw) = ma(δG) with ma(δG) as given in the statement of the
proposition; moreover, we easily get from the mass conservation equation that

qi = −(x − 〈x〉)δ̇G + 〈q〉.
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The only thing left to prove is therefore that one has

−mg − ρg
∫ x+

x−
ζw = −ρg(x+ − x−)δG .

By definition of ζw,eq, one has

−mg − ρg
∫ x+

x−
ζw,eq = 0.

Since the lateral boundaries of the solid are vertical, we have moreover that, away
from equilibrium,

ρg
∫ x+

x−
ζw(t) − ρg

∫ x+

x−
ζw,eq = ρg(x+ − x−)δG,

which proves the result.
We finally turn to derive the equation on 〈q〉. Taking into account the formula for qi
derived above, the second equation of (52) can be written in the interior region as

− x∗δ̈G + ( d
dt

〈x〉)δ̇G + d

dt
〈q〉

= −〈∂x
( 1

hw
q2

i + 1

2
gh2

w

)〉 − δ̈Gx
∗ − g�ζe − ζi�

1
∫ x+
x− 1/hw

= −δ̈Gx
∗ − 1

α(δG)

[

∫ x+

x−

1

hw
∂x
( q2

i

hw

)+ g(ζe,+ − ζe,−)
]

and therefore

d

dt
〈q〉 = − d

dt
〈x〉δ̇G − 1

α(δG)

[

∫ x+

x−

1

hw
∂x
( q2

i

hw

)+ g(ζe,+ − ζe,−)
]

=: − 1

α(δG)

[

g(ζe,+ − ζe,−)
]+ HNL(δG, δ̇G , 〈q〉);

the result follows therefore from the observation that

d

dt
〈x〉 = −(〈 x

hw
〉 − 〈x〉〈 1

hw
〉)δ̇G .

A particularly interesting situation is the return to equilibrium problem, which
consists in starting from a configuration where the solid is not at its equilibrium state
(zG �= zG,eq, or equivalently δG �= 0), with water at rest (ζe = 0, q = 0), and let it
evolve towards its equilibrium state. This is a particular case of the situation considered
in Proposition 13 in which the ODE takes a more explicit form. In order to get an even
simpler formulation, we assume that the solid is symmetric.
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Corollary 1 (Return to equilibrium problem) Assume that the solid is symmetric
around the axis x = x0 where x0 = 1

2 (x+ + x−). Then, for the return to equilib-
rium problem, and as long as the following smallness condition on the velocity is
satisfied,

δ̇G <
16

27

√

gh0
h0

x+ − x−
,

the position of the solid is fully determined by the ODE

{

(

m + ma(δG)
)

δ̈G = −cδG − ν(δ̇G) + β(δG)(δ̇G)2,

(δG, δ̇G)|t=0 = (δ0
G, 0).

(56)

The nonlinear damping ν(δ̇G) and the coefficient β(δG) are given by

ν(δ̇G) = ρg(x+ − x−)
[

h0 − (τ0(
x+ − x−

4
√
g

δ̇G)
)2]

,

β(δG) = ρ

∫ x+

x−

x − x0

hw
∂x

( (x − x0)
2

hw

)

,

where the function τ0(·) is as in (59) below.

Remark 23 In the return to equilibrium problem, there is no incoming wave; the force
ρg(ζe,+x∗+ − ζe,−x∗−) reduces therefore to its damping component −ν(δ̇G). The fact
that it is indeed a (nonlinear) damping force comes from the observation that ν(δ̇G)δ̇G
is always positive.

Remark 24 Linearizing around the equilibrium state, the ordinary differential equation
(56) becomes

(

m + ma(0)
)

δ̈G = −cδG − ρg
(x+ − x−)2

2

δ̇G√
gh0

, (57)

which is a standard damped harmonic oscillator equation. This linear equation matches
the equation derived in [28] under further assumptions on the shape of the solid.10

The nonlinear ODE (56) can be numerically solved with standard tools. A comparison
with the solution of the linear ODE (57) is shown in Figure 3 in the case where the
floating body is the same as the one described in §6.2 below, and with the solid density
given by ρs = 0.8ρ. These computations show that nonlinear effects play a significant

10 Actually, the mass m is assumed to be negligible with respect to ma(0) in [28], and with our notations,
equation (3.2.12) of [28] corresponds to

ma(0)δ̈G = −cδG − ρg
(x+ − x−)2

2

δ̇G√
gh0

.
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Fig. 3 Time evolution of the distance to equilibrium δG as given by the full nonlinear equation (56) (full)
and its linear approximation (57) (dash). Four different initial positions are considered

role for large amplitudes and should therefore not be neglected for the description of
floating structures in the presence of large amplitude waves for instance.

Remark 25 The corollary furnishes through (56) an explicit solution for the return
to equilibrium problem. We shall use this explicit solution to validate the numerical
scheme derived in §6.2 below general wave–structure interactions.

Remark 26 A byproduct of the proof of the corollary is that the water elevation at the
contact points x± is related to the velocity of the center of mass through the relation

ζe(t, x±) = (τ0(
x+ − x−

4
√
g

δ̇G)
)2 − h0.

This relation remains true when the solid is in forced oscillation in a fluid initially at
rest (as for the return to equilibrium problem, there are no incoming waves); we shall
therefore use it as a validation for the numerical computations of §7.1.2.

Proof We just have to use Proposition 13 and express ζe,± and 〈q〉 in terms of δG and
δ̇G .
By symmetry reasons, one has 〈x〉 = x0 and q+ = −q− and therefore 〈q〉 = 0.
Replacing in the formula for FNL given in Proposition 13, we get

FNL(δG, δ̇G , 〈q〉) = ρ(δ̇G)2
∫ x+

x−

(x − x0)

hw
∂x
( 1

hw
(x − x0)

2),

and the expression for the coefficient β(δG) follows easily.
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Fig. 4 Roots of the third order
polynomial (58). τ0(r) (dash),
τ1(r) (dots) and τ2(r)
(dash-dots); here, h0 = 15 and
r0 = 8.61

In order to express ζe,± in terms of δG , let us recall first that in the exterior region,
one has

∂t R + (
√

gh + q

h
)∂x R = 0 and ∂t L − (

√

gh − q

h
)∂x L = 0,

where R and L are respectively the right and left Riemann invariant associated to the
nonlinear shallow water equations (52) and given by

R = q

h
+ 2(

√

gh −√gh0) and L = q

h
− 2(

√

gh −√gh0).

Since the fluid is initially at rest, R vanishes identically on (−∞, x−) and L vanishes
identically on (x+,∞). In particular, evaluating at x = x−, one finds that

√

h(t, x−)

is a root of the third order polynomial equation

τ 3 −√h0τ
2 + q−

2
√
g

= 0. (58)

For each value of r := q−
2
√
g , there exists one or three real roots of this third order

equation (see Figure 4):

• One positive real root τ0(r) if r ≤ 0
• Two positive roots τ0(r) and τ1(r), and one negative real root τ2(r) if 0 < r <

4
27h

3/2
0 =: r0.

• One negative real root τ2(r) if q−
2
√
g > r0.

Since the solid is dropped with zero initial velocity and with the fluid initially at rest,
the relevant root is the one that passes through the point (0,

√
h0) and it is given by

τ0(r) = 1

3

(
√

h0 + C(r) + h0

C(r)

)

(59)
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with the complex constant C(r) equal to

C(r) = 3

2

(

− 4r + 2r0 + 4
√

r(r − r0)
)1/3

(the smallness assumption made in the Corollary ensures that r < r0). It follows
therefore that

ζe(t, x−) = (τ0(
q−

2
√
g
)
)2 − h0

= (τ0(
x+ − x−

4
√
g

δ̇G)
)2 − h0,

where we used the as above that qi = −(x − x0)δ̇G . Since moreover ζe(t, x+) =
ζe(t, x−) for symmetry reasons, the expression for ρg(ζe,+x∗+ − ζe,−x∗−) simplifies
into −ν(δ̇G) as claimed in the statement of the corollary.

6.2 The Numerical Scheme for the Nonlinear Shallow Water Equations

We first present in §6.2.1 the numerical scheme we shall use for the flow model (here,
the nonlinear shallow water equations (52)); the associated discretization of the terms
describing the wave–structure interaction is then presented in §6.2.2 when the motion
of the solid is assumed to be prescribed. The coupling with the motion of the solid
itself in the case where it is freely floating (in the vertical direction) is then described
in §6.2.3.

6.2.1 The Numerical Scheme for the Hydrodynamical Model

For the sake of simplicity, we shall show how to discretize the source terms describing
the wave–structure interaction in the case where the numerical scheme for the flow
method is the simple Lax–Friedrichs scheme. More precise, higher order, schemes
would complicate the analysis, and shall be considered in future works. Let us introduce
first some notations.

Notation 10 – We denote by [0, L] the computational domain; for some N ∈ N
∗,

we let δx = L/N and define (x j )0≤ j≤N and (x j+1/2)0≤ j≤N−1 by x j = jδx and
x j+1/2 = ( j + 1/2)δx . We define N + 1 finite volumes by K j = [x j−1/2, x j+1/2]
for 1 ≤ j ≤ N − 1 and K0 = [0, x1/2], KN = [xN−1/2, L].

– For the time discretization, we denote by δt the time step and tn = nδt , and we
write Un

j = (hnj , q
n
j ) the approximation of U (tn, ·) on K j ; for second order time

derivatives, we write

Ü n
j := 1

δ2
t

(

Un+1
j − 2Un

j +Un−1
j ).
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– We also denote by Fn
j+1/2 an approximation at time tn of the flux at the interface

x j+1/2.

– The ratio of the time and space steps is denoted α = δt/δx .

– Finally, we denote by j− the index of the nearest cell outside the interior region
I = (x−, x+) on the left-hand-side of the solid ( j− is the largest integer smaller
than x−/δx ), and similarly j+ for the first cell outside the wetted region on the
right-hand-side.

A general finite volume discretization of (52) can be written under the form

Un+1
j = Un

j − α
(Fn

j+1/2 − Fn
j−1/2

)+ δt S
n
j . (60)

Our aim is to choose a discretization of the flux and of the source term that ensures
that at machine precision, one has ζ n

j = ζ n
w, j for all j− < j < j+. Let us base our

analysis on the most simple stable scheme for (52) when there is no immersed solid,
namely, the Lax–Friedrichs scheme for which the discretization of the flux is

Fn
j+1/2 = 1

2

(F(Un
j+1) + F(Un

j )
)− 1

2α

(

Un
j+1 −Un

j

)

. (61)

We show in the next section how to adapt this scheme in the presence of a floating
structure (at the boundaries x = 0 and x = L of the computational domain, classical
transparent boundary conditions are implemented and not detailed here).

6.2.2 Adaptation in the Presence of a Structure with a Prescribed Vertical Motion

In order to take into account the presence of a floating structure, one has to adapt the
Lax–Friedrichs scheme (61) in the interior region, and to provide a discretization of
the source term S in (52) ensuring that one has ζ n

j = ζ n
w, j for all j− < j < j+.

The second term in the right-hand-side of (61) is a diffusive term that ensures sta-
bility. However, the expression for the interior pression P i for the continuous model
relied on the relation ∂t∂xF1 = ∂x∂t q. At the discrete level, the presence of the diffu-
sive term in the equation for the surface elevation does not seem to be compatible with
a discrete version of this fundamental relation. We are therefore led to the following
adaptation of the Lax–Friedrichs flux,

Fn
1, j+1/2 =

{

1
2

(

qnj+1 + qnj
)− 1

2α

(

hnj+1 − hnj
)

if j < j− or j ≥ j+,
1
2

(

qnj+1 + qnj
)

if j− ≤ j < j+
(62)

for the equation on the surface elevation, while the flux for the momentum equation
is the same as for the standard Lax–Friedrichs scheme

Fn
2, j+1/2 = 1

2

(F2(U
n
j+1) + F2(U

n
j )
)− 1

2α

(

qnj+1 − qnj
)

. (63)
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It is well known that the Lax–Friedrichs scheme is unstable if the diffusive term is
removed. The reason why stability is (numerically) preserved in our case is because we
are able to choose a discretization of the source term that ensures that on the wetted
region (where the diffusive terms are removed), the surface elevation ζ is exactly
equal to the parametrization ζw of the solid structure, so that no instability occurs.
This is done in the following proposition where we use the following notations which
corresponds to a transposition of Notation 5 at the discrete level.

Notation 11 – We use the notation
∑l

�k ,
∑�l

k and
∑�l

�k for the following modified
summations

l
∑

j=�k

a j = 1

2
ak +

l
∑

j=k+1

a j ,

�l
∑

j=k

a j =
l−1
∑

k

a j + 1

2
al , etc.

– For any vector ( f ) j−≤ j≤ j+ we define 〈 f 〉 and f ∗ = ( f ∗
j ) j−≤ j≤ j+ by

〈 f 〉n =
∑� j+

� j− f nj /h
n
j

∑� j+
� j− 1/hnj

f ∗,n
j = f nj − 〈 f 〉n .

– We also define D0F2 as

(D0Fn
2 ) j = Fn

2, j+1/2 − Fn
2, j−1/2

δx
.

We also recall that the interior cells corresponding to the discretization of the interior
domain I correspond to the indexes j− < j < j+.

Proposition 14 Let us consider a floating body in purely vertical motion and denote
by znG the vertical coordinate of its center of mass at time tn. Let the discretization of
the nonlinear shallow water equations (52)–(54) be furnished by (60) with fluxes (62)
and (63). Defining Snj ( j− ≤ j ≤ j+) as

Snj = (D0Fn
2 )∗j − z̈n+1

G (x − xG)
∗,n
j − g

(hnj+ − hnj+−1) − (hnj− − hnj−+1)
∑� j+

� j− 1/hnj
, (64)

and provided that the initial data (h0, q0) satisfies, for all j− < j < j+,

h0
j = h0

w, j and h1
w, j = h0

w, j − α(F0
1, j+1/2 − F0

1, j−1/2), (65)

then, for all n ∈ N and j− < j < j+, one has hnj = hnw, j .

Proof Instead of seeking a discretization of Si = − 1
ρ
∂x P i based on its continuous

expression, we shall rather mimic the approach used in the continuous case and look for
a discretization of the interior pressure P i as a discrete Lagrange multiplier associated
to the constraint ζi = ζw.
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According to (60) and (62), one has for all j− < j < j+,

(hn+2
j − hn+1

j ) − (hn+1
j − hnj ) = − α

2

(

qn+1
j+1 − qn+1

j−1

)+ α

2

(

qnj+1 − qnj−1

)

= − α

2

(

qn+1
j+1 − qnj+1

)+ α

2

(

qn+1
j−1 − qnj−1

)

.

Using the discretization of the momentum equation and the fact that by definition
hnj = hnw, j for j− < j < j+, we therefore want the source terms Snj to be such that

δ2
t ζ̈

n+1
w, j = −α

2
δt
(

Snj+1 − Snj−1

)

+ α2

2

[(Fn
2, j+3/2 − Fn

2, j+1/2

)− (Fn
2, j−1/2 − Fn

2, j−3/2

)]

or equivalently

Snj+1 − Snj−1

2δx
= −ζ̈ n+1

w, j + 1

2δx

[

(D0Fn
2 ) j+1 − (D0Fn

2 ) j−1
]

. (66)

On the other hand, Snj should be an approximation on the cell j and at time tn of

S = −h ∂x P i
ρ

and we thus look for it under the form

∀ j− < j < j+, Snj = −hnj
ρ

Pn
j+1/2 − Pn

j−1/2

δx
, (67)

and, at the boundary points j = jn±,

Snj− = −hnj−
ρ

Pn
j−+1/2 − P−

i

δx/2
and Snj+ = −hnj+

ρ

P+
i − Pn

j+−1/2

δx/2
, (68)

where P±
i denote the interior pressure at x = x±.

We shall now use the following lemma, in which the superscript n for the time
dependance is omitted for the sake of clarity.

Lemma 4 A solution (Pj+1/2) j−≤ j< j+ to the equation

∀ j− < j < j+,
S j+1 − S j−1

2δx
= g j+1 − g j−1

2δx

with (S j ) j−≤ j≤ j+ as in (67)–(68) is given by

∀ j− ≤ j < j+, − Pj+1/2

ρ
= − P−

i

ρ
+ δx

[

j
∑

k=� j−

gk
hk

+ c
j
∑

k=� j−

1

hk

]

.
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where the constant c is given by

c = [− �P i�

ρ
− δx

� j+
∑

j=� j−

g j

h j

]× 1

δx
∑� j+

� j−
1
h j

.

In particular, one has

S j = g∗
j − �P i�

ρ

1

δx
∑� j+

� j−
1
h j

.

Proof of the lemma It suffices to prove that there exists a constant c such (67)–(68)
are satisfied with S j = g j + c. Rewriting (67) under the form

− Pj+1/2 − Pj−1/2

ρ
= δx

S j

h j
= δx

g j + c

h j

and using the first equation of (68) one easily obtains that

∀ j− ≤ j < j+, − Pj+1/2

ρ
= − P−

i

ρ
+ δx

[

j
∑

k=� j−

gk
hk

+ c
j
∑

k=� j−

1

hk

]

.

The value of this expression at j = j+ − 1 should match the one provided by the
second equation of (68); this is possible only with a particular choice of c, which is
the one given in the statement of the lemma.

In the configuration considered here, the solid is only allowed to move in vertical
translation, so that ζ̈ n+1

w,j = z̈n+1
G , where zG is the vertical coordinate of the center of

mass (or any other point of the solid). In particular, this quantity does not depend on
j , and one can write

ζ̈ n+1
w,j = z̈n+1

G
1

2δx

(

x j+1 − x j−1
)

.

The expression for S j given in the statement of the proposition follows therefore from
(66), the above lemma, and the fact that P±

i = ρg(ζ±
e − ζ±

i ), which at the discrete
level, reads

P−,n
i = ρg

(

hnj− − hnj−+1

)

and P+,n
i = ρg

(

hnj+ − hnj+−1

)

.

Conversely, if the source term is given by the expression stated in the proposition, the
above computations show that

∀ j− < j < j+, ḧn+1
j = ḧn+1

w,j .
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If the assumption made in the statement of the proposition on the initial data (h0, q0)

holds, then one has h0
j = h0

w,j and h1
j = h1

w,j and a straightforward induction shows
that hnj = hnw,j for all n ∈ N. ��

6.2.3 The Case of a Freely Floating Object

The difficulty in the discretization of the wave–structure interaction is that according to
Proposition 14 the discretization of the source term Sn in (60) requires the knowledge
of ¨zGn+1 and therefore the position of zG (or equivalently the distance δG to its
equilibrium position) at time tn+2. The time discretization for the ODE (55) is the
following

(

m + ma(δ
n
G)
)

δ̈n+1
G = −cδnG + ρg

(

ζ n
e,+x

∗,n
+ − ζ n

e,−x
∗,n
−
)+ FNL(δnG , qni ), (69)

where FNL and ma are as defined11 in Proposition 13.
The iterative scheme we use to compute Un+1 and δn+2

G in terms of Un and
(δn+1

G , δnG) is given in Algorithm 1.

Algorithm 1 The wave-structure coupling algorithm

Require: The quantities Un = (hn , qn) and (δn+1
G , δnG ) are known

Compute ρg
(

ζ ne,+x∗,n
+ − ζ ne,−x∗,n

−
)

, FNL(δnG , qni ) and ma(δ
n
G )

Compute δ̈n+1
G as defined in Notation 10 through (69)

Compute the source term Sn with the formula of Proposition 14
Compute Un+1 with (60)–(63).

Remark 27 In (69), the contribution of ρg
(

ζe,+x∗+−ζe,−x∗−
)

and FNL has been treated
explicitly. The general fact that F II

fluid can be put under the form of an added mass term
(see (33)) allows us to treat it here in implicit form, which is of crucial importance for
the stability of the scheme. The numerical importance of the added mass effects has
been evidenced in other fluid–structure interactions [15], and discussed in particular
in [9,16].

6.3 Using the Boussinesq System as Hydrodynamic Model

We are considering here the same situation as in §6.1 with the only difference that the
nonlinear shallow water equations are replaced by the one dimensional Boussinesq
equations.

11 The nonlinear term FNL(δG , δ̇G , 〈q〉) that appears in Proposition 13 depends on δ̇G and 〈q〉 through
qi = 〈q〉 − x∗δ̇G only. Since we choose to compute qi through the second equation of (52) (which is of
course equivalent to the equation on 〈q〉 in Proposition 13), we rather write FNL(δG , qi) here.
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6.3.1 The Continuous Equations

We recall that Proposition 12 describes the Boussinesq equations in the presence of a
floating structure; in the particular case of vertical motion considered here, the source
term SIII

B vanishes; moreover, the source term SII
B is the sameas for the shallow water

model, SII
B = SII

SW, since the second order derivative in the source term defining P II
B,i

vanishes in the case of a purely vertical motion. Therefore, in conservative form, the
equations take the form

D∂tU + ∂x
(FB(U )) = (0, SB)T (70)

where the term q2/h is replaced by q2/h0 in the flux,

U =
(

ζ

q

)

, FB(U ) =
( F1(U )

FB,2(U )

)

=
(

q
1
h0
q2 + 1

2gh
2

)

,

and where the source term SB is correspondingly given by

SB,e = 0, SB,i = [∂x
( 1

h0
q2 + 1

2
gh2)]∗ − z̈G x

∗ − g�ζe − ζi�
1

∫ x+
x− 1/h

; (71)

finally, the additional dispersive term is

D = diag(1, 1 − h2
0

3
∂2
x ).

Of course the same continuity condition (53) and compatibility condition on the initial
data are made, so that the constraint ζi = ζw is automatically satisfied at all times.

Remark 28 In the case where the solid structure is freely floating in the vertical direc-
tion, we deduce from Proposition 12 and Remark 20 that the vertical coordinate zG(t)
of the center of mass (or equivalently its distance δG to its equilibrium position) is
found by solving the second order nonlinear ODE deduced from (55) by replacing
q2

i /hw by q2
i /h0 in the nonlinear terms FNL and HNL.

Remark 29 The dispersive component of the Boussinesq system does not contribute
to the ODE governing the motion of the solid; indeed, the third diagonal coefficient
of the dispersive correction MB of the added mass matrix vanishes in Proposition 12.
They have however an incidence on the motion of the object since they modify the
wave field and in particular the terms ζe,± that appear in the damping/excitation force
ρg(ζe,+x∗+ − ζe,−x∗−).

Remark 30 More generally, the dispersive term does not play any role in the interior
region. Indeed, from the first equation of (70), one knows that q is linear in x in the

interior region I. It follows that the dispersive term − h2
0

3 ∂2
x ∂t q identically vanishes on

I.
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6.3.2 The Discrete Equations

The approach is the same as for the shallow water equations in §6.2; therefore, we
only sketch the adaptations one has to perform.

The Boussinesq equations (70) differ from the nonlinear shallow water equations
(52) by the presence of the dispersive term D and a slight modification in the second
component of the flux, namely,F must be replaced byFB as in (70). We shall therefore
use a numerical scheme based on the finite volume discretization (60), namely,

(DU )n+1
j = (DU )nj − α

(Fn
j+1/2 − Fn

j−1/2

)+ δt S
n
j , (72)

where the flux numerical fluxFn
j+1/2 is still given by (62)–(63)—for the sake of clarity,

we shall denote F instead of FB throughout this section.
The only thing that remains to be specified is the discretization we shall use for

(DU )nj . We use

(DU )nj = (ζ n
j , q

n
j − h2

0

3
d2
j q

n)T ,

where d2
j q

n is the classical centered second order approximation of ∂2
x except in the

interior region where it is equal to zero,

d2
j Q = 1

δ2
x

{

Q j−1 − 2Q j + Q j+1 if j < j− − 2 or j > j+ + 2

0 if j− − 2 ≤ j ≤ j+ + 2.
(73)

This discretization is motivated by Remark 30 that shows that the dispersive term
identically vanishes in the interior region. We also discarded the dispersive term in the
first two cells of the exterior domain in order to avoid the singularity at the contact line.
This means that in these cells, the hydrodynamical model considered locally is the
nonlinear shallow water system, which is still physically relevant but less precise than
the Boussinesq model.12 This strategy consisting in switching locally in the vicinity
of a singularity to a less precise but more robust model is often used to handle wave-
breaking for instance [4]. The following proposition generalizes to the Boussinesq
system the result proved in Proposition 15 for the nonlinear shallow water equations.
We omit the proof.

Proposition 15 Let us consider a floating body in purely vertical motion and denote
by zG the vertical coordinate of its center of mass at time tn. Let the discretization of
the Boussinesq equations be furnished by (72)–(73) with flux (62)–(63) and with the
source term provided by (64).

If the initial data (h0, Q0) satisfies (65), then, for all n ∈ N and j− < j < j+, one
has hnj = hnw, j .

12 In the nonlinear shallow water model, terms of order O(μ) are discarded, while only O(μ2) terms are
neglected in the Boussinesq model.
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Remark 31 In the case of a freely floating object, we follow the same lines as in §6.2.3
and Remark 28 to find the motion of the solid.

7 Numerical Simulations

We present here some numerical computations based on the schemes introduced in
Section 6. We first consider in §7.1 the case of the nonlinear shallow water equations,
and then in §7.2 the Boussinesq equations.

7.1 Numerical Simulations for the Nonlinear Shallow Water Model

Throughout this section, we shall consider a floating object as in Figure 5. It consists
of the union of a rectangular box of width 2R and height 2R sin(π/3) − R and, at
the lower bottom, of a portion of disk of radius 2R and whose center is located at the
vertical of the middle of the top of the solid, denoted by C . In all the computations
presented below, we take R = 10 m.

For the fluid, we shall always assume that the depth at rest is h0 = 15 m, that the
density of water is ρ = 1000 kg m−3, we also take g = 9.81 ms−2 for the acceleration
of gravity.

7.1.1 The Case of a Fixed Object

We assume here that the floating object is maintained fixed, at the location C =
(150, 4.57) (this particular height corresponds to the equilibrium state for the con-
figuration considered in §7.1.3 below). The fluid is initially at rest but forced on the
left boundary (x = 0) with a periodic incoming swell of amplitude 1 m and period
T = 15 s. The solution is represented in Figure 6 at different times.

We represented the solid structure in the first plot, but not in the others, in order
to insist on the fact that we solve the equations on the full computational domain
and that, with our choice of pressure, the surface of the fluid matches at machine
precision the boundary of the solid in the wetted region. There is no need to impose

Fig. 5 Shape of the floating
structure
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Fig. 6 A wave arriving on a fixed floating structure. Surface elevation (full) and discharge (divided by a
rescaling factor 5, dash)

this matching as an extra constraint, consistently with the result stated in Proposition
3 in the continuous case, and Proposition 14 in the discrete case under consideration
here.

As expected from the conservation of mass equation

∂tζ + ∂xq = 0,

the discharge is constant in space (but not in time) in the wetted region since ∂tζw = 0
when the solid is fixed.

We can also see that part of the wave is reflected, while the other part, is transmitted
to the other side of the solid; this is of course because the flow is allowed to flow
underneath the solid.

7.1.2 The Case of an Object in Prescribed Vertical Motion

We represent in Figure 7 the waves created by the floating object when it is in forced
vertical motion. We took an initial position corresponding to zC = 4.57 m, and to an
oscillation of 10 s and amplitude 2 m.
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Fig. 7 A solid in forced vertical motion. Surface elevation (full) and discharge (divided by a rescaling
factor 5, dash), initial position (dots)

Table 1 Convergence to the
exact solution for a solid in
forced motion

δx 0.00625 0.0125 0.0250 0.05

Error 0.00106 0.00212 0.00423 0.00846

The discharge is no longer constant in the wetted region since ∂tζw is not zero.
Since, for a purely vertical motion, it is a function of time only, the discharge is linear
in space in the wetted region, as observed in the computations.

In order to provide some validation of these computations, we can observe that
owing to Remark 26, the elevation of the water at the contact points x± is given by

ζe(t, x±) = (τ0(
x+ − x−

4
√
g

δ̇G)
)2 − h0,

with τ0(·) as in (59). Since δ̇G is in the present case a known function of time, this
formula provides an explicit exact solution for the water elevation at the contact points.
In Table 1, we reproduce the error between the solution computed with our numerical
scheme and this explicit formula (the configuration considered is the same as in Figure
7, and the error computed corresponds to the L∞-norm of the difference between the
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Fig. 8 Return to equilibrium of a solid initially below its buoyancy line. Surface elevation (full), discharge
(divided by a rescaling factor 5, dash), and initial condition (dots). The horizontal line on the structure
marks the contact line at the equilibrium
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Table 2 Convergence to the
exact solution in the return to
equilibrium problem. The time
step is δt = 0.9δx

δx 0.00625 0.0125 0.0250 0.05

Error 0.00286 0.00556 0.0111 0.0218

exact and computed solutions over one period T = 10 s). As expected, a first order
convergence is observed.

7.1.3 The Case of an Object Freely Floating in the Vertical Direction

We now consider the case where the solid is freely floating in the vertical direction, as
in §6.2.3. Since the motion of the solid is found through the resolution of Newton’s
laws, it is important to specify here the volumic density ρs of the solid. We take here
ρs = 0.5ρ. The mass of the solid is then given by m = ρsV where the volume V of
the solid is then given by

V = R2(
√

3 + 2π/3 − 2).

One also easily computes the vertical coordinate of the point C at equilibrium,

zC,eq = R

2
(1 − ρs

ρ
)(

√
3 + 2π

3
− 2);

in the numerical computations presented in this section, an horizontal line on the
floating object marks the contact line at this equilibrium state. In the configuration
considered here, one finds zC,eq = 4.57 m.

The first test performed here and represented in Figure 8 represents the return to the
equilibrium when the solid is initially below its buoyancy line, with an initial vertical
coordinate for the point C given by zC,eq = 2 m. For this problem, we know from
Corollary 1 that the motion of the solid can be found directly by solving the nonlinear
ODE (56). This furnishes a reference solution that we can use to validate our numerical
scheme. As shown in Table 2, there is as expected a first order convergence of the
solution computed through the numerical scheme presented in §6.2 for the nonlinear
shallow water equations in the presence of a floating structure (the error computed
in the table corresponds to the L∞-norm of the difference between the exact and
computed positions of the center of mass over the time interval [0, 10 s]).

The second test performed here consists in studying the motion of a solid initially
at equilibrium when a waves arrives. The solid is the same as above and the incoming
wave is obtained by forcing a sinusoidal wave of amplitude 3.5 m and period 20 s at the
left boundary located at 140 m from the left boundary of the solid; when it arrives at the
floating structure, the wave is near to the point of breaking. The result is represented
in Figure 9.

It is also interesting to know the forces exerted on the solid; let us first recall that the
sum of the vertical component of these forces can be decomposed into four components
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Fig. 9 A wave arriving on a freely floating structure (nonlinear shallow water model). Surface elevation
(full), initial condition (dots) and rescaled discharge (dash). The horizontal line on the structure marks the
contact line at the equilibrium
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Fig. 10 Decomposition of the vertical force Fvert (thick solid line) exerted on the structure, as in (74).
Damping-excitation force FD+E (dash-dot), restoring force Frestor (dash), force due to added mass Fadded
(dots) and nonlinear corrections FNL (solid)

Fvert = −cδG
︸ ︷︷ ︸

:=Frestor

−ma(δG)δ̈G
︸ ︷︷ ︸

:=Fadded

+ ρg(ζe,+x∗+ − ζe,−x∗−)
︸ ︷︷ ︸

:=FD+E

+FNL(δG, δ̇G , 〈q〉), (74)

where we used the same notations as in (55); the component Frestor is the resulting
restoring force (weight plus Archimedes’ force), while Fadded is the force due to the
added mass effect, FD+E stands for the damping and excitation force, and FNL is the
nonlinear correction. The forces exerted on the solid in the configuration considered
just above are represented in Figure 10.

Remark 32 Archimede’s principle states that the upward buoyant force that is exerted
on a body immersed in a fluid is equal to the weight of the fluid that the body displaces.
In the case of a floating object, this quantity is easily computed when the fluid is at rest,
but otherwise not intuitive since in order to compute the displaced fluid, one would
need to know what the free surface would have been without the solid. In Frestor we
have only taken into account the standard Archimedes force; the corrections due to the
perturbations of the free surface have been included in the damping/excitation force
FD+E.

7.2 Numerical Simulations for the Boussinesq Model

In absence of any floating structure, the Boussinesq equations (49) admit in horizontal
dimension d = 1 solitary waves of the form

ζ = a
[

sech
(

K (x − ct)
)]2

, q = cζ
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Fig. 11 A solitary wave arriving on a freely floating structure (Boussinesq model). Surface elevation (full),
initial condition (dots) and rescaled discharge (dash). The horizontal line on the structure marks the contact
line at the equilibrium
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Fig. 12 Decomposition of the vertical force Fvert (thick solid line) exerted on the structure, as in (74).
Damping-excitation force FD+E (dash-dot), restoring force Frestor (dash), force due to added mass Fadded
(dots) and nonlinear corrections FNL (solid)

with

K =
√

9a

12h3
0 + 4ah2

0

and c =
√

√

√

√

gh0

1 − 4h2
0K

2

3

.

As a brief illustration of the possibility to implement our approach to nonlinear disper-
sive wave models, we show in Figure 11 the numerical simulation of a solitary wave of
amplitude a = 3m arriving on the floating structure initially at equilibrium. It can be
observed that a solitary wave of slightly smaller amplitude is transmitted on the other
side of the solid, and that a small part dispersive trail is reflected. The decomposition
of the vertical force exerted on the solid during this experiment is reproduced in Figure
12.

Acknowledgements The authors warmly thanks T. Iguchi for his valuable comments on an earlier version
of this work.

Appendix A: An Alternative Equation for the Interior Pressure

Derivation of the Equation

We derived in Proposition 3 the elliptic equation (20) for the interior pressure. If we
express the time derivatives of the source term (coming from the non-hydrostatic accel-
eration in aFS) in terms of the pressure field using Euler’s equation, one obtains another
equation for the interior pressure. In this alternative equation, the time derivatives of
the velocity field have been removed from the source term. We recall thatU = (V , w)

denotes the trace at the surface of the velocity field, and that the Dirichlet–Neumann
operator is as in Definition 1. We recall that the averaged horizontal velocity V is
related to the discharge Q through the relation hV = Q.
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Proposition 16 The surface pressure P in (19) satisfies the following equations

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Pe = Patm,
1

ρ
G[ζ ](P − Patm) = −∂2

t ζw + ∇ · (∇ · (hV )V
)− G[ζ ](gζ + 1

2
|U2|) on I(t),

P i = Patm on �(t).

Proof Using the same notations as in the proof of Proposition 1, one can write U =
∇X,z�, and � satisfies the Bernoulli equation which, when evaluated at the surface,
can be written

∂tψ − ∂tζ∂z�|z=ζ + gζ + 1

2
|U2| = − 1

ρ
(P − Patm).

Applying the Dirichlet–Neumann operator to this equation, one gets

∂tG[ζ ]ψ + ([G[ζ ], ∂t ]ψ − G[ζ ](∂tζ∂z�|z=ζ )
)+ G[ζ ](gζ + 1

2
|U2|)

= − 1

ρ
G[ζ ](P − Patm).

We can now use the shape derivative formula of [32] to get

[G[ζ ], ∂t ]ψ = G[ζ ](∂tζ(∂z�|z=ζ )
)+ ∇ · (∂tζV )

so that

∂tG[ζ ]ψ + ∇ · ((∂tζ )V ) + G[ζ ](gζ + 1

2
|U2|) = − 1

ρ
G[ζ ](P − Patm).

Taking the restriction of this identity on the interior regionI(t) and using the constraint
(7) then yields the result.

On the Solvability of the Interior Pressure Equation

In the previous section, we derived an equation for the surface pressure P , namely,

1

ρ
G[ζ ](P−Patm) = −∂2

t ζw+∇·(∇·(hV )V
)−G[ζ ](gζ+ 1

2
|U2|) on I(t). (75)

We must show that there exists a unique solution P−Patm to this equation that vanishes
on the exterior region E(t) and such that its trace on �(t) also vanishes. If this is true,
then the interior pressure P i will simply be given by

P i = P in I(t).
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Before proving such a result, we need to introduce some functional spaces. Let us first
define the spaces H1/2(I) and ˜H1/2(I) as follows.

Definition 5 Let I ⊂ R
d be a bounded domain with Lipschitz boundary.

i. We denote by H1/2(I) the Banach space consisting of the restriction to I of all
the elements of H1/2(Rd), and we endow it with its canonical norm.

ii. We denote by ˜H1/2(I) the set of all f ∈ L2(I) such that f̃ ∈ H1/2(Rd), where
f̃ ∈ L2(Rd) stands for the extension of f by zero outside I, and endowed with
the norm

| f |
˜H1/2(I) = |˜f |H1/2(Rd ).

We can now state the following proposition for nonlocal elliptic equation of the kind
(75). We recall that the Beppo-Levi space Ḣ1/2(Rd) is defined in (12).

Proposition 17 Let ζ, b ∈ W 1,∞(Rd) be such that in fRd (h0 + ζ − b) ≥ hmin > 0.
Let also I ⊂ R

d be a bounded domain with Lipschitz boundary. Then, for all F ∈
H1/2(I)d and all g ∈ Ḣ1/2(Rd), there exists a unique f ∈ ˜H1/2(I) such that

G[ζ ]˜f = ∇ · F + G[ζ ]g on I.

Moreover, one has

|˜f |Ḣ1/2(Rd ) ≤ C
( 1

hmin
, |ζ, b|W 1,∞

)(|F |H1/2(I) + |g|Ḣ1/2(Rd )

)

.

Remark 33 With the notations of Section 3, one can write

∂tζw = (UG + ω × rG) · Nw,

which can be put in divergence form as follows

∂tζw = ∇ · (− (ζw − zG)VG + 1

d
wg(X − XG)

+ 1

2
|rG |2ω⊥

h − ωv(ζw − zG)(X − XG)⊥
)

.

Time differentiating this expression, the term ∂2
t ζw is also in divergence form, and the

right-hand-side of (75) can be put under the form ∇ · F + G[ζ ]g for some F and g.
If F and g have the required regularity, then the proposition implies that there exists
a unique solution P − Patm ∈ H̃1/2(Rd) to (75).

Remark 34 A solution P − Patm ∈ H̃1/2(Rd) to (75) clearly solves the first two
equation of the system derived in Proposition 16. Using a standard characterization of
the H̃1/2(I) spaces (see Lemma 1.3.2.6 in [22]), the third one, namely, the continuity
condition P i − Patm = 0 on �, is satisfied in the following sense
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∫

I
|P i(X) − Patm|2 1

d(X;�)
dX < ∞,

where d(X;�) denotes the distance between X and the boundary � of I.

Proof Denoting as usual by � ⊂ R
d+1 the domain delimited from above by {z = ζ }

and from below by {z = −h0 + b}, let us first define H1
0,I(�) as the completion for

the canonical norm of H1(�) of the set of all C∞(�) functions with compact support
in �∪{z = −h0 +b}∪ {z = ζ(X), X ∈ I}. The main step is to show that there exists
a unique � ∈ H1

0,I(�) such that the following variational identity,

∀ϕ ∈ H1
0,I(�),

∫

�

∇X,z� · ∇X,zϕ =
∫

I
∇ · Fϕ|z=ζ +

∫

I
(G[ζ ]g)ϕ|z=ζ .

By Poincaré inequality, the left-hand side defines a continuous and coercive bilinear
form on H1

0,I(�); moreover, one has ϕ|z=ζ ∈ ˜H1/2(I), and we know that ∂ j (1 ≤ j ≤
d) maps H1/2(I) into the dual of ˜H1/2(I) (see Remark 1.4.4.7 in [22]); similarly, we
know that G[ζ ] also maps H1/2(I) into the dual of ˜H1/2(I) (Proposition 3.3 in [33]).
The right-hand-side of the above variational identity therefore defines a continuous
linear form on ˜H1/2(I), and consequently (by the trace theorem), on ϕ ∈ H1

0,I(�).
The result follows therefore from Lax–Milgram’s theorem.

It then follows from the definition of the Dirichlet–Neumann operator that f :=
�|z=ζ furnishes a solution to the equation G[ζ ] f = ∇ · F + G[ζ ]g; the uniqueness
of the solution easily follows from the coercivity property.

Finally, the estimate is obtained upon multiplying the equation by ˜f and using
Cauchy-Schwarz and the following inequalities ([33], Proposition 3.12), for all ψ ∈
Ḣ1/2(Rd),

(ψ,G[ζ ]ψ) ≤ C

(

1

hmin
, |ζ, b|W 1,∞

)

|ψ |2
Ḣ1/2 ,

|ψ |2
Ḣ1/2 ≤ C

(

1

hmin
, |ζ, b|W 1,∞

)

(ψ,G[ζ ]ψ).

An Alternative Formulation for the Motion of the Solid Structure

Proceeding as for Proposition 4—and with the same notations—but using the formu-
lation of Proposition 16 for the interior pressure, we can decompose P as

P = PI + PII + PIII,

where PI − Patm, PII and PIII vanish on the exterior domain E(t) and satisfy the
following equations in the interior region I(t),
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1

ρ
G[ζ ](PI − Patm) = ∇ · (∇ · (hV )V

)− G[ζ ](gζ + 1

2
|U2|)

1

ρ
G[ζ ]PII = −(U̇G + ω̇ × rG) · Nw

1

ρ
G[ζ ]PIII = Q[rG ](VG,ω),

together with the continuity conditions PI
i − Patm = PII

i = PIII
i = 0 on �(t). The

force-torque corresponding to PI and PIII is then given by

(

F
T

)

=

⎛

⎜

⎜

⎝

∫

I(t)
(PI + PIII − Patm)Nw

∫

I(t)
(PI + PIII − Patm)rG × Nw

⎞

⎟

⎟

⎠

. (76)

In order to exhibit the added mass effect associated to PII, we need to work with
different elementary potentials than those introduced in Definition 3—note that the
existence of these elementary potentials in ˜H1/2(I) is provided by Proposition 17.

Definition 6 Under the same assumptions and with the same notations as in Definition
3, we define the elementary potentials �

( j)
I ( j = 1, . . . , 6) as the unique solutions in

H̃1/2(I) of the boundary value problems, for j = 1, 2, 3,

{

G[ζ ]�( j)
I = (Nw) j on I

�
( j)
I |� = 0

and

{

G[ζ ]�( j+3)

I = (rG × Nw) j on I
�

( j+3)

I |� = 0.

We can then give the following alternative equation to the one given in Proposition 6
for the motion of a freely floating body. The proof is a straightforward adaptation and
is omitted.

Proposition 18 Under the same assumptions as in Proposition 6 and with the same
notations, the velocity UG of the center of mass and the angular velocity ω satisfy the
ODE

(M + Ma[h,�I ])
(

U̇G

ω̇

)

=
( −mgez
Iω × ω

)

+
(

F
T

)

,

with F and T as in (76) and with the added mass-inertia matrix given by

Ma[h,�I ] := ρ
(

∫

Rd

˜�
( j)
I G[ζ ]˜�(k)

I
)

1≤ j,k≤6,

and where we recall that ˜�( j)
I denotes the extension by 0 outside I.

Remark 35 The most important thing to insist on is that the added mass-inertia
matrix Ma[h,�I ] differs from the added mass inertia matrix Ma[h,�I ] exhibited
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in Proposition 6. This is because some of the components of the resulting force
F[h,�I ](SI

i + SIII
i ) in Proposition 6 can be put as a (possibly negative) added mass-

inertia term.

Remark 36 One can see the added mass-inertia matrix Ma[h,�I ] of Proposition 6
as a shallow water approximation of Ma[h,�I ]. Indeed, it is known that in shallow
water, one has at leading order (see Proposition 3.8 in [2] or §3.6 in [33]),

G[ζ ]ψ ∼ −∇ · (h∇ψ)

Replacing G[ζ ] by this expression in Definition 6, one recovers the same elementary
potentials introduced in Definition 6, and doing the same substitution in the definition
of Ma[h,�I ], one recovers Ma[h,�I ].

Appendix B: Floating Structure Equations in a Body Frame

In Proposition 6 we gave a formulation of the water waves equations with a freely
floating body where the equations for the motion of the floating structure are given
in the Eulerian frame E = (Oxyz). Another natural possibility is to use a system of
coordinates moving with the rigid body, whose axis are the principal axes of inertia of
the body, and whose origin is the center of mass. We denote by B(t) = (G(t)x ′y′z′)
this body frame.

Since both E and the body frame B(0) at t = 0 are orthogonal, there exists a
rotation matrix �0 ∈ SO(3) sending the unit directional vectors (ex , ey, ez) of E to
their counterparts (e0

x ′ , e0
y′ , e0

z′) in B(0). If A and A′ represent the coordinates of some
vector in E and B(0) respectively, one has therefore

A = �0A
′ and I(0) = �0I0�

T
0 with I0 = diag(i1, i2, i3),

the scalars i j ( j = 1, 2, 3) denoting the principal moment of inertia of the solid.
Combining this with (27) and (28), the above relations for the change of frame become
at time t follow

A = ˜�(t)A′ and I(t) = ˜�(t)I0˜�(t)T with ˜�(t) = �(t)�0 (77)

where A′ now denote the coordinates in B(t) and where we recall that �(t) stands
for the rotation matrix defined by (28).

The main advantage in working in the body frame is that the mass-inertia matrix
becomes independent of time; we denote it M0, with

M0 = diag(m,m,m, i1, i2, i3).

For the added mass matrix and the source terms, we also need to replace the elementary
potential �I by �′

I , where for all 1 ≤ j ≤ 3,
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�′
I

( j) = �
( j)
I and

{

−∇ · (h∇�′( j+3)

I
) = (r′

G × N ′
w) j on I

�′( j+3)

I |� = 0

(i.e. �′
I

( j+3) is defined using the j-th coordinates of rG ×Nw in the body frame rather
than in the inertial frame). The equations of motion for the floating structure can then
be written as follows.

Proposition 19 The equations for the velocity UG of the center of mass and the
angular velocity ω given in Proposition 6 can be replaced by

(M0 + Ma[h,�′
I ])
(

U̇G

ω̇

)

=
( −mgez
I0ω × ω

)

+ F[h,�′
I ](SI

i + SIII
i

)

.

Proof We show how to rewrite the equation (30) for the angular momentum in the
body frame. The adaptations for the equation (29) for the linear momentum are similar
and therefore omitted. Owing to (77), one has

d

dt
(Iω) = d

dt
(˜�I0ω

′)

= �̇�0I0ω
′ + ˜�I0ω̇

′;

with (28), this gives

d

dt
(Iω) = ω × (˜�I0ω

′) + ˜�I0ω̇
′.

Multiplying (30) on the left by ˜�T , we obtain therefore

I0ω̇
′ + ω′ × I0ω

′ = T ′
fluid

with

T ′
fluid =

∫

I
(P i − Patm)˜�T (rG × Nw)

=
∫

I
(P i − Patm)r′

G × N ′
w.

Using the definition of �′
I , and integrating by parts, we therefore have

T ′
fluid · e′

j = −
∫

I
∇ · h∇P II

i �′
I

( j+3) − ρ

∫

I
(SI

i + SIII
i ) · ∇�′

I
( j+3)

= −ρ

∫

I
(U̇G + ω̇ × rG) · Nw�′

I
( j+3) + (F[h,�′

I ](SI
i + SIII

i )
)

j+3,
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with SI
i , SII

i and SIII
i as in Proposition 4. Remarking that

(ω̇ × rG) · Nw = (r′
G × N ′

w) · ω̇′

= −
3
∑

k=1

∇ · (h∇�′
I

(k+3)
)e′

k · ω̇′,

one can conclude the proof as for Proposition 6.
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