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A general method for the derivation of asymptotic nonlinear models in shallow and deep water is
presented. Starting from a general dimensionless version of the water wave equations, we reduce the
problem to a system of two equations on the surface elevation and the velocity potential at the free
surface. These equations involve a Dirichlet–Neumann operator and we show that many asymptotic
models can be recovered by a simple analysis of this operator. Based on this method, a new
two-dimensional fully dispersive model for small wave steepness is also derived, which extends to
an uneven bottom the approach developed by Matsuno �Phys. Rev. E 47, 4593 �1993�� and Choi
�J. Fluid Mech. 295, 381 �1995��. This model is still valid in shallow water but with less precision
than what can be achieved with the Green–Naghdi model when fully nonlinear waves are
considered. The combination, or the coupling, of the new fully dispersive equations with the fully
nonlinear shallow water Green–Naghdi equations represents a relevant model for describing ocean
wave propagation from deep to shallow waters. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3053183�

I. INTRODUCTION

The propagation of surface waves through an incom-
pressible homogeneous inviscid fluid is described by the
Euler equations combined with nonlinear boundary condi-
tions at the free surface and at the bottom. This problem is
extremely difficult to solve, in particular, because the moving
surface boundary is part of the solution. The complexity of
this problem led physicists, oceanographers, and mathemati-
cians to derive simpler sets of equations in some specific
physical regimes. Equations thus obtained may be divided
into two groups, namely, shallow water models and small
steepness fully dispersive models. We name the latter
“arbitrary depth models” after Matsuno.1 One of the goals
of this paper is to clarify the range of validity of these
models and to show why at least two different asymptotic
models are necessary for a correct description of ocean water
waves.

In shallow water conditions, the classical approach is
based on a perturbation method with respect to a small
parameter �= �h0 /L�2 �h0 the characteristic water depth, L
the characteristic horizontal scale� in order to reduce the
three-dimensional equation system to a two-dimensional
�2D� one. This method, initially introduced by Boussinesq,2

allows one to derive several shallow water equations, which
are named “Boussinesq-type equations.” A large class of
such equations can be expressed in the following 2D
�throughout this paper, one-dimensional �1D� and 2D refer to
the dimensionality of the wave free surface� nondimensional
form:

�t� + � · �hv� = 0,

�1�
�tv + ��v · ��v + �� = �D + O��2� ,

where �=a /h0 �a the order of free surface amplitude� is the
nonlinearity parameter and the dimensionless flow variables
are the water depth h, the surface elevation �, and the depth-
averaged velocity v. D characterizes nonhydrostatic and dis-
persive effects and is a function of wave variables and their
derivatives. Higher-order Boussinesq equations can be de-
rived �e.g., Ref. 3�, but in this paper we restrict our analysis
to O��2�, which is a good approximation for most of near-
shore wave applications �e.g., Refs. 4–6�.

In its classical form, Boussinesq wave theory is a 1D
approach based on the assumptions of weak dispersion, weak
nonlinearity, and balance between dispersion and nonlinear-
ity: �=O����1. The Kortweg–de Vries �KdV� �Ref. 7� and
Benjamin–Bona–Mahony �BBM� �Ref. 8� equations can also
be derived in the case of unidirectional waves; this approach
is relevant to study fundamental wave dynamics problems,
such as 1D solitary wave propagation on a flat bottom �e.g.,
Refs. 2 and 9�. However, the classical Boussinesq assump-
tions may severely restrict applicability to real world wave
propagation problems. Applications to coastal zone have mo-
tivated theoretical developments for extending the range of
applicability of Boussinesq-type equations in terms of vary-
ing bottom, dispersive, and nonlinearity effects, which play
an important role in the near-shore wave dynamics �see re-
views by Dingemans,10 Madsen and Schäffer,3 Wu,11

Kirby,12 and Barthélemy13�.
The 2D Boussinesq equations ��=O����1� for a non-

flat bottom were first derived by Peregrine;14 in this model,
the term D in the second equation of Eq. �1� is given by
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D =
h

2
� �� · �h�tv�� −

h2

6
�2�tv . �2�

For many coastal applications the weak dispersion of these
equations is a critical limitation. Witting15 proposed a
method based on Padé expansion of the exact linear phase
velocity to improve Boussinesq-type equations. From this
method, several equations �order O��2�� with improved dis-
persion characteristic have been derived �e.g., Refs. 16–20�.

In 1953, a breakthrough treating nonlinearity was made
by Serre �see Barthélemy13 for a review�. He derived 1D
fully nonlinear ��=O�1�� weakly dispersive equations for a
horizontal bottom; the nonhydrostatic and dispersive term D
in Eq. �1� is then given by

D =
1

3h
�x�h3�v̄xt + v̄v̄xx − �v̄x�2�� . �3�

The same system was obtained later by Su and Gardner.21

Seabra-Santos et al.22 provided an extension of this model to
a nonflat bottom:

D = −
1

h
��x�h2�1

3
P +

1

2
Q�	 + bxh�1

2
P + Q�
 , �4�

with P=−h�v̄xt+ v̄v̄xx− �v̄x�2� and Q=bx�v̄t+ v̄v̄x+bxxv̄2�.
Dingemans10 �p. 613� expressed mistrust for the validity of
these equations for uneven topographies considering that the
derivation required the assumption of vertical uniformity of
the horizontal velocity. In fact, the asymptotic derivation of
Su and Gardner21 for a flat bottom shows how such vertical
uniformity assumption is not required, and Cienfuegos
et al.23 showed how to extend this to nonflat bottoms.

Finally, Green and Naghdi24 derived 2D fully nonlinear
weakly dispersive equations for an uneven bottom which
represent a 2D extension of the Serre equations. Except for
being formulated in terms of the velocity vector at an arbi-
trary z level, the equations of Wei et al.25 are basically
equivalent to the 2D Serre or Green–Naghdi equations; the
equations derived in Ref. 26 through Hamilton’s principle
are also exactly the same as the ones derived in Ref. 24 and
thus the same as Eq. �26� derived below, though this might
not seem obvious at first sight; see also Ref. 27 for time-
dependent bottom topographies.

The range of validity of all the models introduced above
may vary as far as the nonlinearity parameter � is concerned,
but they all require that the shallowness parameter � be
small. In deeper water ���” 1� the Boussinesq wave theory
fails but it is yet possible to derive asymptotic expansions
from the water wave equations under the condition that the
steepness ���=a /L is small. Such an approach was made in
1D and flat bottoms by Matsuno28 and extended to uneven
bottoms,29 2D weakly transverse waves,1 and higher-order
expansions.30 Since one always has ��1, the small steep-
ness assumption ����1 is also satisfied in the shallow wa-
ter regime ��1 discussed above and this is the reason why

it is often claimed that the models derived in Refs. 1 and
28–30 are valid in the whole range �� �0,��. However, as
we show here, their precision is then far below the one of the
Green–Naghdi equations.

In this paper we propose a systematic derivation of all
the models evoked in this introduction �and of some new
ones�; to this end, we use the global method introduced in
the recent mathematical work.31 Starting from a general non-
dimensionalized version of the water wave equations �which
takes into account the different nondimensionalizations used
in deep and shallow water�, following Refs. 32 and 33 we
reduce the problem to a system of two equations on the sur-
face elevation and the velocity potential at the free surface.
These equations involve a Dirichlet–Neumann operator and
we show that all the asymptotic models can be recovered by
a simple analysis of this operator. In the arbitrary depth set-
ting �i.e., if we do not assume that ��1� we give an
asymptotic expansion of this operator with respect to �; in
the shallow water setting, we rather choose to use an exact
expression of the Dirichlet–Neumann operator in terms of
the averaged velocity v and to provide an asymptotic expan-
sion of the velocity potential in terms of � since � is not
always small �e.g., ��1 for Green–Naghdi�.

As said above, all the asymptotic models are obtained in
a systematic way with the present approach. In addition, we
derive a new fully dispersive model for 2D surface waves
over an uneven bottom and arbitrary depth. Our method
brings clarifications about the validity domain of many
asymptotic wave models, in particular, the following.

• We can easily show that the shallow water limit of the
Dirichlet–Neumann expansion corresponding to the
arbitrary depth models has a very poor precision in the
fully nonlinear case ��1; this proves that the arbitrary
depth models such as those of Refs. 1 and 28–30 are
not in general suitable for nonlinear shallow water
waves.

• We do not make any assumption �other than irrotation-
ality� on the velocity profile or on any related quantity.
The only assumptions we make concern the value of
the parameters � and � �and a third parameter � linked
to the amplitude of the bottom variations for uneven
bottoms�; the properties of the velocity profile �and, in
particular, its vertical behavior� are then rigorously es-
tablished; we thus believe that this article should
clarify the discussions concerning the assumptions
made on the velocity profile, and, in particular, the
controversy raised in Ref. 10 about the Serre
equations.

II. GENERAL NONDIMENSIONALIZED WATER WAVE
EQUATIONS

Parametrizing the free surface by z=��t ,X� �with
X= �x ,y��R2� and the bottom by z=−h0+b�X� �with h0	0
constant�, one can use the incompressibility and irrotational-
ity conditions to write the water wave equations under Ber-
nouilli’s formulation in terms of a potential velocity 
 �i.e.,
the velocity field is given by V=�X,z
�:
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�x
2
 + �y

2
 + �z
2
 = 0, − h0 + b � z � � ,

�n
 = 0, z = − h0 + b ,

�5�
�t� + �� · �
 = �z
, z = � ,

�t
 + 1
2 �
�

2 + ��z
�2� + g� = 0, z = � ,

where g is the gravitational acceleration, �= ��x ,�y�T, and
�n
 is the outward normal derivative at the boundary of the
fluid domain. Surface tension has no appreciable influence
for the phenomena under consideration here and has there-
fore been neglected; our approach can, however, be easily
generalized to the case of nonzero surface tension.

In deriving approximate equations by asymptotic meth-
ods it is necessary to introduce dimensionless quantities
based on characteristic scales for the wave motion. Four
main length scales are involved in this problem: the charac-
teristic water depth h0, the characteristic horizontal scale L,
the order of free surface amplitude a, and the order of bottom
topography variation B. Three independent dimensionless
parameters can be formed from these four scales. We choose

a

h0
= �,

h0
2

L2 = �,
B

h0
= � , �6�

where � is often called the nonlinearity parameter, while � is
the shallowness parameter.

Commonly two distinct nondimensionalizations are used
in oceanography �e.g., Ref. 10� depending on the value of �:
shallow water scaling ���1� and Stokes wave scaling for
intermediate to deep water ���” 1�. In this paper, we present
as in Refs. 1, 28, and 29 a general nondimensionalization
which applies to any wave regime. The order of magnitude
of wave motion variables are given by the linear wave
theory. In particular, �gh0��1/2 and �aL /h0��gh0 /��1/2 are the
characteristic scales of, respectively, the wave celerity and
the potential velocity, with � a dimensionless parameter
which can be expressed as

� = tanh��1/2�/�1/2.

Let us normalize all variables according to the scales
anticipated on physical grounds:

x = Lx�, y = Ly�, z = h0�z�, t =
L

�gh0�
t�,

� = a��, 
 =
a

h0
L�gh0

�

�, b = Bb�.

We can recover the classical scalings for shallow and deep
water from this general nondimensionalization: ��1 when
��1 and ���−1/2 when ��1.

The equations of motion �5� then become �after dropping
the primes for the sake of clarity�

�2��x
2
 + �2��y

2
 + �z
2
 = 0,

1

�
�− 1 + �b� � z �

�

�
� ,

− �2� � ��

�
b� · �
 + �z
 = 0, z =

1

�
�− 1 + �b� ,

�7�

�t� −
1

��2�− �2� � ��

�
�� · �
 + �z
	 = 0, z =

�

�
� ,

�t
 +
1

2
��

�

�

2 +

�

��3 ��z
�2	 + � = 0, z =
�

�
� .

In order to reduce this set of equations into a system of
two evolution equations, we introduce the trace of the veloc-
ity potential at the free surface, namely, �=
 
z=��/���

and the

Dirichlet–Neumann operator G�
� ��� /��� ,�b�· as

G�
���

�
�,�b	� = − �2� � ��

�
�� · �

z=��/���

+ �z

z=��/���
,

�8�

with 
 solving the boundary value problem

�2��x
2
 + �2��y

2
 + �z
2
 = 0,

1

�
�− 1 + �b� � z �

�

�
� ,



z=�/��
= �, �n

z=1/��−1+�b�

= 0.

One can check that G�
� ��� /��� ,�b��

=�1+ 
���� /����
2�n
 
z=��/���
, where �n
 stands for the up-

ward nondimensionalized normal derivative at the surface.
As remarked in Refs. 32 and 33 Eq. �7� is equivalent to

a set of two equations on the free surface parametrization
� and the trace of the velocity potential at the surface
�=
 
z=��/���

involving the Dirichlet–Neumann operator.

Namely,

�t� −
1

��2G�
���

�
�,�b	� = 0,

�9�

�t� + � +
�

2�

��
2

−
��

�3

� 1

�
G�

���

�
�,�b	� + � � ���� · ��	2

2�1 + �2�
��
2�
= 0.

In order to simplify this system and to make the dependence
on the parameter � more transparent, let us define the opera-
tor G���� ,�b� obtained by taking formally �=1 in Eq. �8�,
namely,

G����,�b�� = − � � ���� · �

z=��
+ �z

z=��

, �10�

with 
 solving the boundary value problem
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��x
2
 + ��y

2
 + �z
2
 = 0, − 1 + �b � z � �� ,

�11�


z=��

= �, �n

z=−1+�b
= 0.

Easy computations show that the operators
G�

� ��� /��� ,�b� and G���� ,�b� defined in Eqs. �8� and �10�
are linked through the identity

G����,�b� =
1

�
G�

���

�
�,�b	 . �12�

Using Eq. �12�, one can therefore transform Eq. �9� into

�t� −
1

��
G����,�b�� = 0,

�13�

�t� + � +
�

2�

��
2 −

��

�

� 1

�
G����,�b�� + ����� · ��	2

2�1 + �2�
��
2�
= 0.

System �13� recasts the water wave equations in terms of
the free surface elevation � and the velocity potential � at the
surface; this is the formulation which will serve as a basis for
all the computations in this article—of course, the first equa-
tion of Eq. �13� can be written under the more usual form
�t�+� · �hv�, where v is the vertically averaged horizontal
velocity, see Eq. �16� below.

III. SHALLOW WATER MODELS

This section is devoted to the study of shallow water
waves: ��1. From the assumption ��1, one gets ��1 and
we take �=1 in Eq. �13� to simplify �this corresponds to the
usual shallow water nondimensionalization�.

The most general situation �when no assumption is made
on � and �� is addressed in Sec. III A, where the Green–
Naghdi equations �also called Serre34 or fully nonlinear
Boussinesq equations25� are derived. The key point is that
G���� ,�b� and �� are respectively related to the averaged
velocity v by an exact formula and an expansion with respect
to �.

We then briefly show how to recover simpler models
under additional assumptions on �; the moderately nonlinear
case �=O���� is addressed in Sec. III B and the weakly
nonlinear case �=O��� in Sec. III C. Some new models are
then derived in the next sections.

A. The fully nonlinear case: �È1, �È1, and �™1

1. The Dirichlet–Neumann operator
and the averaged velocity

Let us write the depth-averaged horizontal velocity v
defined in terms of the solution 
 to the Laplace equation
�11�,

v�t,X� =
1

h�t,X��−1+�b�X�

���t,X�

�
�t,X,z�dz , �14�

�recall that X= �x ,y�, �= ��x ,�y�T, and h=1+��−�b�. Using
Green’s identity and definition �10� of the operator
G���� ,�b� one deduces from Eq. �14� that

G����,�b�� = − � � · �hv� . �15�

Replacing G���� ,�b�� by this expression in the first equa-
tion of Eq. �13�, one recovers the classical formulation of the
kinematic condition in terms of v,

�t� + � · �hv� = 0. �16�

2. Asymptotic expansion of ��

Since ��1, we look for an asymptotic expansion of 

under the form


app = �
j=0

N

� j
 j . �17�

Plugging this expression into the Laplace equation �11� one
can cancel the residual up to the order O��N+1� provided that

∀ j = 0, . . . ,N, �z
2
 j = − �x

2
 j−1 − �y
2
 j−1 �18�

�with the convention that 
−1=0�, together with the bound-
ary conditions

∀ j = 0, . . . ,N, �
 j
z=��
= �0,j�

�z
 j = � � b · �
 j−1
z=−1+�b


 , �19�

�where �0,j =1 if j=0 and 0 otherwise�.
Solving the ordinary differential equation �18� with Eq.

�19� is completely straightforward, and this procedure can be
implemented on any symbolic computation software to com-
pute the 
 j at any order. For our purposes here, we must take
N=1 and thus need to compute 
0 and 
1; one finds


0 = � , �20�


1 = �z − ����− 1
2 �z + ��� − 1

+ �b��� + ��z − ��� � b · �� . �21�

Remark 3.1: This shows that the velocity potential (and
thus the velocity field) does not depend on z at leading order;
if we include the O��2� term and without assumption on �,
the potential depends quadratically on z, as is well known.

Remark 3.2: In the case of a flat bottom �b=0� and a
flat surface ��=0�, the Laplace equation (11) can be solved
explicitly; the Fourier transform with respect to the horizon-
tal variables of 
 is then given by


̂��,z� =
cosh����z + 1�
�
�

cosh���
�
�
�̂���

and the Fourier transform of Eq. (17) is therefore equal to
the Nth order Taylor expansion of this formula. Quite obvi-
ously, the range of validity of Eq. (17) is thus restricted to
relatively small values of ��
�
 and therefore to small wave-
numbers � when � is large; this is the reason why we use
another approximation in Sec. IV where arbitrary depth is
considered.
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An approximation of order O��N+1� of the averaged ve-
locity v defined in Eq. �14� is then given by

v =
1

h�t,X��−1+�b�X�

���t,X�

�
app�t,X,z�dz + O��N+1� �22�

for N=1. We thus obtain from Eqs. �17�, �20�, and �21�

v = �� −
�

h
T �h,�b� � � + O��2� , �23�

where h=1+��−�b and where the linear operator T �h ,�b�
is defined as

T �h,�b�W = − 1
3 � �h3 � · W� + � 1

2 ���h2 � b · W�

− h2 � b � · W� + �2h � b � b · W . �24�

Inverting Eq. �23�, we can write �� in terms of v,

�� = v +
�

h
T �h,�b�v + O��2� . �25�

3. Derivation of the Green–Naghdi equations

We can now derive the Green–Naghdi equations �also
called the Serre equations� from the full water wave equa-
tions �13�, proceeding as follows.

�1� Replace the first equation of Eq. �13� by Eq. �16�.
�2� Take the gradient of the second equation of Eq. �13�, use

Eqs. �15� and �25� to express G���� ,�b�� and �� in
terms of v, and neglect all the O��2� terms.

One thus obtains the Green–Naghdi equations

�t� + � · �hv� = 0,

�26�

�1 +
�

h
T �h,�b���tv + �� + ��v · ��v

+ ���−
1

3h
� �h3��v · ���� · v� − �� · v�2��

+ Q�h,�b��v�
 = 0,

where the purely topographical term Q�h ,�b��v� �which is
quadratic in v� is defined as

Q�h,�b��v� =
�

2h
���h2�v · ��2b� − h2��v · ���� · v�

− �� · v�2� � b� + �2��v · ��2b� � b . �27�

Remark 3.3: Formulation (26) of the Green–Naghdi
equation is not at first sight the same as usual (see Refs. 24
and 26). Tedious but simple computations show, however,
that they are exactly the same, as expected. It can, in par-
ticular, be checked quite easily that Eqs. (1.2)–(1.4) of Ref.
26 coincide with Eqs. (26) and (27) when the bottom is flat
�b=0�.

The interest of the present form is that the operator
�1+ �� /h�T �h ,�b�� in front of �tv is that it induces regular-
izing effects and is thus expected to ease numerical compu-
tations (work in progress).

Remark 3.4: In Ref. 25, Wei et al. derived some Green–
Naghdi equations (fully nonlinear Boussinesq models in that
reference) with improved frequency dispersion by replacing
the vertically averaged horizontal velocity v by the velocity
v� taken at some intermediate depth z��x ,y� (thus following
the approach of Nwogu17 for weakly nonlinear Boussinesq
systems). Such systems could of course be derived similarly
from Eq. (26).

Remark 3.5: It is also possible to give a Lie–Poisson
Hamiltonian form to the Green–Naghdi equations [see Ref.
35 and Eq. (4.17) of Ref. 36]. Note also that if one neglects
the O��� terms then Eq. (26) reduces to the standard non-
linear shallow water equations.

B. The moderately nonlinear case:
�™1 and ε=O„

��…

The simplifications that can be made on the Green–
Naghdi equations �26� under the assumption �=O���� de-
pend on the topography. As for the surface variations, we
distinguish three different regimes:

�a� Fully nonlinear topography: �=O�1�. In this case, no
significant simplification can be made, and the full
equations must be kept.

�b� Moderately nonlinear topography: �=O����. In this
regime, the third line of Eq. �26� can be written as

−
��

3
� ���v · ���� · v� − �� · v�2�� + O��2� ,

so that one can replace Eq. �26� by

�t� + � · �hv� = 0,

�1 +
�

h
T �h,�b���tv + �� + ��v · ��v −

��

3
� ���v · ���� · v�

− �� · v�2�� = 0.

Note that some simplifications could also be made in the
term �� /h�T �h ,�b��tv but they are not interesting because
they would partially destroy the regularizing effects evoked
in Remark 3.3.
�c� Weakly nonlinear topography: �=O���. This stronger

assumption allows a simplification of the term
�� /h�T �h ,�b��tv, and one gets

�t� + � · �hv� = 0,

�28�

�1 −
�

3h
� �h3 � ·�	�tv + �� + ��v · ��v

−
��

3
� ���v · ���� · v� − �� · v�2�� = 0.

The main interest of this model is that in the case of flat
bottoms �b=0� and surface dimension equal to 1 �no depen-
dence on y�, its unidirectional limit gives the Camassa–Holm
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equation.37–39 More precisely, it has been rigorously proved
in Ref. 40 that one can build an approximate solution of
order O��2� to Eq. �28� under the form

v̄ = u +
�

12
uxx +

��

6
uuxx,

� = v̄ +
�

4
v̄2 +

�

6
v̄xt − ���1

6
v̄v̄xx +

5

48
v̄x

2	 ,

where u solves the Camassa–Holm equation

ut + ux + 3
2�uux − �� 1

4uxxx + 5
12uxxt� = 5

24���uuxxx + 2uxuxx� .

C. The weakly nonlinear case: �™1 and ε=O„�…

The assumption �=O��� is the classical long wave as-
sumption which yields the usual Boussinesq models. Here
again, we briefly show how to recover these models in dif-
ferent topographic regimes.

�a� Fully nonlinear topography: �=O�1�. Neglecting in
Eq. �26� the terms which are of order O��2� under the
assumption �=O��� yields the equations

�t� + � · �hv� = 0,

�1 +
�

hb
T �hb,�b���tv + �� + ��v · ��v = 0,

with hb=1−�b. These equations are equivalent to Eqs.
�1� and �2� and correspond to the Boussinesq model for
nonflat bottoms derived by Peregrine.14 For many
coastal applications the weak dispersion of these equa-
tions is a critical limitation. Several alternative
equations, with the same approximations ��1 and
�=O���, have been developed to improve dispersion
properties �e.g., Refs. 16–18 or Refs. 19 and 20� and
deal with weakly transverse waves.41

�b� Weakly nonlinear topography: �=O���. In this case,
the equations simplify further into

�t� + � · �hv� = 0,

�29�

�1 −
�

3
���tv + �� + ��v · ��v = 0

for which topographic effects play a role only through
the presence of h=1+��−�b in the first equation. As
for Eq. �28�, it is of interest to study the unidirectional
limit of Eq. �29� in the case of flat bottoms �b=0� and
surface dimension equal to 1. Neglecting the O����
terms �since O����=O��2� in the present scaling� of
the Camassa–Holm approximation described in Sec.
III B regime �c�, an approximate solution of order
O��2� to Eq. �29� is then given by

v = u +
�

12
uxx, � = v +

�

4
v2 +

�

6
vxt,

where u solves the BBM-type equation

ut + ux + 3
2�uux − �� 1

4uxxx + 5
12uxxt� = 0.

As is well known �e.g., Ref. 10�, writing u�t ,x�
=u� ��t ,x− t� and denoting �=�t, �=x− t, and S=� /�, one ob-
tains the KdV equation

u� � +
3

2
uux +

1

6S
u� xxx = 0.

When the Stokes number is fixed, this equation is indepen-
dent of � and �, which is of course of high interest for
numerical simulations since computations must be per-
formed on a much shorter time scale.

IV. FULLY DISPERSIVE MODELS: ε��™1 AND �™1

Small steepness asymptotics �����1� have been used
by Matsuno28 and generalized in Refs. 1, 29, and 30. It is
often claimed that the derived equations are valid under the
condition ����1 only, and that the other asymptotic models
�which satisfy this condition� can be deduced from them. We
show here that this is not always the case. The unified frame-
work used in this article allows us to check, for instance, that
the Matsuno equations do not degenerate into the Green–
Naghdi equations in shallow water and that their precision is
much smaller.

After making a new asymptotic expansion of the
Dirichlet–Neumann operator in this physical regime, we also
derive a new generalization of the Matsuno equations for 2D
surface waves with an uneven bottom.

A. Asymptotic expansion of the Dirichlet–Neumann
operator

When � and � are small, it is possible to make a Taylor
expansion of G���� ,�b�� with respect to � and �; such
an expansion has been derived for 1D surfaces in Refs. 42;
this method could be generalized to 2D surfaces, but we
chose here to use another technique based on the following
formulas:

lim
�→0

1

�
�G����,�b�� − G��0,�b��� = − G��0,�b�

���G��0,�b��� − � � · �������

and

lim
�→0

1

�
�G��0,�b�� − G��0,0��� = � sech���
D
�

��� · �b�sech���
D
� � ���� , �30�

where we used the Fourier multiplier notation: given two

functions f and u and denoting by ˆ the Fourier transform,
f�D�u is defined as

∀� � R2, f�D�u
̂

��� ª f���û��� .

We only prove the second of these formulas because the
first one can be established with the same techniques and can
also be found in the literature �e.g., Ref. 43 and also
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Theorem 3.20 of Ref. 44 and Theorem 3.1 of Ref. 31 where
a similar formula is established for non-necessarily flat
surfaces�.

First recall that by definition, G��0,�b��=�z
��b� 
z=0
,

where 
��b� solves

��
��b� + �z
2
��b� = 0 in − 1 + �b � z � 0,

�31�

��b�
z=0

= �, ��z
��b� − �� � 
��b� · �b�
z=−1+�b
= 0.

We denote by 
��b� instead of 
 to emphasize the
dependence on the bottom topography. We thus have, for

all smooth function � compactly supported in �̄ �with

�̄= ��X ,z� ,−1+�b�X��z�0��

�
�

���
��b� + �z
2
��b���dXdz

+ �
z=0

�
��b� − ���dX + �
z=−1+�b

��z
��b�

− �� � b · 
��b���dX = 0.

Denoting �=lim�→0�1 /���
��b�−
�0��, one can dif-
ferentiate the above identity to obtain

�
�

���� + �z
2���dXdz

+ �
z=0

��dX + �
z=−1

��z� − � � b · �
�0�

+ b�z
2
�0���dX = 0.

Since this identity holds for all test function � and since
�z

2
�0�=−��
�0�, we deduce that � solves the boundary
value problem

��� + �z
2� = 0 in − 1 � z � 0,

�
z=0
= 0, �z�
z=−1

= � � · �b � 
�0�
z=−1
� .

This problem can be solved explicitly:

��· ,z� = ��
sinh���z
D
�

cosh���
D
�
�


D

· �b � 
�0�
z=−1

� .

Since moreover one has lim�→0�1 /���G��0,�b��
−G��0,0���=�z� 
z=0

and that 
�0��· ,z�= �cosh����z+1�

D
�� / �cosh���
D
���, we get formula �30�.

A first order Taylor expansion of G���� ,�b�� with re-
spect to �, together with the first formula, shows therefore
that

G����,�b�� = G��0,�b�� − �G��0,�b���G��0,�b���

− �� � · �� � �� + O��������2� . �32�

A first order Taylor expansion of G��0,�b�� with respect to
b, together with the second formula, gives also

G��0,�b�� = G��0,0�� + �� sech���
D
�

��� · �b�sech���
D
� � ����

+ O��������2� . �33�

Let us now define the operators T� and B� as

T� = −
tanh���
D
�


D

� and B� = sech���
D
�

��b�sech���
D
� ·�� . �34�

We thus have G��0,0��=��T� ·��, and Eqs. �32� and �33�
show that

G����,�b�� = ��T� · �� + �� � · �B� � ��

− ��T� · ���T� · ��� − �� � · �� � ��

+ O��������2,�������2� . �35�

Remark 4.1: In the shallow water, weakly nonlinear
regime, and with a weakly nonlinear topography [that is,
��1, �=O���, �=O����, one can deduce from Eq. (35)
that

G����,�b�� = − � � · �h � �� −
�2

3
� · � � � + O��3� ,

which can also be obtained using the expansion of the veloc-
ity potential used in Sec. III C.

B. Derivation of a fully dispersive model
for 2D surface waves over uneven bottoms

We derive here a new system of fully dispersive equa-
tions which generalizes to the case of 2D surfaces and non-
flat bottoms the systems derived by Matsuno �1D surfaces,
flat28 and uneven29 bottoms� and Choi30 and Smith45 �2D
surfaces, flat bottoms�.

We first define the horizontal velocity at the surface as
vS= ��
� 
z=��

, where 
 is the velocity potential given by Eq.
�31�. By definition of � and G���� ,�b��, we get

�� = vS + � � ���z
�
z=��

= vS + �
G����,�b�� + �� � � · ��

1 + ��
��
2
� �

= vS + ����T� · vS� � � + O������2� ,

where we used Eq. �35� and ��=vS+O����� for the last
relation. Plugging this relation into Eq. �35�, one gets
similarly

1
��

G����,�b�� = T� · vS + ��� � · �B�vS�

− ���T� · �� � T� · vS�

− ��� � · ��vS� + O������2,�����2� .

�36�

Taking the gradient of the second equation of Eq. �13�
and using the above two identities gives therefore the follow-
ing set of arbitrary depth �or fully dispersive� equations:
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�t� −
1

���
T� · vS +

���

���
�T� · �� � T� · vs� + � · ��vS��

=
���

���
� · �B�vS� ,

�37�

�tvS + �� + ���� 1

2���
� 
vS
2 − ��T� · ��� = 0,

where we recall that T� and B� are defined in Eq. �34� and
that �=tanh���� /�� �so that one can replace ��� by 1 in
Eq. �37� in deep water�.

Remark 4.2: If we remove the topography term B� from
these equations, we recover the 2D Eqs. (3.25) and (3.26)
derived by Choi.30 If we take the 1D version of Eq. (37) we
recover the equations derived by Matsuno [Eqs. (19) and
(20) of Ref. 28 for flat bottoms and (4.28) and (4.29) of Ref.
1 for nonflat bottoms].

Remark 4.3: Equation (37) is precise up to order
O���� ,���� in deep water (since ���−1/2); one could also
use them in shallow water, but they are then precise up to
order O�� ,�� only (since ��1 in shallow water). This is the
same accuracy as the one provided by the weakly nonlinear
shallow water models (with a weakly nonlinear topography)
of Sec. III C; it is therefore not surprising to check that one
recovers the Boussinesq system (29) from Eq. (37) by a
simple Taylor expansion of the operators T� and B� and by
observing that v= �1+� 1

3��vs+O��2�.
In the fully nonlinear regime (with fully nonlinear topog-

raphy) studied in Sec. III A, Eq. (37) is precise up to order
O�� ,��=O�1� while we saw that the Green–Naghdi equa-
tions (26) are precise up to order O���. It is therefore not
surprising to check that the shallow water limit of Eq. (37)
does NOT give the Green–Naghdi equations (26).

Remark 4.4: System (37) is “fully dispersive” in the
sense that its dispersion relation is the same as for the full
water wave equations. This is the case because expansion
(36) keeps the nonlocal effects of the Dirichlet–Neumann
operator G���� ,�b��. In Refs. 46–48 the authors make a
differential approximation of shallow water type based on
Padé approximants; they show that the dispersive properties
remain good far beyond the shallow water regime when
bathymetric changes are not too strong (in this latter case,
the model is more complex and its range of validity much
narrower49).

V. CONCLUSION

In this paper we have presented a systematic derivation
of various 2D asymptotic models for water waves over shal-
low or arbitrary depth, which allows one to clarify their
range of validity. The key point in this systematic derivation
is an asymptotic analysis of the Dirichlet–Neumann operator
in the different regimes under consideration here. We have
also derived a new 2D fully dispersive model, system �37�,
for small wave steepness which extends to an uneven bottom
the approach developed by Matsuno1 and Choi.30 We have
shown that even though these models remain valid in shal-
low water, their precision is then far below what can be

achieved with the Green–Naghdi or Serre model when fully
nonlinear waves are considered ���1�. Hence, contrary to
what it is generally thought1,28–30 this approach cannot in
practice be considered as a unified theory of nonlinear waves
because it is not accurate enough for nonlinear shallow water
waves ���1, ��1�. In particular, we have shown that sys-
tem �37� in the shallow water limit ���1� does not corre-
spond to the correct fully nonlinear equations, namely, the
Green–Naghdi or Serre equations. Another reason why these
fully dispersive water models are not likely to furnish inter-
esting models in shallow water is that there is no obvious
shoreline boundary condition for them.

The Green–Naghdi equations represent the appropriate
model to describe nonlinear shallow water wave propagation
and wave oscillations at the shoreline. For coastal applica-
tions, the Green–Naghdi equations can be easily extended to
include accurate linear dispersive effects, which allow one to
describe shoaling processes in intermediate water depth �see
Refs. 6, 23, and 25�. Another interest of these equations is
that there is a natural shoreline boundary condition given by
the flux conservation equation �the flux hv vanishes at the
shoreline in the first equation of Eq. �26��. However, in
deeper water the Green–Naghdi model is no more valid and
the fully dispersive model �37� must therefore be used.

It follows from these considerations that the asymptotic
description of coastal flows requires at least the use of two
different models: one for shallow water �e.g., the Green–
Naghdi equations �26�� and another one for deeper water
�e.g., Eq. �37��. The numerical coupling of these two models
is therefore a natural perspective for further works.
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