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Abstract

The aim of this article is to sketch the main steps of a general method
to fully justify asymptotic models for 3D water-waves. The strategy
adopted here is the one developed in full details in [1]. The key step
is to prove a large time existence result for the nondimensionalized water-
waves equations written in terms of the water elevation and the velocity
potential at the surface. The theorem also furnishes a bound on a special
energy introduced to have uniform control on the solution (with respect
to the nondimensionalization parameters). We then describe a systematic
way to provide asymptotic expansions on the Dirichlet-Neumann operator
involved in the water-waves equations, and deduce asymptotic models in
different physical regimes. Full justification of 2DH Boussinesq systems,
of 2DH shallow water equations, and of the Kadomtsev-Petviashvili ap-
proximation are sketched with some details as an illustration of these
results.

1 Introduction

1.1 General setting

The motion of a perfect, incompressible and irrotational fluid under the influ-
ence of gravity is described by the free surface Euler (or water-waves) equations.
These equations have a very rich structure and many famous equations of math-
ematical physics can be obtained as asymptotic limits: the Korteweg-de Vries
(KdV) and Kadomtsev-Petviashvilii (KP) equations, the Boussinesq systems,
the shallow water equations, deep water models etc. Each of these asymptotic
limits corresponds to a very specific physical regime which determines its range
of validity as a tool in oceanography.
While the derivations of these models goes back to the XIXth century, their
mathematical justification is a much more recent concern (by mathematical
justification, we mean the rigorous proof that the solution of the water-waves
equations is well approximated by the solution of the asymptotic model corre-
sponding to the physical regime under consideration). So far, the only asymp-
totic models fully justified are the KdV equations and the 1DH-Boussinesq
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systems (see [8, 24, 4]) and some variants in presence of surface tension [25],
bottom topography [13], or higher order terms [27]; note also that Kano and
Nishida [15] gave a justification of the 1DH-shallow water equations under some
restrictions (analytic and small data).
For the 2DH-case and the other regimes mentioned above, there is no full rigor-
ous justification; one of the reasons for this is the complexity of the water-waves
equations for which local well-posedness and error estimates are nontrivial. Fol-
lowing the pioneer works in 1DH of Ovsjannikov [23] and Nalimov [22] (see also
Yosihara [30, 31]), Craig [8] and Kano and Nishida [15] managed to give the
first justification of the KdV and 1DH Boussinesq and shallow water approxi-
mations, but the comprehension of the well-posedness theory for the water-waves
equations hindered the perspective of justifying the other asymptotic regimes
until the breakthroughs of S. Wu ([28] and [29] respectively for the 1DH and
2DH case, in infinite depth, and without restrictive assumptions). Since when,
the literature on free surface Euler equations has been very active: the case
of finite depth was proved in [17], and in the related case of the study of the
free surface of a liquid in vacuum with zero gravity, Lindblad [19, 20] and more
recently Coutand and Shkoller [7] and Shatah and Zeng [26] managed to remove
the irrotationality condition and/or took into account surface tension effects.
Though quite numerous now, the results on the well-posedness of the water-
waves equations cannot be directly applied to justify rigorously asymptotic mod-
els because the estimates they give on the existence time are far too rough and
only provide existence over an interval of time asymptotically shrinking to zero
(relatively to the pertinent time scale). This difficulty is well illustrated by the
early works of Kano and Nishida [15] and Kano [14] where the KdV and KP ap-
proximations are justified (for analytic and small data) for times t = O(1) while
the relevant time scale for the asymptotics is t = O(1/ε) (with the notations
used in the present paper). In [8] this confusion is not made, and the proof relies
on a large time (i.e. O(1/ε)) existence theorem for the water-waves equations
in the particular “long-waves” scaling. It was recently shown in [4] that the
2DH Boussinesq systems are justified with sharp error estimates if solutions to
the water-waves equations in the long-waves regime exist over the time scale
t = O(1/ε) and are bounded in regular enough Sobolev spaces. Similarly, it
is proved in [18] that the rigorous justification of the KP approximation fol-
lows from such a large time existence theorem, and from (unexpected enough)
bounds on the solution.

Regardless of the physical regime investigated, the key steps in the process
of justification of asymptotic equations is thus the following:

1. Formally derive the asymptotic equations and identify the relevant time
scale of their dynamics;

2. Prove an existence result for the water-waves equations for this time scale
(this is what we call here “large time” existence) and bounds on the solu-
tion;

3. Perform error estimates to control the error between the exact solution of
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the water-waves equations and the solution furnished by the asymptotic
model.

The first step of this procedure can be done at the formal level, while the third
one can be done assuming the second one (as in [4, 6, 18]). Therefore, it turns
out that the proof of a large time existence theorem is the key step of the process.
Before explaining the approach developped here, let us review quickly existing
results for the main physical regimes: in order to do this, let us denote by a the
typical amplitude of the waves, by h the mean depth, and by λ the wavelength
of the waves.

• Shallow-water equations (i.e. h2/λ2 � 1). In 1DH, steps 1 to 3 of the
above procedure are done in [15], with some restrictions in Step 2 (analytic
and small data). In 2DH, Steps 2 and 3 remain open.

• Long-wave regime (i.e. h2/λ2 ∼ a/h � 1). The justification process is
complete in 1DH [8, 24, 4, 13]; in 2DH, Steps 1 and 3 are done in [4] (flat
bottom) and [6] (uneven bottom) but Step 2 is open.

• KP or weakly transverse regime (this regime is the same as the 2DH
long-wave regime, but with a wavelength in the transverse direction much
larger than in the longitudinal direction). As said above, [18] shows that
only Step 2 remains to be done.

• Serre approximation (i.e. h/λ ∼ a/h � 1). These equations are com-
monly used in oceanography (see for instance Chapter 5.7 of [12]), but no
mathematical justification exists.

• Deep water models. In deep water (h2/λ2 � 1) the asymptotic expansions
are commonly made in terms of the slope of the waves (a/λ � 1). For
instance, Matsuno [21] proposed (without justification) a model with full
dispersion valid for deep water in 1D.

Instead of developing an existence theory for each physical scaling, we de-
velop here a global method which allows one to justify all the asymptotics men-
tioned above at once. In order to do that, we nondimensionalize the water-waves
equations, and keep track of the four physical quantities which characterize the
dynamics of the water-waves: amplitude, depth, wavelength in the longitudinal
direction and wavelength in the transverse direction (for the sake of simplicity,
we only consider in this note flat bottoms; in the case of uneven bottoms, a fifth
parameter must be introduced, the amplitude of the bottom variations).
Our main theorem gives an estimate of the existence time of the solution of the
water-waves equations in terms of these four parameters. It is worth remarking
that this estimate is uniform with respect to these parameters (though they
may grow to infinity or decay to zero, depending on the physical regime inves-
tigated). In order to prove this theorem we introduce an energy which involves
the aforementioned parameters and use it to construct our solution by an it-
erative scheme. This energy provides moreover bounds on the solution which
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appear to be exactly those needed for the error estimates of Step 3.
Having proved such a large time existence result, we derive the asymptotic mod-
els for the regimes mentioned above in a systematic way, and use the bounds
on the solution provided by the energy to proceed with Step 3.

1.2 Presentation of the results

Parameterizing the free surface by z = ζ(t,X) (with X = (x, y) ∈ R2) and the
bottom by z = −h (with h > 0 constant – uneven bottoms are considered in
[1]), one can use the incompressibility and irrotationality conditions to write
the water-waves equations under Bernouilli’s formulation, in terms of a velocity
potential Φ (i.e., the velocity field is given by v = ∇X,zΦ):

∂2
xΦ + ∂2

yΦ + ∂2
zΦ = 0, −h ≤ z ≤ ζ,

∂nΦ = 0, z = −h,
∂tζ +∇ζ · ∇Φ = ∂zΦ, z = ζ,

∂tΦ +
1
2
(
|∇Φ|2 + (∂zΦ)2

)
+ ζ = 0, z = ζ,

(1)

where ∇ = (∂x, ∂y)T and ∂nΦ is the normal derivative.
The qualitative study of the water-waves equations is made easier by the

introduction of dimensionless variables and unknowns. This requires the in-
troduction of various orders of magnitude linked to the physical regime under
consideration. As said in the introduction, these quantities are:

• a is the order of amplitude of the waves;

• h is the mean depth;

• λ is the wavelength of the waves in the x direction;

• λ/γ is the wavelength of the waves in the y direction.

We also introduce the following dimensionless parameters

ε =
a

h
, µ =

λ2

h2
, ν =

1
1 +

√
µ

; (2)

the parameter ε is often called nonlinearity parameter, while µ is the shallowness
parameter. The parameter ν is a transition parameter which takes into account
the fact that different nondimensionalizations are used in shallow and deep
water.

Zakharov [32] remarked that the system (1) could be written in Hamiltonian
form in terms of the free surface elevation ζ and of the trace of the velocity
potential at the surface ψ = Φ|z=ζ

and Craig, Sulem and Sulem [11] and Craig,
Schanz and Sulem [10] used the fact that (1) could be reduced to a system of two
evolution equations on ζ and ψ to prove the consistency of the Schrödinger and
Davey-Stewartson approximation; this formulation has commonly been used
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since when. In Section 2, we derive the following dimensionless form of this
formulation, which involves the parameters introduced in (2):

∂tζ −
1
µν
Gµ,γ [εζ]ψ = 0,

∂tψ + ζ +
ε

2ν
|∇γψ|2 − εµ

ν

( 1
µGµ,γ [εζ]ψ + ε∇γζ · ∇γψ)2

2(1 + ε2µ|∇γζ|2)
= 0,

(3)

where ∇γ = (∂x, γ∂y)T and Gµ,γ [εζ]ψ = (∂zΦ − µε∇γζ · ∇γΦ)|z=εζ
, with Φ

solving the boundary value problem{
∂2
zΦ + µ∂2

xΦ + γµ∂2
yΦ = 0, −1 < z < εζ

Φ|z=εζ
= ψ, ∂zΦ|z=−1 = 0. (4)

Section 3 is devoted to the asymptotic expansion of the Dirichlet-Neumann
operator Gµ,γ [εζ]ψ in terms of the parameters ε, γ and µ; we show how to get
explicit expansions in the cases mentioned above.
Section 4 is devoted to the study of the well-posedness of the water-waves equa-
tions for large times. With the notations above, we show that solutions to (3)
exist and are unique over times t = O( 1

ε/ν ); we also prove that the energy

|ζ|Hs +
∣∣ ν−1/2|Dγ |
(1 +

√
µ|Dγ |)1/2

ψ
∣∣
Hs (with |Dγ | =

√
D2
x + γ2D2

y);

remains bounded over this time scale. It turns our that this existence time
and this bound on the solution are exactly those needed to justify rigorously
all the models described above. This is sketched in Section 5 for three asymp-
totic models: the shallow water equations, the Boussinesq system, and the
Kadomtsev-Petviashvili (KP) approximation.

1.3 Notations

- When we want to insist on the dependence of some constant C on various
parameters p1, p2, . . ., we write C = C(p1, p2, . . .), and always assume that the
dependence on the parameters is nondecreasing.
- For all tempered distribution u ∈ S′(Rd), we denote by û its Fourier transform.
- Fourier multipliers: For all rapidly decaying u ∈ S(Rd) and all f ∈ C(Rd)
with tempered growth, f(D) is the distribution defined by

∀ξ ∈ Rd, f̂(D)u(ξ) = f(ξ)û(ξ); (5)

(this definition can be extended to wider spaces of functions).
- We write 〈ξ〉 = (1 + |ξ|2)1/2, Λ = 〈D〉 and ξγ = (ξ, γξ2).
- For all 1 ≤ p ≤ ∞, | · |p denotes the classical norm of Lp(Rd) while ‖ ·‖p stands
for the canonical norm of Lp(S), with S = Rd × (−1, 0).
- For all s ∈ R, Hs(Rd) is the classical Sobolev space defined as

Hs(Rd) = {u ∈ S′(Rd), |u|Hs
:= |Λsu|2 <∞}.
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- For all γ > 0, we write ∇γ = (∂x, γ∂y)T , so that ∇γ coincides with the usual
gradient when γ = 1. We also use the Fourier multiplier |Dγ | defined as

|Dγ | =
√
D2
x + γ2D2

y,

as well as the anisotropic divergence operator

divγ = (∇γ)T .

- We write X = (x, y) and ∇X,z = (∂x, ∂y, ∂z)T .
- The notation a . b means that a ≤ Cb, for some nonnegative constant C
whose exact expression is of no importance (in particular, it is independent of
the small parameters involved).
- We use the condensed notation

As = Bs + 〈Cs〉s>s (6)

to say that As = Bs if s ≤ s and As = Bs + Cs if s > s.
- When the notation ∂nu|∂Ω is used for boundary conditions of an elliptic equa-
tion of the form ∇X,z · P∇X,zu = h in some open set Ω, it stands for the
conormal derivative associated to this operator, namely,

∂nu|∂Ω = n · P∇X,zu|∂Ω , (7)

n standing for the outward unit normal vector to ∂Ω.

2 Nondimensionalization(s) of the equations

Depending on the value of µ, two distinct nondimensionalizations are commonly
used in oceanography (see for instance [12]). Namely, with dimensionless quan-
tities denoted with a prime:

• Shallow-water, i.e. µ� 1, one writes

x = λx′, y = λ
γ y

′, z = hz′, t = λ√
gh
t′,

ζ = aζ ′, Φ = a
hλ
√
ghΦ′.

• Deep-water, i.e. µ� 1, one writes

x = λx′, y = λ
γ y

′, z = λz′, t = λ√
gλ
t′,

ζ = aζ ′, Φ = a
√
gλΦ′.

Remarking that when µ ∼ 1, that is when λ ∼ h, both nondimensionalizations
are equivalent, we introduce the following general nondimensionalization, which
is valid for all µ > 0:

x = λx′, y = λ
γ y

′, z = hνz′, t = λ√
ghν

t′,

ζ = aζ ′, Φ = a
hλ
√

gh
ν Φ′, b = Bb′,
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where ν = 1
1+
√
ν

is a smooth function of µ such that ν ∼ 1 when µ � 1 and

ν ∼ µ−1/2(= λ/h) when µ� 1 (in [21], the parameter κ plays a similar role).
The equations of motion (1) then become (after dropping the primes for the

sake of clarity):

ν2µ∂2
xΦ + ν2γ2µ∂2

yΦ + ∂2
zΦ = 0, −1

ν
≤ z ≤ ε

ν
ζ,

−ν2µ∇γ(
β

ν
b) · ∇γΦ + ∂zΦ = 0, z = −1

ν
,

∂tζ −
1
µν2

(
− ν2µ∇γ(

ε

ν
ζ) · ∇γΦ + ∂zΦ

)
= 0, z =

ε

ν
ζ,

∂tΦ +
1
2
( ε
ν
|∇γΦ|2 +

ε

µν3
(∂zΦ)2

)
+ ζ = 0, z =

ε

ν
ζ,

(8)

with ∇γ = (∂x, γ∂y)T .
In order to reduce this set of equations into a system of two evolution equations,
define the Dirichlet-Neumann operator Gνµ,γ [ εν ζ]· as

Gνµ,γ [
ε

ν
ζ]ψ =

√
1 + |∇(

ε

ν
ζ)|2∂nΦ|z= ε

ν
ζ
,

with Φ solving the boundary value problem
ν2µ∂2

xΦ + ν2γ2µ∂2
yΦ + ∂2

zΦ = 0, −1
ν
≤ z ≤ ε

ν
ζ,

Φ|z= ε
ν

ζ
= ψ, ∂nΦ|

z= 1
ν

(−1+βb)
= 0,

(as always in this paper, ∂nΦ stands for the outward conormal derivative asso-
ciated to the elliptic equation). As remarked by in [32, 11, 10], the equations
(8) are equivalent to a set of two equations on the free surface parameterization
ζ and the trace of the velocity potential at the surface ψ = Φ|z=ε/νζ

involving
the Dirichlet-Neumann operator Gνµ,γ [ εν ζ]. Namely,

∂tζ −
1
µν2

Gνµ,γ [
ε

ν
ζ]ψ = 0,

∂tψ + ζ +
ε

2ν
|∇γψ|2 − εµ

ν3

( 1
µG

ν
µ,γ [

ε
ν ζ]ψ + ν∇γ(εζ) · ∇γψ)2

2(1 + ε2µ|∇γζ|2)
= 0.

(9)

In order to derive the system (3), let Gµ,γ [εζ]· be the Dirichlet-Neumann oper-
ator Gνµ,γ [εζ]· corresponding to the case ν = 1. One will easily check that

∀ν > 0, Gµ,γ [εζ]· =
1
ν
Gνµ,γ [

ε

ν
ζ]·,

so that plugging this relation into (9) yields
∂tζ −

1
µν
Gµ,γ [εζ]ψ = 0,

∂tψ + ζ +
ε

2ν
|∇γψ|2 − εµ

ν

( 1
µGµ,γ [εζ]ψ +∇γ(εζ) · ∇γψ)2

2(1 + ε2µ|∇γζ|2)
= 0.
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3 Asymptotic expansion of Gµ,γ[εζ]ψ
Throughout this section, we assume that the water height is always positive,
that is

∃h0 > 0, inf
Rd

(1 + εζ) ≥ h0. (10)

3.1 The case of small amplitude waves (ε� 1)

Expansions of the Dirichlet-Neumann operator for small amplitude waves has
been developed in [11, 10]. This method is very efficient to compute the formal
expansion, but instead of adapting it in the present case to give uniform esti-
mates on the truncation error, we rather propose a very simple method based on
the following explicit formula for the derivative of the mapping ζ 7→ Gµ,γ [εζ]ψ,
which is a particular case of Theorem 3.20 of [17].

Theorem 1 Let t0 > 1, s ≥ t0 and ζ ∈ Hs+3/2(R2) be such that (10) is satisfied
for some h0 > 0. For all ψ ∈ Hs+3/2(R2), the mapping

ζ 7→ Gµ,γ [εζ]ψ ∈ Hs+1/2(R2)

is well defined and differentiable in a neighborhood of ζ in Hs+3/2(R2), and

∀h ∈ Hs+3/2(R2), dζGµ,γ [ε·]ψ · h = −εGµ,γ [εζ](hZ)− εµ∇γ · (hv),

with

Z =
1

1 + ε2µ|∇γζ|2
(Gµ,γ [εζ]ψ + εµ∇γζ · ∇γψ),

v = ∇γψ − εZ∇γζ.

We can now state the following proposition, which gives an expansion of the
Dirichlet-Neumann operator Gµ,γ [εζ]ψ in terms of ε, and uniform with respect
to γ ∈ (0, 1] and µ > 0.

Proposition 1 Let s ≥ t0 > 1, ψ ∈ Hs+4(R2) and ζ ∈ Hs+9/2(R2) be such
that (10) is satisfied for some h0 > 0. Then one has∣∣Gµ,γ [εζ]ψ − [Gµ,γ [0]− εGµ,γ [0]

(
ζ(Gµ,γ [0]ψ)

)
− εµ∇γ · (ζ∇γψ)

]∣∣
Hs

≤ ε2µ3/2C
( 1
h0
, ε
√
µ, |ζ|Hs+9/2 ,

∣∣ ν−1/2|Dγ |
(1 +

√
µ|Dγ |)1/2

ψ
∣∣
Hs+7/2

)
.

Proof.
An order two expansion of Gµ,γ [εζ]ψ gives

Gµ,γ [εζ]ψ = Gµ,γ [0]ψ + d0Gµ,γ [ε·]ψ · ζ +
∫ 1

0

(1− z)d2
zζG[ε·]ψ · (ζ, ζ)dz.
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Using Theorem 1, one computes

d0Gµ,γ [ε·]ψ · ζ = −εGµ,γ [0]
(
ζ(Gµ,γ [0]ψ)

)
− εµ∇γ · (ζ∇γψ)

and, with some more work, one also gets an explicit expression for the second
derivative d2

zζG[ε·]ψ · (ζ, ζ). It appears that one can write

d2
zζG[ε·]ψ · (ζ, ζ) = ε2µ3/2F (z, ε, µ, γ, ζ, ψ),

and that

|F (z, ε, µ, γ, ζ, ψ)|Hs ≤ C
(
ε
√
µ,

1
h0
, |ζ|Hs+9/2 ,

∣∣ ν−1/2|Dγ |
(1 +

√
µ|Dγ |)1/2

ψ
∣∣
Hs+7/2

)
,

uniformly with respect to all the parameters; an important step in the above
estimate is the following estimate on the operator norm of Gµ,γ [εζ]:

∀s ≥ t0 > 1, | 1
√
µ
Gµ,γ [εζ]ψ|Hs−1/2 ≤ C(

1
h0
, |ζ|Hs+1)

∣∣ ν−1/2|Dγ |
(1 +

√
µ|Dγ |)1/2

ψ
∣∣
Hs .

�

We can now give asymptotic expansions of Gµ,γ [εζ]ψ in the different regimes
mentioned in the introduction. The first one is the long-waves regime (see also
[4] for a different proof based on a BKW expansion of the velocity potential).

Corollary 1 (Long-Waves regime) Let ε0 > 0, s ≥ t0 > 1, ψ ∈ Hs+6(R2)
and ζ ∈ Hs+9/2(R2) be such that (10) is satisfied for some h0 > 0.
If γ = 1 then for all 0 < ε = µ < ε0, one has∣∣Gµ,γ [εζ]ψ −

[
− ε∆ψ − ε2(

1
3
∆2ψ +∇ · (ζ∇ψ)

]∣∣
Hs

≤ ε3C
( 1
h0
, ε0, |ζ|Hs+9/2 , |∇ψ

∣∣
Hs+5

)
.

Proof.
Under the long-waves regime, one can compute explicitly Gµ,γ [0]ψ = Gε,1[0]ψ
(see Proposition 3 below for the computation):

Gε,1[0]ψ =
√
ε|D| tanh(

√
ε|D|)ψ,

and a second order Taylor expansion of the function ε 7→
√
εz tanh(

√
εz) at the

origin gives therefore∣∣Gε,1[0]ψ −
[
− ε∆Ψ− ε2

1
3
∆2Ψ

]∣∣
Hs . ε3|∇ψ|Hs+5 .

Since µ = ε, γ = 1 and ν ∼ 1 in the present scaling, one also deduces that∣∣ ν−1/2|Dγ |
(1 +

√
µ|Dγ |)1/2

ψ
∣∣
Hs ≤

∣∣∇ψ|Hs ,

uniformly with respect to ε, and the corollary follows therefore from Proposition
1.
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In the case of the KP regime (or weakly transverse long-waves), which is the
same as the long-wave regime described above, but with γ =

√
ε, one has (see

also [18]):

Corollary 2 (KP regime) Let ε0 > 0, s ≥ t0 > 1, ψ ∈ Hs+6(R2) and ζ ∈
Hs+9/2(R2) be such that (10) is satisfied for some h0 > 0.
Then for all 0 < ε = µ = γ2 < ε0, one has∣∣Gµ,γ [εζ]ψ −

[
− ε∂2

xψ − ε2
(1
3
∂4
xψ + ∂x(ζ∂xψ) + ∂2

yψ
)
− ε3∂y(ζ∂yψ)

]∣∣
Hs

≤ ε3C
( 1
h0
, ε0, |ζ|Hs+9/2 , |∇ψ

∣∣
Hs+5

)
.

Proof.
In this regime, µ = ε = γ2, so that Gµ,γ [0]ψ = Gε,√ε[0]ψ, which can be explicitly
computed (see Proposition 1):

Gε,√ε[0]ψ =
√
ε|D

√
ε| tanh

(√
ε|D

√
ε|
)
ψ,

where we recall that |D
√
ε| =

√
D2
x + εD2

y. An order 3 Taylor expansion at the
origin of this expression gives∣∣Gε,√ε[0]ψ −

[
− ε(∂2

x + ε∂2
y)Ψ− ε2 1

3
(∂2
x + ε∂2

y)
2Ψ
]∣∣
Hs . ε3

∣∣|D√
ε
∣∣ψ|Hs+5 . (11)

Remarking that under the present scaling, one has

∣∣ ν−1/2|Dγ |
(1 +

√
µ|Dγ |)1/2

ψ
∣∣
Hs ≤

∣∣|D√
ε|ψ|Hs ≤ |∂xψ|Hs + |

√
ε∂yψ|Hs ,

the corollary follows from Proposition 1 and (11).

�

Remark 1 i. The method used above to give an expansion of the Dirichlet-
Neumann operator Gµ,γ [εζ]ψ is general and can be used for other scalings, and
in particular for the Serre approximation mentioned in the introduction, and for
which γ = 1, µ = ε2 � 1.
ii. The two corollaries given above concern shallow-water models (µ � 1), but
Proposition 1 is also valid in deep water. In this case, one has ν ∼ µ−1/2 and the
quantity one has to expand in the first equation of (3) is therefore 1√

µGµ,γ [εζ]ψ.
Remarking also that 1√

µGµ,γ [0] is uniformly bounded (as an operator of order 1),
Proposition 1 furnishes an expansion of 1√

µGµ,γ [εζ]ψ in terms of ε
√
µ. Going

back to the definition of ε and µ, one can check that ε
√
µ = a/λ. This is the

slope of the wave, used in oceanography as small parameter in deep water.
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3.2 The case of large amplitude waves (ε = 1)

The shallow-water regime (for instance) assumes that µ � 1 but deals with
waves of large amplitude for which ε = 1. In this kind of situation, we cannot use
Proposition 1 to obtain an expansion of Gµ,γ [εζ]ψ = Gµ,1[ζ]ψ. However, one can
quite easily construct by a standard BKW procedure an (explicit) approximation
Φapp of the velocity potential Φ (which solves (4)). We then write

Gµ,1[ζ]ψ =
√

1 + |∇ζ|2∂nΦ|z=0

=
√

1 + |∇ζ|2∂nΦapp|z=0 +
√

1 + |∇ζ|2∂n
(
Φ− Φapp

)
|z=0.

The first component of the last equality gives the asymptotic expansion on
Gµ,1[ζ]ψ since the formula giving Φapp is explicit. The second term of the equal-
ity is the truncation error and can be controlled by elliptic estimates (see [6] for
such estimates in a quite general framework). With this method, one obtains
the following proposition:

Proposition 2 (Shallow water regime) Let µ0 > 0, ε = γ = 1, s ≥ t0 > 1,
ψ ∈ Hs+4(R2) and ζ ∈ Hs+1(R2) be such that (10) is satisfied for some h0 > 0.
Then for all 0 < µ < µ0, one has∣∣Gµ,γ [εζ]ψ − µ

(
− (1 + ζ)∆ψ −∇ψ · ∇ζ

)∣∣
Hs ≤ µ2C

( 1
h0
, µ0, |ζ|Hs+1 , |∇ψ

∣∣
Hs+3

)
.

4 A large time existence result for the water-
waves equations

This section is devoted to the proof of the main theorem of this article. We
state it below and refer to [1] for full details on the proof. We just hint here at
the main steps of the proof. Section 4.1 explains the structure of the linearized
equations (we do it in Section 4.1.1 with elementary tools when the reference
state is zero, and explain how to treat the general case in Section 4.2). The
main steps of the proof of the theorem are given in Section 4.3.
Before stating the theorem, let us introduce the energy Es:

∀s ≥ 0, Es
(
(ζ, ψ)

)
:= |ζ|Hs +

∣∣ ν−1/2|Dγ |
(1 +

√
µ|Dγ |)1/2

ψ
∣∣
Hs . (12)

Theorem 2 Let s ≥ 0 and U0 = (ζ0, ψ0) be such that Es(U0) < ∞ for some
s = s(s) large enough. If moreover infRd(1 + εζ0) = h0 > 0, then there exists
T = T (Es(U0), 1

h0
, ε
√
µ) > 0 and a unique solution U = (ζ, ψ) to (3) with

(ζ, ψ − ψ0) ∈ C([0, T
ε/ν ];Hs ×Hs+1/2(Rd)); moreover, one has

sup
0≤t≤ T

ε/ν

Es(U(t)) ≤ C(T, Es(U0),
1
h0
, ε
√
µ).

11



Remark 2 i. The “large time” evoked in the title of this section is thus O( 1
ε/ν ).

In the shallow-water regime one has ε/ν = 1, so that the existence time furnished
by the theorem is O(1); it is however “large” in the sense that it is uniform

with respect to µ� 1 (and in particular, it does not shrink to zero when µ→ 0).
ii. The scale O( 1

ε/ν ) appears to be the pertinent scale of the dynamics of the
asymptotics in all the regimes mentioned in the introduction.
iii. The theorem requires that ε

√
µ remains bounded in order to have a useful

control of the energy. As remarked previously, ε
√
µ = a/λ is the slope of the

waves and it is not restrictive at all to assume that it remains bounded (in all
the regimes considered here, ε

√
µ� 1).

4.1 The linearized equations

Let us rewrite the water-waves equations (3) in condensed form as

∂tU + Fε,µ,γ [U ] = 0,

with U = (ζ, ψ)T and Fε,µ,γ [U ] given by

Fε,µ,γ [U ] =
(
− 1
µν
Gµ,γ [εζ]ψ, ζ+

ε

2ν
|∇γψ|2− εµ

ν

( 1
µGµ,γ [εζ]ψ + ε∇γζ · ∇γψ)2

2(1 + ε2µ|∇γζ|2)

)T
.

By definition, the linearized operator L(ζ,ψ) around some reference state (ζ, ψ)T

is given by
L(ζ,ψ) = ∂t + dUFε,µ,γ ;

the goal of this section is to give energy estimates on the initial value problem{
L(ζ,ψ)U = ε

νG

U|t=0 = U0;
(13)

4.1.1 The linearized equations around the rest state

We assume here that U is the rest state: U = (0, 0)T . In this particular case,
the computation of L(ζ,ψ) can be directly computed:

L(0,0) = ∂t +
(

0 − 1
µνGµ,γ [0]·

1 0

)
,

and moreover, one has an explicit expression for Gµ,γ [0]·:

Proposition 3 The operator Gµ,γ [0]· is given by the Fourier multiplier

Gµ,γ [0]· = √
µ|Dγ | tanh(

√
µ|Dγ |) · .

Proof.
By definition of the operator Gµ,γ [0]·, one has Gµ,γ [0]ψ = ∂zΦ|z=0 , where Φ
solves the Laplace equation{

∂2
zΦ

2 + µ∂2
xΦ + γ2µ∂2

yΦ = 0
Φ|z=0 = ψ, ∂zΦ|z=−1 = 0.

12



One can take the Fourier transform in the horizontal variables, which yields the
second order ODE on Φ̂:

∂2
z Φ̂− µ|ξγ |2Φ̂ = 0,

which can be explicitly solved thanks to the boundary conditions. Taking the
inverse Fourier transform of the solution then yields

Φ(·, z) =
cosh(

√
µ(z + 1)|Dγ |)

cosh(
√
µ|Dγ |)

ψ,

so that one gets by direct computation ∂zΦ|z=0 =
√
µ|Dγ | tanh(

√
µ|Dγ |)ψ,

which proves the proposition.

�

It follows from the proposition that L(0,0) takes the explicit form

L(0,0) = ∂t +
(

0 − 1√
µν |D

γ | tanh(
√
µ|Dγ |)·

1 0

)
.

Quite obviously, this operator is non strictly hyperbolic (0 is a double eigenvalue
of the principal symbol, and there is a Jordan block), and any symmetrizer, if
it exists will be non-homogeneous (thus inducing a shift of derivatives in the
energy – see for instance [9] for a discussion on this point). Here, a symmetrizer
is obviously given by

S =
(

1 0
0 1√

µν |D
γ | tanh(

√
µ|Dγ |)·

)
,

which motivates the following choice of the energy

Es(U)2 = (ΛsU, SΛsU)

= |ζ|2Hs +
(
Λsψ,

1
√
µν
|Dγ | tanh(

√
µ|Dγ |)ΛsΨ

)
.

It worth noticing that Es(U) ∼ Es(U) (and the equivalence is uniform with
respect to the parameters µ and γ). This shows in particular that this energy
controls the truncation error in Proposition 1.

Remark 3 It is true that one has the following equivalence

Es(U) ∼ |U |Hs×Hs+1/2 ;

however, this equivalence is completely useless because the equivalence is not
uniform with respect to γ and µ. The fact that one cannot use such an equiva-
lence complicates considerably the proof and compels us to use more structural
properties of the water-waves equations than in [17] for instance.

By very standard techniques, one then obtains the following proposition:

13



Proposition 4 Assume that U = (0, 0) and let s ≥ 0. Assume also that G ∈
C([0, T

ε/ν ];Hs ×Hs+1/2(R2)) and U0 ∈ Hs ×Hs+1/2(R2). Then there exists a
unique solution U ∈ C([0, T

ε/ν ];Hs ×Hs+1/2(R2)) to (13) and one has

∀t ∈ [0,
ν

ε
T ], Es(U(t)) ≤ Es(U0) + T sup

t∈[0,νT/ε]

Es(G(t)).

Remark 4 One could of course have solved (13) explicitly and deduce the es-
timates, but our purpose here is to introduce the methods used in the study of
(13) when U is not necessarily zero.

4.2 The linearized equations in the general case

In the general case, i.e. when U is not zero, the computation of L(ζ,ψ) is not
straightforward. However, assuming that U is such that the assumptions of
Theorem 1 are satisfied, one obtains as in [17] an explicit expression for L(ζ,ψ),

L(ζ,ψ) =

∂t +

(
ε
µνGµ,γ [εζ](Z·) + ε

ν∇
γ · (·v) − 1

µνGµ,γ [εζ]·
ε2

µνZGµ,γ [εζ](Z·) + (1 + ε2

ν Z∇
γ · v) ε

νv · ∇
γ · − ε

µνZGµ,γ [εζ]·

)
,

where v and Z are as in the statement of Theorem 1.
A study of the principal symbol of this operator shows that, as for the

linearization around zero, L(ζ,ψ) is not strictly hyperbolic (the double eigenvalue
is now ε

νv · ξ
γ). It was shown in Prop. 4.2 of [17] that a simple change of basis

can be used to put the principal symbol of L(ζ,ψ) under a canonical trigonal
form. This result is generalized to the present case. More precisely, with

a = 1 +
ε

ν
b, and b = εv · ∇γZ + ν∂tZ, (14)

and defining the operator M(ζ,ψ) = ∂t +M(ζ,ψ) with

M(ζ,ψ) =
( ε

ν∇
γ · (·v) − 1

µνGµ,γ [εζ]·
a ε

νv · ∇
γ ·

)
, (15)

one reduces the study of (13) to the study of the initial value problem{
M(ζ,ψ)V = ε

νH

V|t=0 = V 0,
(16)

as shown in the following proposition (whose proof relies on simple computations
and is omitted).

Proposition 5 The following two assertions are equivalent:

• The pair U = (ζ, ψ)T solves (13);

14



• The pair V = (ζ, ψ− εZζ)T solves (16), with H = (G1, G2− εZG1)T and
V 0 = (ζ0, ψ0 − εZ |t=0

ζ0)T .

In view of this proposition, it is a key step to understand (16), and the rest
of this subsection shows the way to prove energy estimates for this initial value
problem.

First remark that a symmetrizer for M(ζ,ψ) is given by

S =

(
a 0
0 ε2

ν2 + 1
µνGµ,γ [εζ]·

)
, (17)

so that (provided that a is nonnegative), a natural energy for the ivp (16) is
given by

Es(V )2 = (ΛsV, SΛsV )

= |
√

aΛsV1|22 +
ε2

ν2
|V2|2Hs + (ΛsV2,

1
µν
Gµ,γ [εζ]ΛsV2). (18)

Remark 5 The term ε2

ν2 |V2|2Hs in (18) is due to the ε2

ν2 in the second coefficient
of the diagonal of (17). Removing this term would not affect the energy estimate
given below; however, thanks to it, the energy controls the low frequencies of V2,
which is very important in the iterative scheme used to solve to full water-waves
equations.

The energy (18) is the right one to obtain energy estimates on (16), but the
reference state U must be admissible in the following sense:

Definition 1 Let t0 > 1 and T > 0. We say that U = (ζ, ψ) is admissible on
[0, T

ε/ν ] if

• (ζ,∇ψ) ∈ C2([0, T
ε/ν ];H∞(Rd)1+2);

• The surface parameterization ζ satisfies (10) for some h0 > 0, uniformly
on [0, T

ε/ν ];

• There exists c0 > 0 such that a ≥ c0, uniformly on [0, T
ε/ν ].

We can now give the energy estimate associated to (16); it can be seen as a
generalization of Proposition 4. We refer to [1] for the proof (in the statement
of the proposition, EsT (H) stands for EsT (H) = sup0≤νT/εE

s(H(t))).

Proposition 6 Let t0 > 1, T > 0, and assume that U = (ζ, ψ) is admissible
on [0, T

ε/ν ] for some h0 > 0 and c0 > 0.
Then, for all H ∈ C([0, T

ε/ν ];H∞(R2)2), there exists a unique solution V ∈
C([0, T

ε/ν ];H∞(R2)2) to (16) and, for all s ≥ 0, and 0 ≤ t ≤ T
ε/ν ,

Es(V (t)) ≤ C×
[
Es(V 0)+TEsT

(
H
)
+
〈(
Et0+1(V 0)+TEt0+1

T (H)
)
Ds

〉
s>t0+1

]
,
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where
Ds = Es+7/2

T (U) + Es+2
T (∂tU)

and
C = C

(
T,

1
h0
,

1
c0
,
ε

ν
, Et0+9/2
T (U), Et0+2

T (∂tU), Et0+3/2
T (∂2

tU)
)
.

4.3 Main steps of the proof of Theorem 2

The energy estimate given in Proposition 6 concerns the initial value problem
(16). Using Proposition 5 once again, but with the other side of the equivalence,
we deduce an energy estimate for the initial value problem (13).
This energy estimates does not allow a standard Picard iterative scheme because
it exhibits losses of derivatives (in Proposition 6 for instance, one needs an energy
of order s+7/2 on U to control an energy of order s on V ). However, this energy
is tame in the sense that the s-dependent terms on the right hand side are all
linear. This allows, as in [17], the use of a Nash-Moser type iterative scheme.
The order O( 1

ε/ν ) of the existence time furnished by the Nash-Moser fixed point
theorem follows from the fact that the energy estimate of Proposition 6 depends
only on T for times T

ε/ν (note that we use here a special Nash-Moser theorem
with parameters for evolution equations developed in [2]).
The last points to comment on are the two conditions required in the definition
of an admissible reference state. Quite obviously, the condition on the water
depth will remain true for T small enough (but uniformly with respect to the
parameters) if it is initially true. The second condition, on the sign of a, is not
that clear. In fact, it follows from the works of S. Wu [28, 29], generalized in [17]
for the case of finite depth, that one has necessarily a > 0 for exact solutions
of the water-waves equations. Choosing the first term of the iterative scheme
in such a way that it solves the water-waves equations at t = 0, there exists c0
such that a(t = 0) > 2c0; it is then possibly to maintain the condition a(t) > c0
on [0, T

ε/ν ] (taking a smaller T if necessary).

5 Asymptotics for 3D water-waves

As an illustration of the methods developed in this note, we sketch here how
to give a full justification of asymptotic models for 3D water-waves in three
different regimes: shallow water, long waves, and KP regime.

5.1 Shallow-water equations

We recall that the so-called “shallow-water” regime corresponds to the condition
µ � 1 (so that ν ∼ 1) and that ε = γ = 1. It follows therefore from Theorem
2 that there exists T > 0 independent of µ such that solutions to (3) exist on
[0, T ]. Moreover, the energy bound provided by the theorem ensures that ζ
and V := ∇ψ are uniformly bounded on [0, T ] in Sobolev spaces. Plugging the
expansion furnished by Proposition 2 into (3) and taking the gradient of the
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second equations in order to obtain a system of equations on ζ and V = ∇ψ,
one gets {

∂tV +∇ζ + 1
2∇|V |

2 = µRµ1 ,
∂tζ +∇ · (1 + ζV ) = µRµ2 ,

(19)

with Rµ1 and Rµ2 uniformly bounded in Sobolev spaces on the time interval
[0, T ]. An energy estimate on (19) thus shows that the error made by using
exact solutions of the shallow water equations (namely, (19) with zero on the
right hand side) instead of (3) is O(µ) on [0, T ]. In other words, the 2DH
shallow water model is fully justified.

5.2 Long-waves regime

The long-wave regime is characterized by the scaling γ = 1, µ = ε� 1, so that
one has ν ∼ 1. It follows from Theorem 2 that there exists T > 0 independent
of ε and a unique solution U = (ζ, ψ) to (3) on the time interval [0, Tε ] such that
the energy

|ζ(t)|Hs +
∣∣ |D|
(1 +

√
ε|D|)1/2

ψ(t)
∣∣
Hs

remains bounded on [0, Tε ]. Defining V = ∇ψ, this implies that ζ and V remain
bounded on [0, Tε ] in Sobolev spaces. This is was exactly the condition that
was needed in [4] to fully justify the 2DH Boussinesq systems. For the sake of
completeness, we recall briefly the strategy of [4].
Plugging the asymptotic expansion of the Dirichlet-Neumann operator given by
Corollary 1 into (3) and taking the gradient of the equation on ψ, one gets{

∂tV +∇ζ + ε 1
2∇|V |

2 = ε2Rε1,
∂tζ +∇ · V + ε

(
1
3∆∇ · V +∇ · (ζV )

)
= ε2Rε2,

(20)

where, as a consequence of Corollary 1 and Theorem 2, Rεj = Rεj(ζ, ψ) (j = 1, 2)
are uniformly bounded on the time interval [0, T/ε] in Sobolev spaces. The
Boussinesq system (20), however, is not well-posed, and one cannot directly
conclude as in the shallow-water regime. Using linear manipulations (set forth
in a systematic way in [5]) and a nonlinear change of variables introduced in
[4], one can construct an infinity of Boussinesq systems, formally equivalent to
(20), some of which being well-posed. Making the energy estimates on such
a well-posed system, one can show that the approximations furnished by the
Boussinesq systems have a precision of order O(ε2t) on [0, T/ε].

5.3 The Kadomtsev-Petviashvilii approximation

We recall that the KP regime is the same as the long-waves regime, but with
γ =

√
ε. Theorem 2 then furnishes a solution of (3) on a time interval [0, T/ε];

moreover, the energy bound shows that ζ, ∂xψ and
√
ε∂yψ are bounded on

[0, T/ε] in Sobolev spaces. This was exactly the assumption made in [18] to jus-
tify the Katomtsev-Petviashvili equations which states that the water elevation
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ζ is approximated on [0, T/ε] by

ζ(t, x) ∼ ζ+(εt, x− t,
√
εy) + ζ−(εt, x+ t,

√
εy),

where ζ±(τ, x̃) solves

∂τζ± ±
1
2
∂−1ex ∂2

yζ± ±
1
6
∂3exζ± +

3
2
ζ±∂exζ± = 0.

The strategy of [18] to justify the KP approximation from the large time ex-
istence theorem and the bounds on ζ, ∂xψ and

√
ε∂yψ consists in justifying

first a class of weakly transverse Boussinesq systems along the lines described
in Section 5.2; the KP approximation is then justified from these systems with
nonlinear optics methods, as in [3].
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